SHARP NORM INEQUALITY FOR BOUNDED SUBMARTINGALES AND STOCHASTIC INTEGRALS

ADAM OSĘKOWSKI
Department of Mathematics, Informatics and Mechanics
University of Warsaw, Banacha 2, 02-097 Warsaw
Poland
ados@mimuw.edu.pl

Received 25 February, 2008; accepted 22 October, 2008
Communicated by S.S. Dragomir

Abstract. Let $\alpha \in[0,1]$ be a fixed number and $f=\left(f_{n}\right)$ be a nonnegative submartingale bounded from above by 1 . Assume $g=\left(g_{n}\right)$ is a process satisfying, with probability 1 ,

$$
\left|d g_{n}\right| \leq\left|d f_{n}\right|, \quad\left|\mathbb{E}\left(d g_{n+1} \mid \mathcal{F}_{n}\right)\right| \leq \alpha \mathbb{E}\left(d f_{n+1} \mid \mathcal{F}_{n}\right), \quad n=0,1,2, \ldots
$$

We provide a sharp bound for the first moment of the process g. A related estimate for stochastic integrals is also established.

Key words and phrases: Martingale, Submartingale, Stochastic integral, Norm inequality, Differential subordination.
2000 Mathematics Subject Classification Primary: 60642. Secondary: 60H05.

1. Introduction

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ be a filtration, a nondecreasing sequence of sub- σ-algebras of \mathcal{F}. Throughout the paper, α is a fixed number belonging to the interval $[0,1]$. Let $f=\left(f_{n}\right)_{n \geq 0}, g=\left(g_{n}\right)_{n \geq 0}$ denote adapted real-valued integrable processes, such that f is a submartingale and g is α-subordinate to f : for any $n=0,1,2, \ldots$ we have, almost surely,

$$
\begin{equation*}
\left|d g_{n}\right| \leq\left|d f_{n}\right| \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\mathbb{E}\left(d g_{n+1} \mid \mathcal{F}_{n}\right)\right| \leq \alpha \mathbb{E}\left(d f_{n+1} \mid \mathcal{F}_{n}\right) . \tag{1.2}
\end{equation*}
$$

Here $d f=\left(d f_{n}\right)_{n \geq 0}$ and $d g=\left(d g_{n}\right)$ stand for the difference sequences of f and g, given by

$$
d f_{0}=f_{0}, \quad d f_{n}=f_{n}-f_{n-1}, \quad d g_{0}=g_{0}, \quad d g_{n}=g_{n}-g_{n-1}, \quad n=1,2, \ldots
$$

The main objective of this paper is to provide some bounds on the size of the process g under some additional assumptions on the boundedness of f. Let us provide some information about related estimates which have appeared in the literature. Let Φ be an increasing convex function on $[0, \infty)$ such that $\Phi(0)=0$, the integral $\int_{0}^{\infty} \Phi(t) e^{-t} d t$ is finite and Φ is twice differentiable

[^0]on $(0, \infty)$ with a strictly convex first derivative satisfying $\Phi^{\prime}(0+)=0$. For example, one can take $\Phi(t)=t^{p}, p>2$, or $\Phi(t)=e^{a t}-1-a t$ for $a \in(0,1)$.

In [2] Burkholder proved a sharp Φ-inequality

$$
\sup _{n} \mathbb{E} \Phi\left(\left|g_{n}\right|\right)<\frac{1}{2} \int_{0}^{\infty} \Phi(t) e^{-t} d t
$$

under the assumption that f is a martingale (and so is g, by (1.2)), which is bounded in absolute value by 1 . This inequality was later extended in [5] to the submartingale case: if f is a nonnegative submartingale bounded from above by 1 and g is 1 -subordinate to f, then we have a sharp estimate

$$
\sup _{n} \mathbb{E} \Phi\left(\frac{\left|g_{n}\right|}{2}\right)<\frac{2}{3} \int_{0}^{\infty} \Phi(t) e^{-t} d t .
$$

Finally, Kim and Kim proved in [8], that if the 1 -subordination is replaced by α-subordination, then we have

$$
\begin{equation*}
\sup _{n} \mathbb{E} \Phi\left(\frac{\left|g_{n}\right|}{1+\alpha}\right)<\frac{1+\alpha}{2+\alpha} \int_{0}^{\infty} \Phi(t) e^{-t} d t, \tag{1.3}
\end{equation*}
$$

if f is a nonnegative submartingale bounded by 1 .
There are other related results, concerning tail estimates of g. Let us state here Hammack's inequality, an estimate we will need later on. In [7] it is proved that if f is a submartingale bounded in absolute value by 1 and g is 1 -subordinate to f, then, for $\lambda \geq 4$,

$$
\begin{equation*}
\mathbb{P}\left(\sup _{n}\left|g_{n}\right| \geq \lambda\right) \leq \frac{(8+\sqrt{2}) e}{12} \exp (-\lambda / 4) \tag{1.4}
\end{equation*}
$$

For other similar results, see the papers by Burkholder [3] and Hammack [7].
A natural question arises: what can be said about the Φ-inequalities for other functions Φ ? The purpose of this paper is to give the answer for $\Phi(t)=t$. The main result can be stated as follows.

