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Abstract

This paper derives inequalities for general linear recurrences. Optimal bounds
for solutions to the recurrence are obtained when the coefficients of the recur-
sion lie in intervals that include zero. An important aspect of the derived bounds
is that they are easily computable. The results bound solutions of triangular ma-
trix equations and coefficients of ratios of power series.
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1. Introduction
This paper derives bounds for solutions to the linear recurrence

(1.1) bn =
n−1∑
k=1

αn,kbk, n ≥ 2.

Throughout, we assume thatb1 6= 0 as b1 = 0 implies thatbn = 0 for all
n ≥ 2. Our results bound{bn}∞n=1 in a term-by-term manner with a second
order time-homogeneous linear recursion that is readily analyzable.

Our motivation for studying (1.1) lies in applied probability. There it is
useful to have a bound for coefficients of a ratio of power series when limited
information is available on the constituent series (cf. Kijima [14], Kendall [13],
Heathcote [11], Feller [6]). The series comprising the ratio are often probability
generating functions. Linear algebra is another setting where (1.1) arises.

Example 1.1. What is the largest|b5| possible in (1.1) whenb1 = −1 and
αn,k ∈ [−3, 0] for all n andk? In Section2, we show that|b5| ≤ 99 for such
situations, and that this value is produced byαn,k having the alternating form

(1.2)

αn,1 αn,2 αn,3 αn,4

n = 2 −3
n = 3 0 −3
n = 4 −3 0 −3
n = 5 0 −3 0 −3

.

Specifically, theseαn,k giveb2 = 3, b3 = −9, b4 = 30, andb5 = −99. We return
to this example in Section2.
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Example 1.2.For a fixedI ⊂ <, letFI be the set ofI-power series defined by

(1.3) FI = {f : f(z) = 1 +
∞∑

k=1

akz
k andak ∈ I for eachk ≥ 1}.

Flatto, Lagarias, and Poonen [7] and Solomyak [22] proved independently that
if z is a root of a series inF[0,1], then|z| ≥ 2/(1 +

√
5). Asz = −2/(1 +

√
5)

is a root of1+ z + z3 + z5 + · · · , this bound is tight overF[0,1]. The coefficients
of the multiplicative inverse of a series inF[0,1] cannot increase at a rate larger
than the golden ratio.

We will show later that the coefficients of the multiplicative inverse of a
power series inF[0,1] are bounded by the ubiquitous Fibonacci numbers. This
gives a “first constant” for the aforementioned rate. Observe that

(1.4)

(
1 +

∞∑
n=1

z2n−1

)−1

= 1− z + z2 − 2z3 + 3z4 − 5z4 + · · · ,

the coefficients on the right hand side of (1.4) having the magnitude of the Fi-
bonacci numbers. Hence, the first constant is also good. We return to this
setting in Section4.

Example 1.3. Consider the lower triangular linear systemL~x = ~b whereL is
the10× 10 matrix with(i, j)th entry

(1.5) Li,j =


1, if i = j

10, if i > j

0, if i < j

,
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and theith component of~b is bi = i2 for 1 ≤ i ≤ 10. The exact solution is

(1.6) ~x =



1

−6

59

−524

4725

−42514

382639

−3443736

30993641

−278942750



= L−1~b.

The condition number ofL is 26633841560.0; this essentially drives the rate
of growth ofxi in i (cf. Trefethen and Bau [23] for general discussion). Our
results will imply that all matrix equationsL~x = ~b, with L ann× n unit lower
triangular matrix withLi,j ∈ [0, 10] for 1 ≤ i < j ≤ n and |bi| ≤ i2, have
solutions whoseith componentxi is bounded by (coefficients rounded to three
decimal places)

(1.7) |xi| ≤ (0.142) 10.099i+3.538 (−0.099)i−0.400 i+0.320, 1 ≤ i ≤ n.

The first four values of the right hand side of (1.7) are 1, 14, 145, and 1472.
These show essentially the same order of magnitude as thexi’s; hence the bound
is performing reasonably. We return to this example in Section3.
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Recurrences with varying or random coefficients have been studied by many
previous authors. A partial survey of such literature contains Viswanath [24]
and [25], Viswanath and Trefethen [26], Embree and Trefethen [5], Wright and
Trefethen [28], Mallik [ 16], Popenda [20], Kittapa [15], and Odlyzko [19].

Our methods of proof are based on a careful analysis of sign changes in so-
lutions to (1.1). This differs considerably from past authors, who typically take
a more analytic approach. An advantage of our discourse is that it is entirely
elementary, discrete, and self-contained. A disadvantage of our arguments lie
with laborious bookkeeping.

