Journal of Inequalities in Pure and

 Applied Mathematicshttp://jipam.vu.edu.au/
Volume 5, Issue 2, Article 29, 2004

ON THE ABSOLUTE RIESZ SUMMABILITY FACTORS

L. LEINDLER
Bolyai Institute University of Szeged Aradi VÉrtanÚk Tere 1 H-6720 Szeged, Hungary. leindler@math.u-szeged.hu

Received 22 April, 2003; accepted 07 May, 2003
Communicated by H. Bor

Abstract. The conditions of a theorem of H. Bor pertaining to the absolute Riesz summability factors are replaced by new type ones.

Key words and phrases: δ-quasi monotone sequences, Riesz summability, Infinite Series.
1991 Mathematics Subject Classification 40D15, 40F05.

1. INTRODUCTION

Following R.P. Boas, Jr. [2] we say that a sequence $\left\{a_{n}\right\}$ is δ-quasi-monotonic if $a_{n} \rightarrow$ $0, a_{n}>0$ ultimately, and $\Delta a_{n} \geq-\delta_{n}$. Here $\left\{\delta_{n}\right\}$ is a positive sequence whose properties are selected appropriately in different contexts. Several authors have used this definition for different topics, namely it is nearly as useful as the classical monotonicity. We shall also recall a theorem (see Theorem A) utilizing this notion, but our plan is to eliminate the condition given by this notion from Theorem A, because by way of this we hope to generalize Theorem A and pull out the key conditions of this theorem.

To recall the mentioned theorem we need the definition of the almost increasing sequence. A positive sequence $\left\{a_{n}\right\}$ is said to be almost increasing if there exist a positive increasing sequence $\left\{b_{n}\right\}$ and two positive constants A and B such that $A b_{n} \leq a_{n} \leq B b_{n}$ (see [1]). It is easy to verify that a sequence $\left\{a_{n}\right\}$ is almost increasing if and only if it is quasi increasing, that is, if there exists a constant $K=K\left(\left\{a_{n}\right\}\right) \geq 1$ such that

$$
\begin{equation*}
K a_{n} \geq a_{m}(\geq 0) \tag{1.1}
\end{equation*}
$$

holds for all $n \geq m$. We can consider e.g.

$$
b_{n}:=\min _{k \geq n} a_{k} \quad \text { with } \quad A=1 \quad \text { and } \quad B=K,
$$

the converse clearly holds with $K:=B / A$.

[^0]We prefer to use the notion of quasi increasing sequences, namely the definition (1.1) is very simple.

The theorem to be generalized is due to H . Bor [4] and its subject is Riesz summability, therefore we recall the definition of the $\left|\bar{N}, p_{n}\right|_{k}$ summability.

Let $\sum_{n=1}^{\infty} a_{n}$ be a given series with partial sums s_{n}. Let $\left\{p_{n}\right\}$ be a sequence of positive numbers such that

$$
P_{n}:=\sum_{\nu=0}^{n} p_{\nu} \rightarrow \infty, \quad\left(P_{-1}=p_{-1}=0\right)
$$

The series $\sum_{n=1}^{\infty} a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if (see [3])

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty
$$

where

$$
t_{n}:=\frac{1}{P_{n}} \sum_{\nu=0}^{n} p_{\nu} s_{\nu} .
$$

Now we can recall a theorem of H. Bor [4] (see also [5]).
Theorem A. Let $\left\{X_{n}\right\}$ be an almost increasing sequence such that $n\left|\Delta X_{n}\right|=O\left(X_{n}\right)$, and $\lambda_{n} \rightarrow 0$. Suppose that there exists a sequence of numbers $\left\{A_{n}\right\}$ such that it is δ-quasi-monotone with $\sum n \delta_{n} X_{n}<\infty, \sum A_{n} X_{n}$ is convergent and $\left|\Delta \lambda_{n}\right| \leq\left|A_{n}\right|$ for all n. If

$$
\begin{gather*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|\lambda_{n}\right|<\infty, \tag{1.2}\\
X_{m}^{*}:=\sum_{n=1}^{m} \frac{1}{n}\left|t_{n}\right|^{k}=O\left(X_{m}\right)
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{p_{n}}{P_{n}}\left|t_{n}\right|^{k}=O\left(X_{m}\right), \tag{1.4}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.