Theorem 1.1. Suppose f is a nonnegative submartingale such that $\sup _{n} f_{n} \leq 1$ almost surely and let g be α-subordinate to f. Then

$$
\begin{equation*}
\|g\|_{1} \leq \frac{(\alpha+1)\left(2 \alpha^{2}+3 \alpha+2\right)}{(2 \alpha+1)(\alpha+2)} \tag{1.5}
\end{equation*}
$$

The constant on the right is the best possible.
In the special case $\alpha=1$, this leads to an interesting inequality for stochastic integrals. Suppose $(\Omega, \mathcal{F}, \mathbb{P})$ is a complete probability space, filtered by a nondecreasing family $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ of sub- σ-algebras of \mathcal{F} and assume that \mathcal{F}_{0} contains all the events A with $\mathbb{P}(A)=0$. Let $X=$ $\left(X_{t}\right)_{t \geq 0}$ be an adapted nonnegative right-continuous submartingale with left limits, satisfying $\mathbb{P}\left(X_{t} \leq 1\right)=1$ for all t and let $H=\left(H_{t}\right)$ be a predictable process with values in $[-1,1]$. Let $Y=\left(Y_{t}\right)$ be an Itô stochastic integral of H with respect to X, that is,

$$
Y_{t}=H_{0} X_{0}+\int_{(0, t]} H_{s} d X_{s}
$$

Let $\|Y\|_{1}=\sup _{t}\left\|Y_{t}\right\|_{1}$.
Theorem 1.2. For X, Y as above, we have

$$
\begin{equation*}
\|Y\|_{1} \leq \frac{14}{9} \tag{1.6}
\end{equation*}
$$

and the constant is the best possible. It is already the best possible if H is assumed to take values in the set $\{-1,1\}$.

The proofs are based on Burkholder's techniques which were developed in [2] and [3]. These enable us to reduce the proof of the submartingale inequality (1.5) to finding a special function, satisfying some convexity-type properties or, equivalently, to solving a certain boundary value problem.

The paper is organized as follows. In the next section we introduce the special function corresponding to the moment inequality and study its properties. Section 3 contains the proofs of inequalities (1.5) and (1.6). The sharpness of these estimates is postponed to the last section, Section 4

2. The Special Function

Let S denote the strip $[0,1] \times \mathbb{R}$. Consider the following subsets of S.

$$
\begin{aligned}
D_{1} & =\left\{(x, y) \in S: x \leq \frac{\alpha}{2 \alpha+1}, x+|y|>\frac{\alpha}{2 \alpha+1}\right\}, \\
D_{2} & =\left\{(x, y) \in S: x \geq \frac{\alpha}{2 \alpha+1},-x+|y|>-\frac{\alpha}{2 \alpha+1}\right\}, \\
D_{3} & =\left\{(x, y) \in S: x \geq \frac{\alpha}{2 \alpha+1},-x+|y| \leq-\frac{\alpha}{2 \alpha+1}\right\}, \\
D_{4} & =\left\{(x, y) \in S: x \leq \frac{\alpha}{2 \alpha+1}, x+|y| \leq \frac{\alpha}{2 \alpha+1}\right\} .
\end{aligned}
$$

Consider a function $H: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
H(x, y)=(|x|+|y|)^{1 /(\alpha+1)}((\alpha+1)|x|-|y|) .
$$

Let $u: S \rightarrow \mathbb{R}$ be given by

$$
u(x, y)=-\alpha x+|y|+\alpha+\exp \left[-\frac{2 \alpha+1}{\alpha+1}\left(x+|y|-\frac{\alpha}{2 \alpha+1}\right)\right]\left(x+\frac{1}{2 \alpha+1}\right)
$$

if $(x, y) \in D_{1}$,

$$
u(x, y)=-\alpha x+|y|+\alpha+\exp \left[-\frac{2 \alpha+1}{\alpha+1}\left(-x+|y|+\frac{\alpha}{2 \alpha+1}\right)\right](1-x)
$$

if $(x, y) \in D_{2}$,

$$
u(x, y)=-(1-x) \log \left[\frac{2 \alpha+1}{\alpha+1}(1-x+|y|)\right]+(\alpha+1)(1-x)+|y|
$$

if $(x, y) \in D_{3}$ and

$$
u(x, y)=-\frac{\alpha^{2}}{(2 \alpha+1)(\alpha+2)}\left[1+\left(\frac{2 \alpha+1}{\alpha}\right)^{\frac{\alpha+2}{\alpha+1}} H(x, y)\right]+\frac{2 \alpha^{2}}{2 \alpha+1}+1
$$

if $(x, y) \in D_{4}$.
The key properties of the function u are described in the two lemmas below.
Lemma 2.1. The following statements hold true.
(i) The function u has continuous partial derivatives in the interior of S.
(ii) We have

$$
\begin{equation*}
u_{x} \leq-\alpha\left|u_{y}\right| . \tag{2.1}
\end{equation*}
$$