Study of (1.1) could alternatively be based on linear algebraic or analytic
techniques. Some of the applications considered here, namely solutions of lin-
ear matrix equations and coefficients of ratios of power series, are indeed clas-
sical problems. However, linear algebraic and analytic techniques have yielded
disappointing explicit bounds to date. Hence, this paper explores alternative
methods.

The rest of this paper proceeds as follows. Section2 presents the main the-
orem, some variants of this result, and discussion of the hypotheses and opti-
mality. Sections3 and4 consider application of the results to lower triangular
linear systems and coefficients of ratios of power series, respectively. Proofs are
deferred to Section5. There, a simple case of our main result is first proven to
convey the logic of our sign change analyses.
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2. Results
The general form of our main result is the following.

Theorem 2.1. Suppose thatA ≥ 1 and 0 ≤ B ≤ A are constants and that
{Dn}∞n=2 is a nondecreasing sequence of nonnegative real numbers. Suppose
that the coefficients in (1.1) are restricted to intervals:αn,1 ∈ [−Dn, Dn] for
n ≥ 2 andαn,k ∈ [−A, B] for n ≥ 2 and2 ≤ k ≤ n − 1. Then solutions to
(1.1) satisfy|bn|/|b1| ≤ Un for all n ≥ 1, where

(2.1) Un =



1, if n = 1

D2, if n = 2

AD2 + D3, if n = 3

AUn−1 + (1 + B)Un−2 + Dn −Dn−2, if n > 3

.

Neglecting the bookkeeping complications induced by a general{Dn}, the
difference equation in (2.1) is second-order, time-homogeneous, and linear. In
many cases, one can solve (2.1) explicitly for Un. As such, we viewUn as being
“easy to compute”. The generality added by a non-decreasing{Dn} is relevant
in probabilistic settings where generalized renewal equations are common (cf.
Feller [6] and Heathcote [11]).

For cases where asymmetric bounds onαn,1 are available, we offer the fol-
lowing.

Theorem 2.2. Suppose thatA ≥ 1 and thatC ≥ 0 and D ≥ 0. If αn,1 ∈
[−C, D] andαn,k ∈ [−A, 0] for all n ≥ 2 and2 ≤ k ≤ n− 1, then|bn|/|b1| ≤
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Un for all n ≥ 1, where

(2.2) Un =



1, if n = 1

max(C, D), if n = 2

A max(C, D) + min(C, D), if n = 3

AUn−1 + Un−2, if n > 3

.

Theorems2.1 and 2.2 are proven in Section5. There, we first prove the
results in the simple setting whereA = C = ∆ > 1, D = 0, andb1 = −1
to convey the basic ideas of a sign change analysis. In particular, we prove the
following Corollary.

Corollary 2.3. Suppose thatb1 = −1 and thatαn,k ∈ [−∆, 0] for all n, k where
∆ ≥ 1. Then|bn| ≤ Un for all n ≥ 1, where{Un} satisfies

(2.3) Un =

{
∆n−1, if n ≤ 2

∆Un−1 + Un−2, if n ≥ 3
.

Solving (2.3) explicitly for Un gives

(2.4) Un =
∆√

∆2 + 4

(
rn−1
1 −

(
− 1

r1

)n−1
)

,

for n ≥ 2, wherer1 is the root

(2.5) r1 =
∆ +

√
∆2 + 4

2
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of the characteristic polynomial associated with (2.3). The other root of the
characteristic polynomial in (2.3) is r2 = 2−1(∆ −

√
∆2 + 4). Observe that

|r1| > |r2| andr1r2 = −1.
The flexibility allowed in bounds forαn,1 in Theorems2.1 and2.2 comes

at a bookkeeping price during the proof in Section5. The benefits of such
generality will become apparent in Sections3 and4 where we bound solutions
of nonhomogeneous (rather than merely homogeneous) matrix equations and
the coefficients of power series ratios (rather than merely reciprocals).

This section concludes with some comments on the assumptions and opti-
mality of Theorems2.1and2.2.

Remark 2.1. (Optimality of Theorems2.1 and2.2). For a givenb1, {Dn}∞n=2,
A, andB, the bound in (2.1) cannot be improved upon. To see this, set

(2.6) αn,1 =

{ −Dn if n is odd

Dn if n is even

and

(2.7) αn,k =

{ −A if n + k is odd

B if n + k is even

for n ≥ 2 and1 < k ≤ n−1. It is easy to verify from (1.1) thatbn = (−1)nUnb1

for n ≥ 2, implying that the bound in Theorem2.1 is achieved. A similar
construction shows that the bound in Theorem2.2 is also optimal.

