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Abstract

This paper derives inequalities for general linear recurrences. Optimal bounds
for solutions to the recurrence are obtained when the coefficients of the recur-
sion lie in intervals that include zero. An important aspect of the derived bounds
is that they are easily computable. The results bound solutions of triangular ma-
trix equations and coefficients of ratios of power series.
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This paper derives bounds for solutions to the linear recurrence

n—1
(1.1) bn = anibp, n>2
k=1

Throughout, we assume that # 0 asb; = 0 implies thatb, = 0 for all
n > 2. Our results boundb,, }>°, in a term-by-term manner with a second

Bounds for Linear Recurrences

order time-homogeneous linear recursion that is readily analyzable. with Restricted Coefficients
Our motivation for studying 1.1) lies in applied probability. There it is Kenneth S. Berenhaut and
useful to have a bound for coefficients of a ratio of power series when limited Robert Lund
information is available on the constituent series (cf. Kijimé][ Kendall [13],
Heathcote [ 1], Feller [5]). The series comprising the ratio are often probability Title Page
generating functions. Linear algebra is another setting whetgdrises. Content
ontents
Example 1.1. What is the largestbs| possible in {.1) whenb; = —1 and
an € [—3,0] for all n andk? In Section2, we show thatbs| < 99 for such « dd
situations, and that this value is producedday;, having the alternating form < >
Qn1 Op2 Qp3 Onpg Go Back
n=2 -3
Cl
(1.2) n=3 0 -3 . ose
n=4 -3 0 -3 Quit
n=> 0 =3 0 =3 Page 3 of 34
Specifically, these,, ;. givebs = 3,b3 = =9, b, = 30, andb; = —99. We return
to thls example |n Sect|® J. Ineq. Pure and Appl. Math. 4(2) Art. 26, 2003
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Example 1.2.For a fixed! C R, let F; be the set of-power series defined by

(1.3) Fr={f:f(z)=1+ Zakzk anday, € I for eachk > 1}.

k=1

Flatto, Lagarias, and Poonen’] and Solomyak??] proved independently that
if z is a root of a series iF 1), then|z| > 2/(1 +V/5). Asz = —2/(1 + /5)

is aroot ofl + z + 2% + 2% + - - -, this bound is tight ovef, ;;. The coefficients
of the multiplicative inverse of a series fj, ;; cannot increase at a rate larger
than the golden ratio.

We will show later that the coefficients of the multiplicative inverse of a

power series infj, ;) are bounded by the ubiquitous Fibonacci numbers. This Kenneth . Serennautand
gives a “first constant” for the aforementioned rate. Observe that

Bounds for Linear Recurrences
with Restricted Coefficients

0 . -1 ) , A A Title Page
(1.4) 1+le =1—z24+2"—22"+32"=bz"+ .-, E—
the coefficients on the right hand side &f4) having the magnitude of the Fi- b dd
bonacci numbers. Hence, the first constant is also good. We return to this < >
setting in Sectiod.
_ ) ) 5 ) Go Back
Example 1.3. Consider the lower triangular linear systei’ = b wherelL is
the 10 x 10 matrix with (i, j)th entry Close
. it
1, ifi=j £l
. Page 4 of 34
(15) L@j = 10, if i > J
0 If Z < j J. Ineq. Pure and Appl. Math. 4(2) Art. 26, 2003
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and theith component of is b, =12 for 1 < i < 10. The exact solution is
_ 1 -
—6
59
—524
4725 o
—42514 '
382639
—3443736
30993641

| —278942750 |

The condition number of is 26633841560.0; this essentially drives the rate
of growth ofz; in i (cf. Trefethen and Bau’[]] for general discussion). Our
results will imply that all matrix equationsz’ = b, with L ann x n unit lower
triangular matrix withZ; ; € [0,10] for 1 < i < j < n and|b;| < i?, have
solutions whoséth component; is bounded by (coefficients rounded to three
decimal places)

(1.7) |z] < (0.142) 10.099°+3.538 (—0.099)' —0.400i+0.320, 1 <i < n.

The first four values of the right hand side Gfq) are 1, 14, 145, and 1472.
These show essentially the same order of magnitude as'shéence the bound
is performing reasonably. We return to this example in Se@ion

8y
Il
Il
=
=

(1.6)
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Recurrences with varying or random coefficients have been studied by many
previous authors. A partial survey of such literature contains Viswanaih [
and [25], Viswanath and Trefether2[], Embree and Trefetherd], Wright and
Trefethen P¢], Mallik [ 16], Popenda(], Kittapa [15], and Odlyzko [.9].