(iii) For any real numbers x, h, y, k such that $x, x+h \in[0,1]$ and $|h| \geq|k|$ we have

$$
\begin{equation*}
u(x+h, y+k) \leq u(x, y)+u_{x}(x, y) h+u_{y}(x, y) k \tag{2.2}
\end{equation*}
$$

Proof. Let us first compute the partial derivatives in the interiors D_{i}^{o} of the sets $D_{i}, i \in\{1,2,3,4\}$. We have that $u_{x}(x, y)$ equals

$$
\begin{cases}-\alpha+\exp \left[-\frac{2 \alpha+1}{\alpha+1}\left(x+|y|-\frac{\alpha}{2 \alpha+1}\right)\right]\left(-\frac{2 \alpha+1}{\alpha+1} x+\frac{\alpha}{\alpha+1}\right), & (x, y) \in D_{1}^{o} \\ -\alpha+\exp \left[-\frac{2 \alpha+1}{\alpha+1}\left(-x+|y|+\frac{\alpha}{2 \alpha+1}\right)\right]\left(-\frac{2 \alpha+1}{\alpha+1} x+\frac{\alpha}{\alpha+1}\right), & (x, y) \in D_{2}^{o} \\ \log \left[\frac{2 \alpha+1}{\alpha+1}(1-x+|y|)\right]+\frac{1-x}{1-x+|y|}-(\alpha+1), & (x, y) \in D_{3}^{o} \\ -\alpha\left(\frac{2 \alpha+1}{\alpha}\right)^{\frac{1}{\alpha+1}}(x+|y|)^{-\frac{\alpha}{\alpha+1}}\left(x+\frac{\alpha}{\alpha+1}|y|\right), & (x, y) \in D_{4}^{o}\end{cases}
$$

while $u_{y}(x, y)$ is given by

$$
\begin{cases}y^{\prime}-\frac{2 \alpha+1}{\alpha+1} \exp \left[-\frac{2 \alpha+1}{\alpha+1}\left(x+|y|-\frac{\alpha}{2 \alpha+1}\right)\right]\left(x+\frac{1}{2 \alpha+1}\right) y^{\prime}, & (x, y) \in D_{1}^{o} \\ y^{\prime}-\frac{2 \alpha+1}{\alpha+1} \exp \left[-\frac{2 \alpha+1}{\alpha+1}\left(-x+|y|+\frac{\alpha}{2 \alpha+1}\right)\right](1-x) y^{\prime}, & (x, y) \in D_{2}^{o} \\ \frac{y}{1-x+|y|}, & (x, y) \in D_{3}^{o} \\ \left(\frac{2 \alpha+1}{\alpha}\right)^{\frac{1}{\alpha+1}}(x+|y|)^{-\frac{\alpha}{\alpha+1}} \frac{\alpha}{\alpha+1} y, & (x, y) \in D_{4}^{o}\end{cases}
$$

Here $y^{\prime}=y /|y|$ is the sign of y. Now we turn to the properties (i) - (iii).
(i) This follows immediately by the formulas for u_{x}, u_{y} above.
(ii) We have that $u_{x}(x, y)+\alpha\left|u_{y}(x, y)\right|$ equals

$$
\begin{cases}-\exp \left[-\frac{2 \alpha+1}{\alpha+1}\left(x+|y|-\frac{\alpha}{2 \alpha+1}\right)\right](2 \alpha+1) x, & (x, y) \in D_{1} \\ -\exp \left[-\frac{2 \alpha+1}{\alpha+1}\left(-x+|y|+\frac{\alpha}{2 \alpha+1}\right)\right]\left(\frac{2 \alpha+1}{\alpha+1} x(1-\alpha)+\frac{2 \alpha^{2}}{\alpha+1}\right), & (x, y) \in D_{2} \\ -\alpha+\log \left[\frac{2 \alpha+1}{\alpha+1}(1-x+|y|)\right]-\frac{|y|(1-\alpha)}{1-x+|y|}, & (x, y) \in D_{3} \\ -\alpha\left(\frac{2 \alpha+1}{\alpha}\right)^{1 /(\alpha+1)}(x+|y|)^{-\alpha /(\alpha+1)} x, & (x, y) \in D_{4}\end{cases}
$$

and all the expressions are clearly nonpositive.
(iii) There is a well-known procedure to establish (2.2). Fix x, y, h and k satisfying the conditions of (iii) and consider a function $G=G_{x, y, h, k}: t \mapsto u(x+t h, y+t k)$, defined on $\{t: 0 \leq x+t h \leq 1\}$. The inequality (2.2) reads $G(1) \leq G(0)+G^{\prime}(0)$, so in order to prove it, it suffices to show that G is concave. Since u is of class C^{1}, it is enough to check $G^{\prime \prime}(t) \leq 0$ for those t, for which $(x+t h, y+t k)$ belongs to the interior of D_{1}, D_{2}, D_{3} or D_{4}. Furthermore, by translation argument (we have $G_{x, y, h, k}^{\prime \prime}(t)=G_{x+t h, y+t k, h, k}^{\prime \prime}(0)$), we may assume $t=0$.