For completeness, we also consider situations where0 ≤ A ≤ B. In this
case, a straightforward analysis will yield the following bound for solutions to
(1.1).
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Consider the setup in Theorem2.1 except that0 ≤ A ≤ B. Then{U∗n}∞n=1

defined by

(2.8) U∗n =



1, if n = 1

D2, if n = 2

BD2 + D3, if n = 3

(B + 1)U∗n−1 + Dn −Dn−1, if n > 3

is a bound satisfying|bn|/|b1| ≤ U∗n for all n ≥ 1. This bound is achieved in
the case whereαn,1 = Dn andαn,k = B for n ≥ 2 and2 ≤ k ≤ n− 1.

The above results provide optimal bounds for|bn| when αn,k ∈ [−A, B]
except when0 ≤ B < A < 1. As our next remark shows, the conditionA ≥ 1
is essential for optimality.

Remark 2.3. Optimality of Theorem2.1may not occur whenA < 1. To see this,
suppose thatB < A < 1 and consider{bn}∞n=1 satisfying (1.1) with b1 = −1,
α2,1 = D2, α3,1 = D3, α3,2 = B, α4,1 = −D4, α4,2 = −A, andα4,3 = −A.
Then (1.1) givesb2 = −D2, b3 = −(BD2 + D3), and

b4 = D4 + A(BD2 + D3) + AD2

= (A + AB)D2 + AD3 + D4

> (A2 + B)D2 + AD3 + D4,(2.9)

where the strict inequality above follows fromA+AB > A2+B (which follows
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fromB < A < 1). Applying (2.1) now gives

b4 > A(AD2 + D3) + (B + 1)D2 + D4 −D2

= AU3 + (1 + B)U2 + D4 −D2

= U4.(2.10)

Hence,Un may not bound|bn| in this setting.

Example 2.1. In the setting of Example1.1, the{αn,k} producing the maximal
{|bn|} are obtained via the argument in Remark2.1. Whenαn,k ∈ [−3, 0] for
all n and k, the maximal|bn|’s are produced withαn,k either−3 or 0 in the
alternating fashion depicted in the table in Example1.1.

http://jipam.vu.edu.au/
mailto:
mailto:berenhks@wfu.edu
mailto:
mailto:
mailto:lund@stat.uga.edu
http://jipam.vu.edu.au/


Bounds for Linear Recurrences
with Restricted Coefficients

Kenneth S. Berenhaut and
Robert Lund

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 12 of 34

J. Ineq. Pure and Appl. Math. 4(2) Art. 26, 2003

http://jipam.vu.edu.au

3. Triangular Linear Systems with Restricted
Entries

Theorems2.1and2.2have applications to systems of linear equations. Consider
the lower triangular linear system

l1,1 0 . . . 0

l2,1 l2,2
... 0

...
...

...
...

ln,1 ln,2 · · · ln,n




x1

x2

...

xn

 =


c1

c2

...

cn

 ,(3.1)

with li,i 6= 0 for 1 ≤ i ≤ n. Solving this for{xj} gives

(3.2) xm =
cm

lm,m

x0 −
m−1∑
k=1

lm,k

lm,m

xk, 1 ≤ m ≤ n,

with x0 = 1. Lettingbm+1 = xm for 0 ≤ m ≤ n produces

(3.3) bm+1 =
cm

lm,m

b1 −
m∑

k=2

lm,k−1

lm,m

bk

which is (1.1) with αm,1 = cm−1/lm−1,m−1 andαm,k = −lm−1,k−1/lm−1,m−1 for
2 ≤ k ≤ m− 1. Hence, Theorems2.1and2.2become the following.

Corollary 3.1. Consider the linear system in (3.1). Suppose that0 ≤ B ≤ A
and thatDk is nondecreasing ink. Then
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(i) If ci/li,i ∈ [−Di+1, Di+1] for 1 ≤ i ≤ n and li,j/li,i ∈ [−B, A] for 2 ≤
i ≤ n and1 ≤ j ≤ i, then|xi| ≤ Ui+1 for 2 ≤ i ≤ n where{Uk} is as in
(2.1).

(ii) If ci/li,i ∈ [−C, D] for 1 ≤ i ≤ n and li,j/li,i ∈ [0, A] for 2 ≤ i ≤ n and
1 ≤ j ≤ i, then|xi| ≤ Ui+1 for 1 ≤ i ≤ n where{Uk} is as in (2.2).

Example 3.1. Returning to Example1.3, the bound in (1.7) follows from Part
(i) of Corollary 3.1 with Di = (i − 1)2, A = 10, andB = 0. The difference
equation in (2.1) simplifies to

(3.4) Un = 10Un−1 + Un−2 + 4n− 8.

Corollary3.1compares favorably to the bounds for matrix equation solutions
with coefficients that are restricted to more general intervals in Neumaier [17],
Hansen [9] and [8], Hansen and Smith [10], and Kearfott [12]. Here, optimal
bounds are obtained regardless of interval widths and dimension; moreover, the
computational burden is limited to solving the second-order linear recurrences
in (2.1) or (2.2).