Our methods of proof are based on a careful analysis of sign changes in so-
lutions to (L.1). This differs considerably from past authors, who typically take
a more analytic approach. An advantage of our discourse is that it is entirely
elementary, discrete, and self-contained. A disadvantage of our arguments lie
with laborious bookkeeping.

Study of (L.1) could alternatively be based on linear algebraic or analytic
techniques. Some of the applications considered here, namely solutions of lin-
ear matrix equations and coefficients of ratios of power series, are indeed clas-
sical problems. However, linear algebraic and analytic techniques have yielded
disappointing explicit bounds to date. Hence, this paper explores alternative
methods.

The rest of this paper proceeds as follows. Secfignesents the main the-
orem, some variants of this result, and discussion of the hypotheses and opti-
mality. Sections3 and4 consider application of the results to lower triangular
linear systems and coefficients of ratios of power series, respectively. Proofs are
deferred to Sectioh. There, a simple case of our main result is first proven to
convey the logic of our sign change analyses.
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The general form of our main result is the following.

Theorem 2.1. Suppose thatl > 1 and0 < B < A are constants and that
{D,}>, is a nondecreasing sequence of nonnegative real numbers. Suppose
that the coefficients inl(1) are restricted to intervalsw,,; € [—D,, D,] for

n >2anda,; € [-A,B]forn > 2and2 < k£ < n — 1. Then solutions to

(1.1 satisfy|b,|/|b:| < U, for all n > 1, where

Bounds for Linear Recurrences

(1, ifn=1 with Restricted Coefficients
. K th S. B haut and
(2 1) o7 D2> ifn=2 enneRoberteliirr]wdau .
' ADs + Dj, ifn=3
Title Page
AU, _ 1+ B)U, 2+ D, — D, _», if
L U 1+<+ )U 2 + 2 n >3 P
. Neglecting thg bc_)okkec_eping complications induced by a ger{é]?a},. the pp >
difference equation in2(1) is second-order, time-homogeneous, and linear. In
many cases, one can soh&1) explicitly for U,,. As such, we view/, as being < 4
“easy to compute”. The generality added by a non-decredding is relevant Go Back
in probabilistic settings where generalized renewal equations are common (cf. =
Feller [f] and HeathcoteT[1]). ose
For cases where asymmetric boundsogn are available, we offer the fol- Quit
lowing. Page 7 of 34

Theorem 2.2. Suppose thatl > 1 and thatC' > 0 andD > 0. If o,; €
[—C, D] anda,,, € [-A,0]forall n > 2and2 < k <n — 1, then|b,|/|b1] < - Ineq. Pufe and Appl. Math. 4(2) Art. 26, 2003
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U, forall n > 1, where

(1, ifn=1
max(C, D), ifn=2
(2.2) U, = :
Amax(C, D) +min(C, D), ifn=3
. AUn_l + Un_27 ifn>3
Theorems2.1 and 2.2 are proven in Sectiob. There, we first prove the Bounds for Linear Recurrences

with Restricted Coefficients

results in the simple setting where= C = A > 1, D = 0, andb; = —
to convey the basic ideas of a sign change analysis. In particular, we prove the  Kenneth S. Berenhaut and
following Corollary. Robert Lund

Corollary 2.3. Suppose that; = —1 and thato,, ,, € [-A, 0] for all n, k where

A > 1. Then|b,| < U, for all n > 1, where{U,,} satisfies Title Page
) Contents
AL ifn <2
(2.3) U, = . < 43
if n >
AUn—l + Un_g, if n >3 < >
Solving .3 explicitly for U,, gives Go Back
A 1\"! Close
2.4 Up=—o [ = [ —= ,
(2.4) r2+4<1 ( ) ) ot
forn > 2, wherer; is the root Page 8 of 34

A++VAZ+4
= J. Ineq. Pure and Appl. Math. 4(2) Art. 26, 2003
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of the characteristic polynomial associated with3|. The other root of the Remark 2.2.

characteristic polynomial in2(3) is r, = 271(A — v/A2 + 4). Observe that
|r1| > |ro| @ndryry = —1.