2. Result

We prove the following theorem.
Theorem 2.1. Let $\lambda_{n} \rightarrow 0$. Suppose that there exists a positive quasi increasing sequence $\left\{X_{n}\right\}$ such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} X_{n}\left|\Delta \lambda_{n}\right|<\infty \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} n X_{n}^{*}\left|\Delta\left(\left|\Delta \lambda_{n}\right|\right)\right|<\infty \tag{2.2}
\end{equation*}
$$

hold. If the conditions (1.2), (1.3) and (1.4) are satisfied then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.
Proposition 2.2. Theorem 2.1. moderates the hypotheses of Theorem A under the added assumption $\Delta\left(\left|\Delta \lambda_{n}\right|\right) \geq 0$ for all n.

I do believe that our conditions without the additional requirement are weaker than the hypotheses of Theorem A, but I cannot prove it now.

3. Lemma

Later on we shall use the notation $L \ll R$ if there exists a positive constant K such that $L \leq K R$ holds.
To avoid the needless repetition we collect the important partial results proved in [4] into the following lemma.

In [4] the following inequality is verified implicitly.
Lemma 3.1. Let T_{n} denote the n-th $\left(\bar{N}, p_{n}\right)$ mean of the series $\sum a_{n} \lambda_{n}$. If $\lambda_{n} \rightarrow 0,1.2$ and (1.4) hold, then

$$
\begin{equation*}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n}-T_{n-1}\right|^{k} \ll\left|\lambda_{m}\right| X_{m}+\sum_{n=1}^{m}\left|\Delta \lambda_{n}\right| X_{n}+\sum_{n=1}^{m}\left|t_{n}\right|^{k}\left|\Delta \lambda_{n}\right|, \tag{3.1}
\end{equation*}
$$

where the notations of Theorem A are used.

4. Proofs

Proof of Theorem [2.1] In view of Lemma 3.1 it suffices to verify that the three terms on the right of (3.1) are uniformly bounded. Since $\lambda_{n} \rightarrow 0$, thus by (1.1) and (2.1)

$$
\left|\lambda_{m}\right| X_{m} \ll X_{m} \sum_{n=m}^{\infty}\left|\Delta \lambda_{n}\right| \ll \sum_{n=m}^{\infty} X_{n}\left|\Delta \lambda_{n}\right|<\infty
$$

The second term is clearly bounded by (2.1).
To estimate the third term we use the Abel transformation as follows:

$$
\begin{aligned}
\sum_{n=1}^{m}\left|t_{n}\right|^{k}\left|\Delta \lambda_{n}\right| & =\sum_{n=1}^{m} n\left|\Delta \lambda_{n}\right| \frac{1}{n}\left|t_{n}\right|^{k} \\
& \ll \sum_{n=1}^{m-1}\left|\Delta\left(n\left|\Delta \lambda_{n}\right|\right)\right| \sum_{i=1}^{n} \frac{1}{i}\left|t_{i}\right|^{k}+m\left|\Delta \lambda_{m}\right| \sum_{n=1}^{m} \frac{1}{n}\left|t_{n}\right|^{k} \\
& \ll \sum_{n=1}^{m-1} n\left|\Delta\left(\left|\Delta \lambda_{n}\right|\right)\right| X_{n}^{*}+\sum_{n=1}^{m-1}\left|\Delta \lambda_{n+1}\right| X_{n+1}^{*}+m\left|\Delta \lambda_{m}\right| X_{m}^{*}
\end{aligned}
$$

Here the first term is bounded by (2.2), the second one by (1.3) and (2.1), and next we show that the third term is also bounded by (2.2). Namely

$$
m X_{m}^{*}\left|\Delta \lambda_{m}\right| \ll m X_{m}^{*} \sum_{n=m}^{\infty}\left|\Delta\left(\left|\Delta \lambda_{n}\right|\right)\right| \ll \sum_{n=m}^{\infty} n X_{n}^{*}\left|\Delta\left(\left|\Delta \lambda_{n}\right|\right)\right|<\infty
$$

Herewith we have verified that

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n}-T_{n-1}\right|^{k}<\infty
$$

and this completes the proof of Theorem 2.1 .