If ci = 0 for i ≥ 2 in (3.1) (this situation is discussed further in Viswanath
and Trefethen [26]), then (3.2) is

(3.5) xm = −
m−1∑
k=1

lm,k

lm,m

xk, 1 ≤ m ≤ n,

with x1 = c1/l1,1. One can now bound|xn| via Theorem2.1or 2.2.
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4. Ratios of Power Series
The recurrence equation (1.1) arises when computing coefficients of ratios of
formal power series. Equating coefficients in the expansion

(4.1) h0 + h1z + h2z
2 + · · · = g0 + g1z + g2z

2 + · · ·
f0 + f1z + f2z2 + · · ·

(takef0 = 1 andg0 = 1 for simplicity) givesh0 = 1 and

(4.2) hn = (gn − fn)h0 −
n−1∑
j=1

fn−jhj, n ≥ 1.

The theorems in Section2 translate to the following.

Corollary 4.1. Suppose that0 ≤ B ≤ A, that {Dn}∞n=2 is a nondecreasing
sequence of nonnegative real numbers, and that{fn}∞n=0, {gn}∞n=0, and{hn}∞n=0

satisfy (4.1) with f0 = g0 = 1.

(i) If gn− fn ∈ [−Dn+1, Dn+1] for all n ≥ 1 andfn ∈ [−B, A] for all n ≥ 0,
then|hn| ≤ Un+1 for all n ≥ 0 where{Un}∞n=1 is as in (2.1).

(ii) If gn−fn ∈ [−C, D] for n ≥ 1 andfn ∈ [0, A] for n ≥ 0, then|hn| ≤ Un+1

for n ≥ 0 where{Un}∞n=1 is as in (2.2).

Merely inverting a power series simplifies the statements in Corollary4.1.
Here,gk = 0 for all k ≥ 1 andg0 = 1. Using this in (4.2), applying Part (i) of
Corollary 3.1 (with Dn ≡ A) and Part (ii) of Corollary3.1 (with C = A and
D = 0), and solving (2.1) and (2.2) for {Un} gives the following results.
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Corollary 4.2. Suppose that0 ≤ B ≤ A and thatgk = 0 for k ≥ 1 andg0 = 1.
Let

(4.3) r1 =
A +

√
A2 + 4(1 + B)

2

be a root of the characteristic polynomial in (2.1).

(i) If fn ∈ [−B, A] for all n ≥ 0, then

(4.4) |hn| ≤ κ1r
n
1 + κ2

[
−(B + 1)

r1

]n

for all n ≥ 1 where

(4.5) κ1 =
2(B + 1)− A +

√
A2 + 4(1 + B)

2(B + 1)
√

A2 + 4(1 + B)
,

and

(4.6) κ2 = −
2(B + 1)− A−

√
A2 + 4(1 + B)

2(B + 1)
√

A2 + 4(1 + B)
.

(ii) If fn ∈ [0, A] for all n ≥ 0 (B = 0), then

(4.7) |hn| ≤
A√

A2 + 4
rn
1 −

A√
A2 + 4

[
−1

r1

]n

for all n ≥ 1.
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Remark 4.1. Corollary 4.2 (ii) is optimal as the bound is attained forf(z) =
1 + Az + Az3 + Az5 + · · · . Regarding the sharpness of Corollary4.2 (i), set
f(z) = 1 + Az − Bz2 + Az3 + · · · . If un is taken to be the bound on the right
hand side of (4.4) then it is not difficult to show thatun andhn are similar in
magnitude:un/|hn| ≤ 1 + 2(A−B)/A2 and

(4.8) lim
n→∞

un

|hn|
= 1 +

(A−B)(
√

A2 + 4(1 + B)− A)

AB + 2A + B
√

A2 + 4(1 + B)
.

Hence, the rate is again sharp.

Corollaries4.1and4.2are useful when generating functions or formal power
series are utilized such as in enumerative combinatorics and stochastic pro-
cesses (cf. Wilf [27], Feller [6], Kijima [14]).

The above results provide bounds for the location of the smallest root of
a complex valued power series. Power series with restricted coefficients have
been studied in the context of determining distributions of zeroes (cf. Flatto
et al. [7], Solomyak [22], Beaucoupet al. [1], [2], and Pinner [21]). Related
problems for polynomials have been considered by Odlyzko and Poonen [18],
Yamamoto [29], Borwein and Pinner [4], and Borwein and Erdelyi [3]. As
mentioned above, Flattoet al. [7] and Solomyak [22] independently proved
that if z is a root of a series inF[0,1], then|z| ≥ 2/(1 +

√
5). The following

extension of this result is a consequence of Corollary4.2.