If $(x, y) \in D_{1}^{o}$, we have

$$
\begin{aligned}
G^{\prime \prime}(0)=\frac{2 \alpha+1}{\alpha+1} & \exp \left[-\frac{2 \alpha+1}{\alpha+1}\left(x+|y|-\frac{\alpha}{2 \alpha+1}\right)\right] \\
& \times(h+k)\left\{\left[\frac{2 \alpha+1}{\alpha+1}\left(x+\frac{1}{2 \alpha+1}\right)-2\right] h+\frac{2 \alpha+1}{\alpha+1}\left(x+\frac{1}{2 \alpha+1}\right) k\right\},
\end{aligned}
$$

which is nonpositive; this is due to

$$
|h| \geq|k|, \quad \frac{2 \alpha+1}{\alpha+1}\left(x+\frac{1}{2 \alpha+1}\right)-2 \leq-1 \text { and } \frac{2 \alpha+1}{\alpha+1}\left(x+\frac{1}{2 \alpha+1}\right) \leq 1 .
$$

If $(x, y) \in D_{2}^{o}$, then

$$
\begin{aligned}
& G^{\prime \prime}(0)=\frac{2 \alpha+1}{\alpha+1} \exp \left[-\frac{2 \alpha+1}{\alpha+1}\left(-x+|y|+\frac{\alpha}{2 \alpha+1}\right)\right] \\
& \times(h-k)\left\{\left[\frac{2 \alpha+1}{\alpha+1}(1-x)-2\right] h-\frac{2 \alpha+1}{\alpha+1}(1-x) k\right\} \leq 0,
\end{aligned}
$$

since

$$
|h| \geq|k|, \quad \frac{2 \alpha+1}{\alpha+1}(1-x)-2 \leq-1 \quad \text { and } \quad \frac{2 \alpha+1}{\alpha+1}(1-x) \leq 1 .
$$

For $(x, y) \in D_{3}^{o}$ we have

$$
G^{\prime \prime}(0)=\frac{-h+k}{1-x+|y|}\left[\left(2-\frac{1-x}{1-x+|y|}\right) h+\frac{1-x}{1-x+|y|} k\right] \leq 0
$$

because

$$
|h| \geq|k|, \quad 2-\frac{1-x}{1-x+|y|} \geq 1 \quad \text { and } \quad \frac{1-x}{1-x+|y|} \leq 1 .
$$

Finally, for $(x, y) \in D_{4}^{o}$, this follows by the result of Burkholder: the function $t \mapsto-H(x+$ $t h, y+t k)$ is concave, see page 17 of [3].

Lemma 2.2. Let $(x, y) \in S$.
(i) We have

$$
\begin{equation*}
u(x, y) \geq|y| \tag{2.3}
\end{equation*}
$$

(ii) If $|y| \leq x$, then

$$
\begin{equation*}
u(x, y) \leq u(0,0)=\frac{(\alpha+1)\left(2 \alpha^{2}+3 \alpha+2\right)}{(2 \alpha+1)(\alpha+2)} . \tag{2.4}
\end{equation*}
$$

Proof. (i) Since for any $(x, y) \in S$ the function $G(t)=u(x+t, y+t)$ defined on $\{t: x+t \in$ $[0,1]\}$ is concave, it suffices to prove $(2.3$ on the boundary of the strip S. Furthermore, by symmetry, we may restrict ourselves to $(x, y) \in \partial S$ satisfying $y \geq 0$. We have, for $y \in$ $[0, \alpha /(2 \alpha+1)]$,

$$
u(0, y) \geq-\frac{\alpha^{2}}{(2 \alpha+1)(\alpha+2)}+\frac{2 \alpha^{2}}{2 \alpha+1}+1 \geq 1 \geq y
$$

while for $y>\alpha /(2 \alpha+1)$, the inequality $u(0, y) \geq y$ is trivial. Finally, note that we have $u(1, y)=y$ for $y \geq 0$. Thus (2.3) follows.
(ii) As one easily checks, we have $u_{y}(x, y) \geq 0$ for $y \geq 0$ and hence, by symmetry, it suffices to prove (2.4) for $x=y$. The function $G(t)=u(t, t), t \in[0,1]$, is concave and satisfies $G^{\prime}(0+)=0$. Thus $G \leq G(0)$ and the proof is complete.

3. Proofs of the Inequalities (1.5) and (1.6)

Proof of inequality (1.5). Let f, g be as in the statement and fix a nonnegative integer n. Furthermore, fix $\beta \in(0,1)$ and set $f^{\prime}=\beta f, g^{\prime}=\beta g$. Clearly, g^{\prime} is α-subordinate to f^{\prime}, so the inequality (2.2) implies that, with probability 1 ,

$$
\begin{equation*}
u\left(f_{n+1}^{\prime}, g_{n+1}^{\prime}\right) \leq u\left(f_{n}^{\prime}, g_{n}^{\prime}\right)+u_{x}\left(f_{n}^{\prime}, g_{n}^{\prime}\right) d f_{n+1}^{\prime}+u_{y}\left(f_{n}^{\prime}, g_{n}^{\prime}\right) d g_{n+1}^{\prime} \tag{3.1}
\end{equation*}
$$

Both sides are integrable: indeed, since f is bounded by 1 , so is f^{\prime}; furthermore, we have $\mathbb{P}\left(\left|d f_{k}\right| \leq 1\right)=1$ and hence $\mathbb{P}\left(\left|d g_{k}\right| \leq 1\right)=1$ by 1.1]. This gives $\left|g_{n}^{\prime}\right|=\beta\left|g_{n}\right| \leq \beta n$ almost surely and now it suffices to note that u is locally bounded on $[0, \beta] \times \mathbb{R}$ and the partial derivatives u_{x}, u_{y} are bounded on this set.