5. Proof of Proposition 2.2

We have to verify that under the hypotheses of Theorem A the assumptions of Theorem 2.1 are always satisfied assuming $\Delta\left(\left|\Delta \lambda_{n}\right|\right) \geq 0$.

In [4] it is proved that the conditions of Theorem Aforever imply that

$$
\begin{equation*}
\sum_{n=1}^{\infty} X_{n}\left|A_{n}\right|<\infty \quad \text { see Lemma 3.1, } \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|t_{n}\right|^{k}\left|A_{n}\right|<\infty \quad \text { (see p. 5.). } \tag{5.2}
\end{equation*}
$$

Since $\left|\Delta \lambda_{n}\right| \leq\left|A_{n}\right|$ is assumed, thus (5.1) implies (2.1). Next we show that 2.2 follows from (5.2). Namely

$$
\begin{equation*}
\sum_{n=1}^{m}\left|t_{n}\right|^{k}\left|A_{n}\right| \geq \sum_{n=1}^{m}\left|t_{n}\right|^{k}\left|\Delta \lambda_{n}\right| . \tag{5.3}
\end{equation*}
$$

Applying again the Abel transformation we get

$$
\begin{align*}
\sum_{n=1}^{m} n\left|\Delta \lambda_{n}\right| \frac{1}{n}\left|t_{n}\right|^{k} & \geq \sum_{n=1}^{m-1} \Delta\left(n\left|\Delta \lambda_{n}\right|\right) \sum_{i=1}^{n} \frac{1}{i}\left|t_{i}\right|^{k} \tag{5.4}\\
& \geq \sum_{n=1}^{m-1} n \Delta\left(\left|\Delta \lambda_{n}\right|\right) X_{n}^{*}-\sum_{n=1}^{m-1}\left|\Delta \lambda_{n+1}\right| X_{n+1}^{*} .
\end{align*}
$$

Since $\Delta\left(\left|\Delta \lambda_{n}\right|\right) \geq 0$ and by (5.3) the sum on the left of (5.4), and the sums

$$
\sum_{n=1}^{m-1}\left|\Delta \lambda_{n+1}\right| X_{n+1}^{*}
$$

by (1.3) and (5.1), are uniformly bounded, thus (2.2) clearly follows from (5.4).
The proof is complete.

References

[1] L.S. ALJANCIC and D. ARANDELOVIC, 0-regularly varying functions, Publ. Inst. Math., 22 (1977), 5-22.
[2] R.P. BOAS JR., Quasi-positive sequence and trigonometric series, Proc. London Math. Soc., 14 (1965), 38-46.
[3] H. BOR, A note on two summability methods, Proc. Amer. Math. Soc., 98 (1986), 81-84.
[4] H. BOR, An application of almost increasing and δ-quasi-monotone sequences, J. Inequal. Pure and Appl. Math., 1(2) (2000), Art. 18. [ONLINE: http://jipam.vu.edu.au/article.php? sid=112]
[5] H. BOR, Corrigendum on the paper "An application of almost increasing and δ-quasi-monotone sequences", J. Inequal. Pure and Appl. Math., 3(1) (2002), Art. 16. [ONLINE: http:// jipam. vu.edu.au/article.php?sid=168

[^0]: ISSN (electronic): 1443-5756
 (C) 2004 Victoria University. All rights reserved.

 This research was partially supported by the Hungarian National Foundation for Scientific Research under Grant No. T042462. 055-03