Corollary 4.3. If z is a root of a power series inF[−B,A] with 0 ≤ B ≤ A, then

(4.9) |z| ≥ 2

A +
√

A2 + 4(1 + B)
.
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Proof. Suppose thatf ∈ F[−B,A]. Apply Part (i) of Corollary4.2 and note
from (4.4) thatf(z)−1 is finite for |z| < r−1

1 (Observe thatr1 is the root of the
characteristic polynomial with largest magnitude). Iff had a root in{z : |z| <
r−1
1 }, say atz = z0, then we would have the contradiction|f(z0)|−1 = ∞.

The result in Corollary4.3 is again optimal: for given0 ≤ B ≤ A, f(z) =
1 + Az −Bz2 + Az3 −Bz4 + · · · has a root atz = −r−1

1 .
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5. Proofs
This section proves Theorem2.1. As the arguments for Theorem2.2 are sim-
ilar, we concentrate on Theorem2.1 only. While the proof of Theorem2.1 is
self-contained and elementary, it does employ a “sign change analysis”
of {bn}∞n=1 which is case-by-case intensive and delicate. Attempts to find
a direct analytic argument, by other authors as well as ourselves, have
been unsuccessful to date. In particular, standard manipulations with
classical inequalities do not yield the sharpness or generality of Theorem2.1.
The rudimentary structure of the problem emerges with the sign change
arguments. Moreover, the arguments provide both a convergence rate and
explicit “first constant” bound for the rate. Obtaining an explicit first constant,
a practical matter needed to apply the bounds, takes considerably more effort in
general.

The sign-change arguments below first bound all solutions to (1.1)
that have a particular sign configuration; in the notation below, this is
|bn| ≤ |Bn| for all n ≥ 1. A subsequent analysis is needed to bound|Bn|
by an accessible quantity; in the notation below, this is|Bn| ≤ Un where
Un is defined in (2.1). We first consider the arguments for Corollary2.3
as these are reasonably brief and convey the essence of the general
analysis.

Arguments for Corollary 2.3. Suppose thatb1 = −1 and letP = {n ≥ 1 :
bn ≥ 0} andN = {n ≥ 1 : bn < 0} partition the sign configuration of{bn}∞n=1.
Now defineBn recursively inn from N andP via B1 = −1 and
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(5.1) Bn =


∆−∆

∑
2≤r≤n−1

r∈N

Br, n ∈ P

−∆
∑

2≤r≤n−1

r∈P

Br, n ∈ N

for n ≥ 2. A simple induction with (5.1) will show thatBn andbn have the
same sign forn ≥ 1.

We now prove by induction that|bn| ≤ |Bn| for all n > 1. First, assume that
n > 1 and thatn ∈ P . Returning to (1.1) and collecting positive and negative
terms gives

(5.2) bn = αn,1b1 +
∑

2≤r≤n−1

r∈P

αn,rbr +
∑

2≤r≤n−1

r∈N

αn,rbr.

Usingb1 = −1, the boundαn,k ∈ [−∆, 0] for all n, k, and neglecting the first
summation in (5.2) gives

bn ≤ ∆ +
∑

2≤r≤n−1

r∈N

−∆br

= ∆ + ∆
∑

2≤r≤n−1

r∈N

|br|.(5.3)

Using the inductive hypothesis and the fact that|bn| = bn in (5.3) produces

|bn| ≤ ∆ + ∆
∑

2≤r≤n−1

r∈N

|Br|
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= ∆−∆
∑

2≤r≤n−1

r∈N

Br

= Bn(5.4)

after (5.1) is applied. An analogous argument works whenn ∈ N .
We now finish the arguments for Corollary2.3 by inductively showing that

|Bn| ≤ Un from (5.1). First, it is easy to verify that|Bi| ≤ Ui, for 1 ≤ i ≤ 3
for all possible sign configurations of{B1, B2, B3}. Now assume thatn ∈ P
(Bn ≥ 0) wheren > 3. If n − 1 ∈ P (Bn−1 ≥ 0), thenBn = Bn−1 by
(5.1) and |Bn| = |Bn−1| ≤ Un−1 ≤ Un sinceUn is nondecreasing inn (this
follows from ∆ ≥ 1). So we need only consider the case wheren − 1 ∈ N
(Bn−1 < 0). If r ∈ N for all r ≤ n − 1 (Br < 0 for 1 ≤ r ≤ n − 1), then
B2 = B3 = · · · = Bn−1 = 0 by (5.1) and we haveBn = ∆ = U3 ≤ Un.