Therefore, taking the conditional expectation of (3.1) with respect to \mathcal{F}_{n} yields

$$
\begin{aligned}
& \mathbb{E}\left(u\left(f_{n+1}^{\prime}, g_{n+1}^{\prime}\right) \mid \mathcal{F}_{n}\right) \\
& \leq u\left(f_{n}^{\prime}, g_{n}^{\prime}\right)+u_{x}\left(f_{n}^{\prime}, g_{n}^{\prime}\right) \mathbb{E}\left(d f_{n+1}^{\prime} \mid \mathcal{F}_{n}\right)+u_{y}\left(f_{n}^{\prime}, g_{n}^{\prime}\right) \mathbb{E}\left(d g_{n+1}^{\prime} \mid \mathcal{F}_{n}\right) \\
& \leq u\left(f_{n}^{\prime}, g_{n}^{\prime}\right)+u_{x}\left(f_{n}^{\prime}, g_{n}^{\prime}\right) \mathbb{E}\left(d f_{n+1}^{\prime} \mid \mathcal{F}_{n}\right)+\left|u_{y}\left(f_{n}^{\prime}, g_{n}^{\prime}\right)\right| \cdot\left|\mathbb{E}\left(d g_{n+1}^{\prime} \mid \mathcal{F}_{n}\right)\right| .
\end{aligned}
$$

By α-subordination, this can be further bounded from above by

$$
u\left(f_{n}^{\prime}, g_{n}^{\prime}\right)+\left(u_{x}\left(f_{n}^{\prime}, g_{n}^{\prime}\right)+\alpha\left|u_{y}\left(f_{n}^{\prime}, g_{n}^{\prime}\right)\right|\right) \mathbb{E}\left(d f_{n+1}^{\prime} \mid \mathcal{F}_{n}\right) \leq u\left(f_{n}^{\prime}, g_{n}^{\prime}\right)
$$

the latter inequality being a consequence of 2.1). Thus, taking the expectation, we obtain

$$
\begin{equation*}
\mathbb{E} u\left(f_{n+1}^{\prime}, g_{n+1}^{\prime}\right) \leq \mathbb{E} u\left(f_{n}^{\prime}, g_{n}^{\prime}\right) \tag{3.2}
\end{equation*}
$$

Combining this with (2.3), we get

$$
\mathbb{E}\left|g_{n}^{\prime}\right| \leq \mathbb{E} u\left(f_{n}^{\prime}, g_{n}^{\prime}\right) \leq \mathbb{E} u\left(f_{0}^{\prime}, g_{0}^{\prime}\right)
$$

But $\left|g_{0}^{\prime}\right| \leq f_{0}^{\prime}$ by (1.1); hence (2.4) implies

$$
\beta \mathbb{E}\left|g_{n}\right|=\mathbb{E}\left|g_{n}^{\prime}\right| \leq \frac{(\alpha+1)\left(2 \alpha^{2}+3 \alpha+2\right)}{(2 \alpha+1)(\alpha+2)}
$$

Since n and $\beta \in(0,1)$ were arbitrary, the proof is complete.
Proof of the inequality (1.6). This follows by an approximation argument. See Section 16 of [2], where it is shown how similar inequalities for stochastic integrals are implied by their discrete-time analogues combined with the result of Bichteler [1].

4. Sharpness

We start with the inequality (1.5). For $\alpha=0$ simply take constant processes $f=g=$ $(1,1,1, \ldots)$ and note that both sides are equal in (1.5). Suppose then, that α is a positive number. We will construct an appropriate example; this will be done in a few steps. Denote $\gamma=\alpha /(2 \alpha+1)$ and fix $\varepsilon>0$.

Step 1. Using the ideas of Choi [6] (which go back to Burkholder's examples from [4]), one can show that there exists a pair (F, G) of processes starting from $(0,0)$ such that F is a nonnegative submartingale, G is α-subordinate to F and, for some $N,\left(F_{3 N}, G_{3 N}\right)$, takes values in the set $\{(\gamma, 0),(0, \pm \gamma)\}$ with

$$
\left|\mathbb{P}\left(\left(F_{3 N}, G_{3 N}\right)=(\gamma, 0)\right)-\frac{1}{\alpha+2}\right| \leq \varepsilon, \quad\left|\mathbb{P}\left(\left(F_{3 N}, G_{3 N}\right)=(0, \gamma)\right)-\frac{\alpha+1}{2(\alpha+2)}\right| \leq \varepsilon
$$

and $\mathbb{P}\left(\left(F_{3 N}, G_{3 N}\right)=(0, \gamma)\right)=\mathbb{P}\left(\left(F_{3 N}, G_{3 N}\right)=(0,-\gamma)\right)$. Furthermore, if $\alpha=1$, then G can be taken to be a ± 1 transform of F, that is, $d F_{n}= \pm d G_{n}$ for any nonnegative integer n.