The flexibility allowed in bounds fory, ; in Theorems2.1 and2.2 comes
at a bookkeeping price during the proof in Secti@n The benefits of such
generality will become apparent in Sectidhand4 where we bound solutions
of nonhomogeneous (rather than merely homogeneous) matrix equations and
the coefficients of power series ratios (rather than merely reciprocals).

This section concludes with some comments on the assumptions and opti- Bounds for Linear Recurrences

mality of Theorem<.1and2.2. with Restricted Coefficients
Remark 2.1. (Optimality of Theorem&.1and2.2). For a givenby, {D,,}°°,, Ke”net;‘o%e?te[iﬂza“t i
A, and B, the bound inZ.1) cannot be improved upon. To see this, set
26 o —D,, ifnisodd Title Page
. n,l —
D, ifniseven Contents
and «“« b
—A ifn+kisodd >
(2.7) Oy = ¢
B ifn+kiseven Go Back
forn > 2andl < k < n—1. Itis easy to verify fromi(.1) thatb,, = (—1)"U,b; Close
for n > 2, implying that the bound in Theorethl is achieved. A similar _
construction shows that the bound in Theor2iis also optimal. Quit
For completeness, we also consider situations where A < B. In this Page 9 of 34
case, a straightforward analysis will yield the following bound for solutions to
(1 1) J. Ineq. Pure and Appl. Math. 4(2) Art. 26, 2003
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Consider the setup in Theoreil except that) < A < B. Then{U}}>
defined by

1, ifn=1
D27 ifn=2
(2.8) Us =
BD2+D3, ifn:3
| (B+1)U;_+ D, —D,_y, ifn>3

is a bound satisfyingp,|/|b,| < U for all n > 1. This bound is achieved in
the case where,,; = D,, anda,,, = Bforn > 2and2 <k <n — 1.

The above results provide optimal bounds fay| whena,,, € [—A, B
except wher) < B < A < 1. As our next remark shows, the conditidn> 1
is essential for optimality.

Remark 2.3. Optimality of Theorerna.1may not occur whed < 1. To see this,
suppose thaB < A < 1 and considefb, }>° , satisfying (.1) with b, = —1,
Qg1 = Do, Q31 = Dg, Q39 = B, Qg1 = —Dy, Q49 = —A, andOé4’3 = —A.
Then (L.1) givesb, = —Ds, b3 = —(BDy + D3), and

by = Dy + A(BDs + Ds) + AD,
— (A4 AB)D, + ADs + D,
(2.9) > (A* + B)Dy + AD3 + Dy,

where the strict inequality above follows frofn- AB > A2+ B (which follows
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from B < A < 1). Applying @.1) now gives

by > A(ADy + D3) + (B +1)Dy + Dy — Dy
:AU3+(1+B)UQ+D4—D2
(2.10) =U,.

Hence,U,, may not boundb, | in this setting.

Example 2.1. In the setting of Examplé.1, the{«,, « } producing the maximal
{|b,,|} are obtained via the argument in Rem&K. Whena,,, € [—3,0] for
all n» and k, the maximalb,,|'s are produced withv,, ;. either —3 or 0 in the
alternating fashion depicted in the table in Examplé.
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Theorems.1and2.2have applications to systems of linear equations. Consider

the lower triangular linear system

i l171 0 0 1r ] 7 B c1 T
(31) l271 l272 . 0 1:2 _ Co |
| ln,l ln,2 e ln,n 1t Tn | [ Cn

with [;; # 0 for 1 < i < n. Solving this for{z,} gives

(3.2) Tom :—xo—Z—xk, 1 <m <n,

lmm

with z( = 1. Lettingb,, 1 = z,,, for 0 < m < n produces

m
Cm

_bl_z

m,m =g mum

[
(3.3) b1 = by

which is (11) with Om,1 = Cmfl/lmfl’mfl andamk = _lmfl,kfl/lmfl,mfl for
2 < k <m — 1. Hence, Theorem3.1and?2.2 become the following.

Corollary 3.1. Consider the linear system i8.(). Suppose that < B < A
and thatD,, is nondecreasing ik. Then
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(i) f¢;/lii € [=Di1,Diq] for 1 < i < nandl;;/l;; € [-B,A] for2 <
i <nandl < j <i,then|z;| < U for2 <i < nwhere{U,}isasin
(2.9).

(ll) If Ci/li,i c [—C, D] for 1 <i1<n andli’j/li,i € [O,A] for 2 <:1<n and
1 <j <i, then|z;| < Ujyq forl <i < nwhere{U,}isasin @.2).