Finally, consider the case where a non-negative element in{B1, . . . , Bn−2}
exists; that is,r ∈ P for some2 ≤ r ≤ n − 2. Let r∗ be the largest such
integer and setk = n − r∗ − 1. For signs of{Bn}, we haveBn−k−1 ≥ 0
(Bn−k−1 ∈ P ) andBj < 0 for n − k ≤ j ≤ n − 1. Using these in (5.1) gives
Bn−1 = · · · = Bn−k. Applying (5.1) yet again produces

Bn = ∆−∆
∑

2≤r≤n−1

r∈N

Br

= ∆−∆
n−1∑

r=n−k

Br −∆
∑

2≤r≤n−k−2

r∈N

Br

= Bn−k−1 −∆kBn−k.(5.5)
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Applying the induction hypothesis and the triangle inequality in (5.5) produces

(5.6) |Bn| ≤ Un−k−1 + ∆kUn−k,

and the difference equation in (2.3) can be used to increase the smallest sub-
script appearing on the right hand side of (5.6) to n− k:

(5.7) |Bn| ≤ Un−k+1 + ∆(k − 1)Un−k.

SinceUn is nondecreasing inn and∆(k − 1) ≥ 1, we may swap the coeffi-
cients onUn−k+1 andUn−k in (5.7) to obtain

(5.8) |Bn| ≤ Un−k + ∆(k − 1)Un−k+1.

Note that (5.8) is (5.6) with k replaced byk− 1. As the discourse from (5.6)
– (5.8) is merely algebraic, we iterate the above arguments to obtain

(5.9) |Bn| ≤ Un−(k−j)−1 + ∆(k − j)Un−(k−j)

for each0 ≤ j ≤ k − 1. In particular, takingj = k − 1 in (5.9) now gives

(5.10) |Bn| ≤ Un−2 + ∆Un−1.

Applying (2.3) in (5.10) immediately gives the required bound|Bn| ≤ Un

and finishes our work. The arguments for the case wheren ∈ N are similar.

Following the logic of the above arguments, we now present the proof of
Theorem2.1 in its generality.
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Proof of Theorem2.1. We first reduce to the case whereb1 = −1 by examining
bn/b1. Again letP = {n ≥ 1 : bn ≥ 0} andN = {n ≥ 1 : bn < 0} be the sign
partition for{bn}∞n=1. This time, define a bounding sequence{Bn}∞n=1 for this
sign configuration recursively inn via B1 = −1, and forn ≥ 2 by

(5.11) Bn =


Dn − A

∑
2≤r≤n−1

r∈N

Br + B
∑

2≤r≤n−1

r∈P

Br, n ∈ P

−Dn − A
∑

2≤r≤n−1

r∈P

Br + B
∑

2≤r≤n−1

r∈N

Br, n ∈ N
.

As before, an induction will show thatBn andbn have the same sign for each
n ≥ 1. This fact will be used repeatedly in the discourse below.

We now justify the majorizing properties of{Bn} by inductively showing
that |bn| ≤ |Bn| for all n ≥ 1. First, consider the case wheren ∈ P . Now
partition positive and negative terms in (1.1) and apply the bounds assumed on
theαn,k’s in Theorem2.1to get

(5.12) bn ≤ −Dnb1 + B
∑

2≤r≤n−1

r∈P

br − A
∑

2≤r≤n−1

r∈N

br.

Applying b1 = −1 and the induction hypothesis, and then (5.11) gives

bn ≤ Dn + B
∑

2≤r≤n−1

r∈P

|Br|+ A
∑

2≤r≤n−1

r∈N

|Br|
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= Dn + B
∑

2≤r≤n−1

r∈P

Br − A
∑

2≤r≤n−1

r∈N

Br

= Bn.(5.13)

Similar arguments tackle the case wheren ∈ N . Equation (5.13) represents the
core of our arguments. The remainder of our work lies with devising a useful
bound for theBn’s in (5.11).

To complete the proof of Theorem2.1, it remains to show that|Bn| ≤ Un

for all n ≥ 1. For this it will be convenient to have the following technical
lemma which we prove after the arguments for Theorem2.1 (one can verify
non-circularity of discourse).

Lemma 5.1.Consider the setup in Theorem2.1and define{En}∞n=1 viaE0 = 1,
E1 = A, E2 = A2 + B, andEj = AEj−1 + (1 + B)Ej−2 for j ≥ 3. ThenUn

can be expressed as

(5.14) Un = Dn +
n−1∑
j=2

En−jDj,

for n ≥ 2, with the inequality

(5.15) Un − (1 + B)Un−1 ≥ Dn −Dn−1

holding forn ≥ 3. Finally, in the case wheren ≥ 2 andBj < 0 for 1 ≤ j ≤
n− 1 (j ∈ N for 1 ≤ j ≤ n− 1) andBn ≥ 0 (n ∈ P ), we have