Step 2. Consider the following two-dimensional Markov process (f, g), with a certain initial distribution concentrated on the set $\{(\gamma, 0),(0, \gamma),(0,-\gamma)\}$. To describe the transity function,
let M be a (large) nonnegative integer and $\delta \in(0, \gamma / 3)$; both numbers will be specified later. Assume for $k=0,1,2, \ldots, M-1$ and any $\hat{\varepsilon} \in\{-1,1\}$ that the conditions below are satisfied.

- The state $(0, \hat{\varepsilon}(\gamma+k(\alpha+1) \delta))$ leads to $(\delta, \hat{\varepsilon}(\gamma+k(\alpha+1) \delta+\alpha \delta))$ with probability 1 .
- The state $(\delta, \hat{\varepsilon}(\gamma+k(\alpha+1) \delta+\alpha \delta))$ leads to $(0, \hat{\varepsilon}(\gamma+(k+1)(\alpha+1) \delta))$ with probability $1-\delta / \gamma$ and to $(\gamma, \hat{\varepsilon}(k+1)(\alpha+1) \delta)$ with probability δ / γ.
- The state $(\gamma, \hat{\varepsilon}(k+1)(\alpha+1) \delta)$ leads to $(1, \hat{\varepsilon}((k+1)(\alpha+1) \delta+1-\gamma))$ with probability

$$
\frac{(\alpha+1) \delta}{2-2 \gamma+(\alpha+1) \delta}
$$

and to $(\gamma-(\alpha+1) \delta / 2, \hat{\varepsilon}(k+1 / 2)(\alpha+1) \delta)$ with probability

$$
1-\frac{(\alpha+1) \delta}{2-2 \gamma+(\alpha+1) \delta} .
$$

- The state $(\gamma-(\alpha+1) \delta / 2, \hat{\varepsilon}(k+1 / 2)(\alpha+1) \delta)$ leads to $(0, \hat{\varepsilon}(\gamma+k(\alpha+1) \delta))$ with probability $(\alpha+1) \delta /(2 \gamma)$ and to $(\gamma, \hat{\varepsilon} k(\alpha+1) \delta)$ with probability $1-(\alpha+1) \delta /(2 \gamma)$.
- The state $(\gamma, 0)$ leads to $(1,1-\gamma)$ with probability γ and to $(0,-\gamma)$ with probability $1-\gamma$.
- The state $(0, \hat{\varepsilon}(\gamma+M(\alpha+1) \delta))$ is absorbing.
- The states lying on the line $x=1$ are absorbing.

It is easy to check that f is a nonnegative submartingale bounded by 1 and g satisfies

$$
\left|d g_{n}\right| \leq\left|d f_{n}\right| \text { and }\left|\mathbb{E}\left(d g_{n} \mid \mathcal{F}_{n-1}\right)\right| \leq \alpha \mathbb{E}\left(d f_{n} \mid \mathcal{F}_{n-1}\right), \quad n=1,2, \ldots
$$

almost surely. Furthermore, if $\alpha=1$, then g is a ± 1 transform of $f: d f_{n}= \pm d g_{n}$ for $n \geq 1$ (note that this fails for $n=0$).

Step 3. Let $\left(\mathcal{G}_{n}\right)$ be the natural filtration generated by the process (f, g) and set $K=\gamma+$ $M(1+\alpha) \delta$. Introduce the stopping time $\tau=\inf \left\{k: f_{k}=1\right.$ or $\left.g_{k}= \pm K\right\}$. The purpose of this step is to establish a bound for the first moment of τ.
Let n be a nonnegative integer and set $\kappa=4^{-3 \delta M /(2 \gamma)}$. We will prove that

$$
\begin{equation*}
\mathbb{P}\left(\tau \leq n+2 M+1 \mid \mathcal{G}_{n}\right) \geq \kappa \gamma . \tag{4.1}
\end{equation*}
$$

We will need the following estimate

$$
\begin{equation*}
\left(1-\frac{3 \delta}{2 \gamma}\right)^{M} \geq \kappa \tag{4.2}
\end{equation*}
$$

which immediately follows from the facts that the function $h:(0,1 / 2] \rightarrow \mathbb{R}_{+}$given by $h(x)=$ $(1-x)^{1 / x}$ is decreasing and $\delta<\gamma / 3$.