Example 3.1. Returning to Examplé.3, the bound in {.7) follows from Part
(i) of Corollary 3.1with D; = (i — 1)?, A = 10, and B = 0. The difference
equation in £.1) simplifies to

(34) Un = 10Un_1 + Un_z + 4n — 8.

Corollary3.1compares favorably to the bounds for matrix equation solutions
with coefficients that are restricted to more general intervals in Neumaigr [
Hansen §] and [2], Hansen and Smithl[], and Kearfott [.7]. Here, optimal
bounds are obtained regardless of interval widths and dimension; moreover, the
computational burden is limited to solving the second-order linear recurrences
in (2.1) or (2.2.

If ¢; = 0fori > 2in (3.1) (this situation is discussed further in Viswanath
and Trefethenf]), then B.2) is

(35) _ St icmsn
k=1

Lin,m

with 21 = ¢;/1; 1. One can now bounft,,| via Theoren2.1or 2.2

Bounds for Linear Recurrences
with Restricted Coefficients

Kenneth S. Berenhaut and
Robert Lund

Title Page

Contents
<4< 44
< >
Go Back
Close
Quit
Page 13 of 34

J. Ineq. Pure and Appl. Math. 4(2) Art. 26, 2003
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:
mailto:berenhks@wfu.edu
mailto:
mailto:
mailto:lund@stat.uga.edu
http://jipam.vu.edu.au/

The recurrence equation.() arises when computing coefficients of ratios of
formal power series. Equating coefficients in the expansion

CGot+ g1zt g+
fo+ fiz+ f222+ -+

(41) h0+h12+h22’2+"'

(take fo = 1 andg, = 1 for simplicity) givesh, = 1 and
n—1

(4.2) o= (g — fa)ho = Y faojhy, n>1.
j=1

The theorems in Sectidhtranslate to the following.

Corollary 4.1. Suppose that < B < A, that{D,}>, is a nondecreasing
sequence of nonnegative real numbers, andftiaf>° , {g.}22,, and{h,}>°,
satisfy @.1) with fo = go = 1.

() ¥ g,— fn € [-Dns1, Dyyqforalln > 1andf, € [—B, A] forall n > 0,
then|h,| < U, forall n > 0 where{U, }5° , isasin @.1).

(i) If g,—fn € [-C,D]forn > 1landf, € [0, A forn > 0, then|h,| < U,11
for n > 0 where{U,}>* , isasin @.2).

Merely inverting a power series simplifies the statements in Coroflaky
Here,g, = O for all £ > 1 andg, = 1. Using this in &.2), applying Part (i) of
Corollary 3.1 (with D,, = A) and Part (ii) of Corollary3.1 (with C' = A and
D = 0), and solving 2.1) and @.2) for {U,,} gives the following results.
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Corollary 4.2. Suppose thai < B < A andthatg, = 0fork > 1andgy = 1.
Let

_A+./A?2+4(1+ B)
B 2
be a root of the characteristic polynomial i.().

(43) (&1

() If f, € [-B, A] for all n > 0, then

(B+1T"
(4.4) | < K1t + oo {#]
1

for all n > 1 where

2(B+1)— A+ /A2 +4(1 + B)

(4-5) N T B /AR i1 B)
and
4.6) 52:_2(B+1)—A—\/A2+4(1+B)_

2(B+1)\/A2+4(1 + B)

(i) If £, € [0, A]forall n > 0 (B = 0), then

(4.7) |on| <

A A [-17"
m‘m{_]

forall n > 1.

Bounds for Linear Recurrences
with Restricted Coefficients

Kenneth S. Berenhaut and
Robert Lund

Title Page
Contents
<4< 44
< >
Go Back
Close
Quit
Page 15 of 34

J. Ineq. Pure and Appl. Math. 4(2) Art. 26, 2003
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:
mailto:berenhks@wfu.edu
mailto:
mailto:
mailto:lund@stat.uga.edu
http://jipam.vu.edu.au/

Remark 4.1. Corollary 4.2 (ii) is optimal as the bound is attained fgi(z) =
1+ Az + A2® + A2° + .- .. Regarding the sharpness of Corollafy? (i), set
f(z) =1+ Az — Bz* + Az% + .- - If u, is taken to be the bound on the right
hand side of4.4) then it is not difficult to show that,, and h,, are similar in
magnitude:u,/|h,| <1+ 2(A — B)/A? and

(4.8) hy M (A= B)(VA+4(1+ B) — 4)
we AB +2A+ B\/A? + 41+ B)

Hence, the rate is again sharp. Bounds for Linear Recurrences
with Restricted Coefficients

Corollaries4.1and4.2are useful when generating functions or formal power
series are utilized such as in enumerative combinatorics and stochastic pro- Ke””e‘;‘o%e'fte[iaga“t and
cesses (cf. Wilf 7], Feller [6], Kijima [ 14]).