(5.16) Bn = Dn +
n−1∑
j=2

A(1 + B)n−j−1Dj.
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We now return to the proof of Theorem2.1. Assume first thatn ∈ P (Bn >
0). We start inductive verification that|Bj| ≤ Uj for all j ≥ 1 by noting that
|B1| = U1 = 1 and |B2| = D2 = U2. For B3, first note that ifB2 ≥ 0 and
B3 ≥ 0 ({2, 3} ⊂ P ), then

|B3| = D3 + BD2

≤ U3,(5.17)

where the inequality in (5.17) follows from (2.1), Dj ≥ 0 for all j, andB ≤ A.
In the case whereB2 < 0 andB3 < 0 ({2, 3} ⊂ N), then (5.17) again holds. In
the cases where there is one negative and one positive sign amongst{B2, B3},
one can verify that

|B3| = D3 + AD2

≤ U3(5.18)

by direct application of (2.1).
Now assume that|Bk| ≤ Uk for 1 ≤ k ≤ n−1. Whenn−1 ∈ P (Bn−1 ≥ 0),

use (5.11) to get

(5.19) Bn = (1 + B)Bn−1 + Dn −Dn−1.

Applying the induction hypothesis thatBn−1 ≤ Un−1 and (5.15) in (5.19) pro-
duces

Bn ≤ (1 + B)Un−1 + Dn −Dn−1

≤ Un(5.20)
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as claimed.
It remains to consider the case wheren − 1 ∈ N . First suppose thatr ∈ N

for all r ≤ n−1. From Lemma5.1, E1 = A andE2 = A2+B ≥ A(1+B) since
A ≥ 1 andA ≥ B. UsingA ≥ B and Lemma5.1 in an induction argument
will easily verify the inequalityEj ≥ A(1 + B)j−1 for all j ≥ 1. Comparing
coefficients in (5.16) and (5.14) now yields|Bn| ≤ Un as claimed.

Having dealt with the case where theBj are negative for all1 ≤ j ≤ n− 1,
now suppose that there exists a non-negativeBj amongst the firstn− 1 indices.
In particular, suppose thatr ∈ P for some2 ≤ r ≤ n− 2 and letr∗ denote the
largest such integer. Setk = n−r∗−1. For signs of{Bn}, we haveBn−k−1 ≥ 0
(n − k − 1 ∈ P ), Bj < 0 (j ∈ N for n − k ≤ j ≤ n − 1), and our standing
assumption thatBn ≥ 0 (n ∈ P ). Using these facts in (5.11) produces

(5.21) Bn = Dn − A
∑

n−k≤r≤n−1

Br + A
∑

2≤r≤n−k−2

r∈N

Br

+ B
∑

2≤r≤n−k−2

r∈P

Br + B|Bn−k−1|.

Now combine the definition ofBn−k−1 in (5.11) with (5.21) to get

(5.22) Bn = Dn + (1 + B)|Bn−k−1| −Dn−k−1 − A
∑

n−k≤r≤n−1

Br.

Returning to (5.11) with the fact thatBj < 0 for n − k ≤ j ≤ n − 1 identifies
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the rightmost summation in (5.22):

(5.23)
∑

n−k≤r≤n−1

Br = −|Bn−k|
k−1∑
i=0

(1 + B)i

+ Dn−k

k−2∑
i=0

(1 + B)i −
k−1∑
i=1

(1 + B)i−1Dn−i.

Combining (5.22) and (5.23) expressesBn explicitly in terms ofBn−k and
Bn−k−1:

(5.24) Bn = Dn + (1 + B)|Bn−k−1| −Dn−k−1 + A|Bn−k|
k−1∑
i=0

(1 + B)i

− ADn−k

k−2∑
i=0

(1 + B)i + A
k−1∑
i=1

(1 + B)i−1Dn−i.

The induction hypothesis gives|Bn−k−1| ≤ Un−k−1 and|Bn−k| ≤ Un−k; using
these in (5.24) along withBn = |Bn| gives the bound

(5.25) |Bn| ≤ Dn + (1 + B)Un−k−1 −Dn−k−1 + AUn−k

k−1∑
i=0

(1 + B)i

− ADn−k

k−2∑
i=0

(1 + B)i + A

k−1∑
i=1

(1 + B)i−1Dn−i.
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Making the substitutionJi = A
∑i

m=0(1 + B)m into (5.25) now yields

(5.26) |Bn| ≤ Dn + (1 + B)Un−k−1 −Dn−k−1 + Un−kJk−1

−Dn−kJk−2 + A
k−1∑
i=1

(1 + B)i−1Dn−i.

The difference equation (2.1) gives

Un−k+1 = AUn−k + (1 + B)Un−k−1 + Dn−k+1 −Dn−k−1.