Let $A \neq \emptyset$ be an atom of \mathcal{G}_{n}. We will consider three cases.
1°. If we have $f_{n}=0$ or $f_{n}=\delta$ on A, consider the event

$$
A^{\prime}=A \cap\left\{\left|g_{n+k+1}\right| \geq\left|g_{n+k}\right|, k=0,1, \ldots, 2 M-1\right\} .
$$

Clearly, in view of the transity function described above, we have $A^{\prime} \subseteq\left\{\left|g_{n+2 M}\right|=K\right\} \subseteq$ $\{\tau \leq n+2 M\}$ and

$$
\begin{aligned}
\mathbb{P}\left(\tau \leq n+2 M+1 \mid \mathcal{G}_{n}\right) & \geq \mathbb{P}\left(\tau \leq n+2 M \mid \mathcal{G}_{n}\right) \\
& \geq \frac{\mathbb{P}\left(A^{\prime}\right)}{\mathbb{P}(A)} \geq(1-\delta / \gamma)^{M}>\kappa>\kappa \gamma \quad \text { on } A,
\end{aligned}
$$

in view of (4.2).
2°. If we have $f_{n}=\gamma$ or $f_{n}=\gamma-(\alpha+1) \delta / 2$ on A, consider the event

$$
A^{\prime}=A \cap\left\{\left|g_{n+k+1}\right|<\left|g_{n+k}\right| \quad \text { or } \quad\left(f_{n+k+1}, g_{n+k+1}\right)=(1,1-\gamma), \quad k=0,1, \ldots\right\} .
$$

In other words, A^{\prime} contains those paths of $\left(f_{n+k}, g_{n+k}\right)_{k \geq 0}$, for which $|g|$ decreases to 0 and then, in the next step, (f, g) moves to $(1,1-\gamma)$. It follows from the definition of the transity function, that, on A, it is impossible for $|g|$ to be decreasing $2 M+1$ times in a row; that is to say, we have $f_{n+2 M+1}=1$ on A^{\prime} and hence

$$
\begin{aligned}
\mathbb{P}(\tau & \left.\leq n+2 M+1 \mid \mathcal{G}_{n}\right) \geq \frac{\mathbb{P}\left(A^{\prime}\right)}{\mathbb{P}(A)} \\
& \geq\left[\left(1-\frac{(\alpha+1) \delta}{2 \gamma}\right)\left(1-\frac{(\alpha+1) \delta}{2-2 \gamma+(\alpha+1) \delta}\right)\right]^{M} \gamma \\
& =\left(1-\frac{(2 \alpha+1) \delta}{(2+(2 \alpha+1) \delta) \gamma}\right)^{M} \gamma \geq\left(1-\frac{3 \delta}{2 \gamma}\right)^{M} \gamma \geq \kappa \gamma,
\end{aligned}
$$

by (4.2).
3°. Finally, if $f_{n}=1$ on A, we have

$$
\mathbb{P}\left(\tau \leq n+2 M+1 \mid \mathcal{G}_{n}\right)=1 \geq \kappa \gamma
$$

Therefore the inequality (4.1) is established. It implies that

$$
\mathbb{P}(\tau>n+2 M+1) \leq(1-\kappa \gamma) \mathbb{P}(\tau>n),
$$

which leads to

$$
\begin{equation*}
\mathbb{E} \tau \leq \frac{2 M+1}{\kappa \gamma}<\frac{2 K}{\kappa \gamma \delta}=\frac{2 K}{\gamma \delta} \cdot 4^{3(K-\gamma) / 2 \gamma(1+\alpha)} \tag{4.3}
\end{equation*}
$$

This implies that $\tau<\infty$ with probability 1 and the pointwise limits f_{∞}, g_{∞} exist almost surely.

Step 4. Let us establish an exponential bound for $\mathbb{P}\left(f_{\infty}=0\right)$. We have $\left\{f_{\infty}=0\right\} \subseteq\left\{g_{\infty} \geq\right.$ $K\}$ and g is clearly 1 -subordinate to f (as it is α-subordinate to f). Therefore, we may use Hammack's result (1.4): we have

$$
\begin{equation*}
\mathbb{P}\left(f_{\infty}=0\right) \leq \frac{(8+\sqrt{2}) e}{12} \exp (-K / 4) \tag{4.4}
\end{equation*}
$$

provided $K \geq 4$.
Step 5. Consider a process $\left(u\left(f_{n}, g_{n}\right)\right)_{n}$ and observe the following.

- For $y \geq \gamma$, the function $G(t)=u(t, y-t), t \in[0,1]$, is continuously differentiable and linear on $[0, \gamma]$.
- For $y \geq-\gamma$, the function $G(t)=u(t, y+t), t \in[0,1]$, is continuously differentiable and linear on $[\gamma, 1]$.
- For $y \geq \gamma$, the function $G(t)=u(t, y+\alpha t), t \in[0,1]$, satisfies $G^{\prime}(0+)=0$.
- The function u is locally bounded on $\overline{D_{1} \cup D_{2}}$ and its partial derivatives are bounded on this set.
These four facts, together with the symmetry of u, imply that there exists a constant $\eta(\delta, K)$ such that $\eta(\delta, K) / \delta \rightarrow 0$ as $\delta \rightarrow 0$ and, for any n,

$$
u\left(f_{n+1}, g_{n+1}\right) \geq u\left(f_{n}, g_{n}\right)+u_{x}\left(f_{n}, g_{n}\right) d f_{n+1}+u_{y}\left(f_{n}, g_{n}\right) d g_{n+1}-\eta(\delta, K) \chi_{\{\tau>n\}} .
$$

