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ABSTRACT. The conditions of a theorem of H. Bor pertaining to the absolute Riesz summability
factors are replaced by new type ones.

Key words and phrases:δ-quasi monotone sequences, Riesz summability, Infinite Series.

1991Mathematics Subject Classification.40D15, 40F05.

1. I NTRODUCTION

Following R.P. Boas, Jr. [2] we say that a sequence{an} is δ-quasi-monotonicif an →
0, an > 0 ultimately, and∆ an ≥ −δn. Here{δn} is a positive sequence whose properties
are selected appropriately in different contexts. Several authors have used this definition for
different topics, namely it is nearly as useful as the classical monotonicity. We shall also recall
a theorem (see Theorem A) utilizing this notion, but our plan is to eliminate the condition given
by this notion from Theorem A, because by way of this we hope to generalize Theorem A and
pull out the key conditions of this theorem.

To recall the mentioned theorem we need the definition of the almost increasing sequence.
A positive sequence{an} is said to bealmost increasingif there exist a positive increasing
sequence{bn} and two positive constantsA andB such thatA bn ≤ an ≤ B bn (see [1]). It is
easy to verify that a sequence{an} is almost increasing if and only if it isquasi increasing, that
is, if there exists a constantK = K({an}) ≥ 1 such that

(1.1) K an ≥ am (≥ 0)

holds for alln ≥ m. We can consider e.g.

bn := min
k≥n

ak with A = 1 and B = K,

the converse clearly holds withK := B/A.
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2 L. LEINDLER

We prefer to use the notion of quasi increasing sequences, namely the definition (1.1) is very
simple.

The theorem to be generalized is due to H. Bor [4] and its subject is Riesz summability,
therefore we recall the definition of the|N, pn|k summability.

Let
∑∞

n=1 an be a given series with partial sumssn. Let {pn} be a sequence of positive
numbers such that

Pn :=
n∑

ν=0

pν →∞, (P−1 = p−1 = 0).

The series
∑∞

n=1 an is said to be summable|N, pn|k, k ≥ 1, if (see [3])
∞∑

n=1

(
Pn

pn

)k−1

|tn − tn−1|k < ∞,

where

tn :=
1

Pn

n∑
ν=0

pν sν .

Now we can recall a theorem of H. Bor [4] (see also [5]).

Theorem A. Let {Xn} be an almost increasing sequence such thatn|∆ Xn| = O(Xn), and
λn → 0. Suppose that there exists a sequence of numbers{An} such that it isδ-quasi-monotone
with

∑
n δn Xn < ∞,

∑
An Xn is convergent and|∆ λn| ≤ |An| for all n. If

(1.2)
∞∑

n=1

1

n
|λn| < ∞,

(1.3) X∗
m :=

m∑
n=1

1

n
|tn|k = O(Xm)

and

(1.4)
m∑

n=1

pn

Pn

|tn|k = O(Xm),

then the series
∑

an λn is summable|N, pn|k, k ≥ 1.

2. RESULT

We prove the following theorem.

Theorem 2.1.Letλn → 0. Suppose that there exists a positive quasi increasing sequence{Xn}
such that

(2.1)
∞∑

n=1

Xn|∆ λn| < ∞

and

(2.2)
∞∑

n=1

n X∗
n|∆(|∆ λn|)| < ∞

hold. If the conditions (1.2), (1.3) and (1.4) are satisfied then the series
∑

an λn is summable
|N, pn|k, k ≥ 1.

Proposition 2.2. Theorem 2.1. moderates the hypotheses of Theorem A under the added as-
sumption∆(|∆ λn|) ≥ 0 for all n.
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I do believe that our conditions without the additional requirement are weaker than the hy-
potheses of Theorem A, but I cannot prove it now.

3. L EMMA

Later on we shall use the notationL � R if there exists a positive constantK such that
L ≤ KR holds.

To avoid the needless repetition we collect the important partial results proved in [4] into the
following lemma.

In [4] the following inequality is verified implicitly.

Lemma 3.1. Let Tn denote then-th (N, pn) mean of the series
∑

an λn. If λn → 0, (1.2) and
(1.4) hold, then

(3.1)
m∑

n=1

(
Pn

pn

)k−1

|Tn − Tn−1|k � |λm|Xm +
m∑

n=1

|∆ λn|Xn +
m∑

n=1

|tn|k|∆ λn|,

where the notations of Theorem A are used.

4. PROOFS

Proof of Theorem 2.1.In view of Lemma 3.1 it suffices to verify that the three terms on the
right of (3.1) are uniformly bounded. Sinceλn → 0, thus by (1.1) and (2.1)

|λm|Xm � Xm

∞∑
n=m

|∆ λn| �
∞∑

n=m

Xn|∆ λn| < ∞.

The second term is clearly bounded by (2.1).
To estimate the third term we use the Abel transformation as follows:

m∑
n=1

|tn|k|∆ λn| =
m∑

n=1

n|∆ λn|
1

n
|tn|k

�
m−1∑
n=1

|∆(n|∆ λn|)|
n∑

i=1

1

i
|ti|k + m|∆ λm|

m∑
n=1

1

n
|tn|k

�
m−1∑
n=1

n|∆(|∆ λn|)|X∗
n +

m−1∑
n=1

|∆ λn+1|X∗
n+1 + m|∆ λm|X∗

m.

Here the first term is bounded by (2.2), the second one by (1.3) and (2.1), and next we show
that the third term is also bounded by (2.2). Namely

m X∗
m|∆ λm| � m X∗

m

∞∑
n=m

|∆(|∆ λn|)| �
∞∑

n=m

n X∗
n|∆(|∆ λn|)| < ∞.

Herewith we have verified that
∞∑

n=1

(
Pn

pn

)k−1

|Tn − Tn−1|k < ∞,

and this completes the proof of Theorem 2.1. �
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5. PROOF OF PROPOSITION 2.2

We have to verify that under the hypotheses of Theorem A the assumptions of Theorem 2.1
are always satisfied assuming∆(|∆ λn|) ≥ 0.

In [4] it is proved that the conditions of Theorem A forever imply that

(5.1)
∞∑

n=1

Xn|An| < ∞ see Lemma 3.1,

and

(5.2)
∞∑

n=1

|tn|k|An| < ∞ (see p. 5.).

Since|∆ λn| ≤ |An| is assumed, thus (5.1) implies (2.1). Next we show that (2.2) follows
from (5.2). Namely

(5.3)
m∑

n=1

|tn|k|An| ≥
m∑

n=1

|tn|k|∆ λn|.

Applying again the Abel transformation we get
m∑

n=1

n|∆ λn|
1

n
|tn|k ≥

m−1∑
n=1

∆(n|∆ λn|)
n∑

i=1

1

i
|ti|k(5.4)

≥
m−1∑
n=1

n ∆(|∆ λn|)X∗
n −

m−1∑
n=1

|∆ λn+1|X∗
n+1.

Since∆(|∆ λn|) ≥ 0 and by (5.3) the sum on the left of (5.4), and the sums
m−1∑
n=1

|∆ λn+1|X∗
n+1,

by (1.3) and (5.1), are uniformly bounded, thus (2.2) clearly follows from (5.4).
The proof is complete.
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