The above results provide bounds for the location of the smallest root of
a complex valued power series. Power series with restricted coefficients have il e
been studied in the context of determining distributions of zeroes (cf. Flatto Contents
et al. [7], Solomyak P7], Beaucoupet al. [1], [Z], and Pinner 21]). Related
problems for polynomials have been considered by Odlyzko and Poagkgn | S R
Yamamoto P9, Borwein and Pinner4], and Borwein and Erdelyid. As < >
mentioned above, Flattet al. [7] and Solomyak ?”] independently proved

P . : Go Back
that if z is a root of a series itFjy 1}, then|z| > 2/(1 + v/5). The following 0=ae
extension of this result is a consequence of Corolagy Close
Corollary 4.3. If z is a root of a power series iff|_p 4) With0 < B < A, then Quit
Page 16 of 34
2
(4.9) 2| > :
A+ \/Ag + 4(1 + B) J. Ineq. Pure and Appl. Math. 4(2) Art. 26, 2003
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Proof. Suppose thaf < F_p 4. Apply Part (i) of Corollary4.2 and note
from (4.4) that f(z)~! is finite for |z| < r;* (Observe that, is the root of the
characteristic polynomial with largest magnitude) lhad a root in{z : |z| <
r; '}, say atz = z;, then we would have the contradictiof(z)| ™' = co. [

The result in Corollaryt.3is again optimal: for giveild < B < A, f(z) =
-1

1+ Az — Bz* + A2 — Bz* +--- hasarootat = —r; .
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This section proves Theoretnl. As the arguments for Theoreth2 are sim-
ilar, we concentrate on Theoreml only. While the proof of Theoreri.1is
self-contained and elementary, it does employ a “sign change analysis”
of {b,}>2, which is case-by-case intensive and delicate. Attempts to find
a direct analytic argument, by other authors as well as ourselves, have
been unsuccessful to date. In particular, standard manipulations with
classical inequalities do not yield the sharpness or generality of Thebrem .

. . . Bounds for Linear Recurrences
The rudimentary structure of the problem emerges with the sign change with Restricted Coefficients
arguments. Moreover, the arguments provide both a convergence rate and Cenneth S, Berenhaut and
explicit “first constant” bound for the rate. Obtaining an explicit first constant, Robert Lund
a practical matter needed to apply the bounds, takes considerably more effort in
general.

Title Page
The sign-change arguments below first bound all solutions 1td) ( Contents
that have a particular sign configuration; in the notation below, this is « NS

|b,| < |B,| foralln > 1. A subsequent analysis is needed to bolUBg|
by an accessible quantity; in the notation below, thisBs| < U, where 4 >
U, is defined in 2.1). We first consider the arguments for Corollaty3

Go Back
as these are reasonably brief and convey the essence of the general
analysis. Close
Quit

Arguments for Corollary 2.3. Suppose thali; = —1 and letP = {n > 1 :
b, > 0}andN = {n > 1:b, < 0} partition the sign configuration db,, }> ;.
Now defineB,, recursively inn from N andP via B; = —1 and
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A—A Z B,, neP
2<r<n-—1

(5.1) B, = ren

-A > B,

2<r<n-—1
repP

neN

for n > 2. A simple induction with %.1) will show that B,, andb,, have the
same sign fon > 1.

We now prove by induction thak,,| < |B,| for all n > 1. First, assume that
n > 1 and that, € P. Returning to {.1) and collecting positive and negative

terms gives
(5.2) b= nabi + > Quebet > by
2<r<n-—1 2<r<n-—1
repP reN

Usingb; = —1, the boundv,,;,, € [-A, 0] for all n, k, and neglecting the first
summation in%.2) gives

bn <A+ Y — A,

2<r<n-—1
reN

=A+A D bl
e

Using the inductive hypothesis and the fact thhat = b,, in (5.3) produces
ba] SA+A DY [B]

2<r<n—1
reN

(5.3)
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=A—A Z B,

2<r<n-—1
reN

(5.4) = B,

after (5.1) is applied. An analogous argument works whea N.