Both sides of this inequality are integrable: indeed, it suffices to use the fourth property above and the fact that $\left(f_{n}, g_{n}\right)$ is bounded and belongs to $\overline{D_{1} \cup D_{2}}$. Therefore, we may take the expectation to obtain

$$
\mathbb{E} u\left(f_{n+1}, g_{n+1}\right) \geq \mathbb{E} u\left(f_{n}, g_{n}\right)-\eta(\delta, K) \mathbb{P}(\tau>n) .
$$

This implies

$$
\mathbb{E} u\left(f_{\infty}, g_{\infty}\right) \geq \mathbb{E} u\left(f_{0}, g_{0}\right)-\eta(\delta, K) \mathbb{E} \tau
$$

or

$$
\mathbb{E}\left|g_{\infty}\right|+\left\{\alpha+\exp \left[-\frac{2 \alpha+1}{\alpha+1}\left(K-\frac{\alpha}{2 \alpha+1}\right)\right] \cdot \frac{1}{2 \alpha+1}\right\} \mathbb{P}\left(f_{\infty}=0\right)
$$

$$
\geq \mathbb{E} u\left(f_{0}, g_{0}\right)-\eta(\delta, K) \mathbb{E} \tau
$$

By (4.4), we may fix $K \geq 4$ such that

$$
\left\{\alpha+\exp \left[-\frac{2 \alpha+1}{\alpha+1}\left(K+\frac{\alpha}{2 \alpha+1}\right)\right] \cdot \frac{1}{2 \alpha+1}\right\} \mathbb{P}\left(f_{\infty}=0\right) \leq \varepsilon .
$$

Now we specify the numbers δ and M, as promised at the beginning of Step 2. By (4.3), we may choose $\delta>0$ such that $\eta(\delta, K) \mathbb{E} \tau \leq \varepsilon$ and, clearly, we may also ensure that $M=$ $(K-\gamma) /(1+\alpha) \delta$ is an integer. Thus we obtain

$$
\begin{equation*}
\mathbb{E}\left|g_{\infty}\right| \geq \mathbb{E} u\left(f_{0}, g_{0}\right)-2 \varepsilon . \tag{4.5}
\end{equation*}
$$

Step 6. Now we put all the things together. Let $(f, g)=\left(\left(f_{n}, g_{n}\right)\right)_{n \geq 0}$ be a process which coincides with (F, G) from Step 1 for $n \leq 3 N$ and which, for $n>3 N$, conditionally on $\mathcal{F}_{3 N}$, moves according to the transities described in Step 2. We have, by (4.5),

$$
\mathbb{E}\left|g_{\infty}\right| \geq \mathbb{E} u\left(F_{3 N}, G_{3 N}\right)-2 \varepsilon
$$

However, since u is nonnegative (due to (2.3)),

$$
\begin{aligned}
\mathbb{E} u\left(F_{3 N}, G_{3 N}\right) & \geq u(\gamma, 0)\left(\frac{1}{\alpha+2}-\varepsilon\right)+u(0, \gamma)\left(\frac{\alpha+1}{\alpha+2}-\varepsilon\right) \\
& =\frac{(\alpha+1)\left(2 \alpha^{2}+3 \alpha+2\right)}{(2 \alpha+1)(\alpha+2)}-(u(\gamma, 0)+u(0, \gamma)) \varepsilon .
\end{aligned}
$$

Since ε was arbitrary, this implies that the constant in (1.5) is the best possible. This also establishes the sharpness of the estimate $\sqrt{1.6}$, even in the special case $H \in\{-1,1\}$: if $\alpha=1$, then the processes f, g constructed above satisfy $\left|d f_{k}\right|=\left|d g_{k}\right|$ for all k. The proofs of Theorems 1.1 and 1.2 are complete.

References

[1] K. BICHTELER, Stochastic integration and L^{p}-theory of semimartingales, Ann. Probab., 9 (1981), 49-89.
[2] D.L. BURKHOLDER, Boundary value problems and sharp inequalities for martingale transforms, Ann. Probab., 12 (1984), 647-702.
[3] D. L. BURKHOLDER, Explorations in martingale theory and its applications, Ecole d'Ete de Probabilités de Saint-Flour XIX—1989, 1-66, Lecture Notes in Math., 1464, Springer, Berlin, 1991.
[4] D. L. BURKHOLDER, Sharp probabillity bounds for Ito processes, Current Issues in Statistics and Probability: Essays in Honor of Raghu Raj Bahadur (edited by J. K. Ghosh, S. K. Mitra, K. R. Parthasarathy and B. L. S. Prakasa), Wiley Eastern, New Delhi, 135-145.
[5] D. L. BURKHOLDER, Strong differential subordination and stochastic integration, Ann. Probab., 22 (1994), 995-1025.
[6] C. CHOI, A weak-type submartingale inequality, Kobe J. Math., 14 (1997), 109-121.
[7] W. HAMMACK, Sharp inequalities for the distribution of a stochastic integral in which the integrator is a bounded submartingale, Ann. Probab., 23 (1995), 223-235.
[8] Y-H. KIM and B-I. KIM, A submartingale inequality, Comm. Korean Math. Soc., 13(1) (1998), 159-170.

[^0]: This result was obtained while the author was visiting Université de Franche-Comté in Besançon, France. 055-08