Using this in (5.26) and algebraically simplifying produces

(5.27) |Bn| ≤ Un−k+1 −Dn−k+1 + (1 + B)Un−kJk−2

+ Dn −Dn−kJk−2 + A
k−1∑
i=1

(1 + B)i−1Dn−i,

where the fact thatJk−1 − A = (1 + B)Jk−2 has been applied. An algebraic
rearrangement of the right hand side of (5.27) now produces

(5.28) |Bn| ≤ (1− Jk−2)[Un−k+1 − (1 + B)Un−k]

+ Jk−2Un−k+1 + (1 + B)Un−k −Dn−k+1

+ Dn −Dn−kJk−2 + A
k−1∑
i=1

(1 + B)i−1Dn−i.
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Noting thatJk−2 ≥ 1 for all k and applying (5.15) to the bracketed term in the
right hand side of (5.28) now produces

|Bn| ≤ (1− Jk−2)[Dn−k+1 −Dn−k] + Jk−2Un−k+1 + (1 + B)Un−k

−Dn−k+1 + Dn −Dn−kJk−2 + A
k−1∑
i=1

(1 + B)i−1Dn−i.

Invoking the difference equation in (2.1) again will give

(5.29) |Bn| ≤ Un−k+2 −Dn−k+2 + (1 + B)Un−k+1Jk−3

+ Dn −Dn−k+1Jk−3 + A
k−2∑
i=1

(1 + B)i−1Dn−i.

The discourse between (5.27) – (5.29) is purely algebraic, justified via the
difference equation in (2.1). Observe that the bounds for|Bn| in (5.27) and
(5.29) are similar in form, except thatk is replaced byk − 1. As such, one can
continue iterating the arguments in (5.27) – (5.29) until k = 3. This will give

(5.30) |Bn| ≤ Un−1 −Dn−1 + (1 + B)Un−2J0 + Dn −Dn−2J0 + ADn−1.

Now useJ0 = A in (5.30), employ (2.1) and regroup terms to get

(5.31) |Bn| ≤ Un + Dn−2 + (1− A)[Un−1 − (1 + B)Un−2]

−Dn−1 −Dn−2A + ADn−1.
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Applying (5.20) once more to the bracketed terms in (5.31) andA ≥ 1 to get

|Bn| ≤ Un + Dn−2 + (1− A)(Dn−1 −Dn−2)

−Dn−1 −Dn−2A + ADn−1

= Un.(5.32)

This completes the arguments for Theorem2.1 in the case wheren ∈ P . The
discourse for the case wheren ∈ N is similar and is hence omitted.

Proof of Lemma5.1. The convolution identity (5.14) is easy to verify directly
from (2.1). To prove (5.16), return to (5.11) with the facts thatj ∈ N for
1 ≤ j ≤ n − 1 to get |B2| = D2, Bn = A

∑n−1
j=2 |Bj| + Dn, and |Bj| =

(1 + B)|Bj−1| −Dj−1 + Dj for 3 ≤ j ≤ n− 1.
To prove (5.15), we get an induction started by applying (2.1) with n = 2

andn = 3:

U3 − (1 + B)U2 = AD2 + D3 − (1 + B)D2

= (A−B)D2 + D3 −D2

≥ 0,(5.33)

where the last inequality follows fromA ≥ B, D2 ≥ 0 andD3 ≥ D2. Equation
(5.15) with i = 4 follows from the inequalitiesA ≥ 1 andA ≥ B:

U4 − (1 + B)U3 = [AU3 + (1 + B)U2 + D4 −D2]− (1 + B)[AD2 + D3]

= (A− 1)(A−B)D2 + (A−B)D3 + D4 −D3

≥ D4 −D3,(5.34)
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where the last inequality follows fromA ≥ 1, A ≥ B, D3 ≥ 0 andD4 ≥ D3.
For the general inductive step, take ann > 4 and suppose thatUi − (1 +

B)Ui−1 ≥ Di −Di−1 for 3 ≤ i ≤ n− 1. Then (2.1) gives

Un − (1 + B)Un−1 = [AUn−1 + (1 + B)Un−2 + Dn −Dn−2]

− (1 + B)[AUn−2 + (1 + B)Un−3 + Dn−1 −Dn−3]

= A[Un−1 − (1 + B)Un−2] + (1 + B)[Un−2 − (1 + B)Un−3]

+ Dn −Dn−2 − (1 + B)Dn−1 + (1 + B)Dn−3.(5.35)

Applying the inductive hypothesis to the bracketed terms in (5.35) and collect-
ing terms gives the inequality

Un − (1 + B)Un−1

≥ A(Dn−1 −Dn−2) + (1 + B)(Dn−2 −Dn−3) + Dn −Dn−2

− (1 + B)Dn−1 + (1 + B)Dn−3

= Dn −Dn−1 + (A−B)[Dn−1 −Dn−2].(5.36)

The assumed monotonicity ofDk in k andA ≥ B give

(5.37) Un − (1 + B)Un−1 ≥ Dn −Dn−1

and the proof is complete.
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