We now finish the arguments for Corolla?y3 by inductively showing that
|B,| < U, from (5.1). First, it is easy to verify thatB;| < U;,for1 < i < 3
for all possible sign configurations ¢f3;, B2, B3}. Now assume that € P
(B, > 0)wheren > 3. If n—1¢€ P (B,_1 > 0), thenB, = B,_; by
(5.9 and|B,| = |B,_1| < U, < U, sinceU, is nondecreasing in (this
follows from A > 1). So we need only consider the case where 1 € N
(Bpo1<0). fre Nforallr <n—-1(B, <0forl <r <n-—1),then
By=B3=---=B, 1 =0by(5.1) and we haveB, = A = U; < U,,.

Finally, consider the case where a non-negative elemefBin. .., B, 2}
exists; that isy € P for some2 < r < n — 2. Letr* be the largest such
integer and sek = n — r* — 1. For signs of{ B, }, we haveB,, ;1 > 0
(Bn-k-1 € P)andB; < 0forn — k < j <n — 1. Using these ing.1) gives

B, 1=---= B, . Applying (5.1) yet again produces
B,=A-A > B,
2<r<n-—1
reN
n—1
=A-A Y B-A > B
r=n—=k 2<r<n—k—2
reN
(5.5) =B, k1 — AkB, .
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Applying the induction hypothesis and the triangle inequalitybif) produces

(56) ’Bn| < Un—k—l + AkUn—ka

and the difference equation i2.8) can be used to increase the smallest sub-
script appearing on the right hand side 51§ to n — &:

(5.7) 1By| < Un_posr + Ak — 1)Up_p.

SinceU,, is nondecreasing in andA(k — 1) > 1, we may swap the coeffi-
cients onl/,,_;.1 andU,,_, in (5.7) to obtain

(58) |Bn| < Upp+ A(k - 1)Un—k+1'

Note that £.9) is (5.6) with k replaced byt — 1. As the discourse fronb(6)
— (5.9) is merely algebraic, we iterate the above arguments to obtain

(5.9) |Bn| < Un—(k—j)—1 + Ak — §)Un—x—j)

foreach0 < j < k — 1. In particular, taking = £ — 1 in (5.9) now gives

(5.10) |Bn| < Uy—o+ AU, ;.
Applying (2.3) in (5.10 immediately gives the required boun,| < U,
and finishes our work. The arguments for the case wheee NV are similar.
O
Following the logic of the above arguments, we now present the proof of
Theorem2.1in its generality.
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Proof of Theoren2.1l We first reduce to the case whére= —1 by examining
b,/bi. AgainletP = {n >1:b, >0} andN = {n > 1: b, < 0} be the sign
partition for {b,}>° ,. This time, define a bounding sequerdg,}>° , for this

sign configuration recursively invia B; = —1, and forn > 2 by

(D,-AY B+BY B, neP

2§r§&f1 QSTS;;I
(5.11) B, = e e .
~D,—~A Y B.+B Y B, neN
2<r<n-—1 2<r<n-—1
\ reP reN

As before, an induction will show thdg,, andb,, have the same sign for each
n > 1. This fact will be used repeatedly in the discourse below.

We now justify the majorizing properties ¢f3,,} by inductively showing
that|b,| < |B,| for all n > 1. First, consider the case wherec P. Now
partition positive and negative terms ih.{) and apply the bounds assumed on
the o, ;'s in Theorem2.1to get

(5.12) by <=Dpbi+B Y b—A ) b
2<r<n-—1 2<r<n-—1
repP reN

Applying b; = —1 and the induction hypothesis, and thénl(l) gives

bn<Dn+B > [B|+A > |B]

2<r<n—1 2<r<n—1
reP reN
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=D,+B Y B,—-AY B

2<r<n-—1 2<r<n-—1
repP reN

(5.13) = B,

Similar arguments tackle the case where N. Equation .13 represents the
core of our arguments. The remainder of our work lies with devising a useful
bound for theB,,’s in (5.11).

To complete the proof of Theorethl, it remains to show thais,| < U,
for all n > 1. For this it will be convenient to have the following technical Bounds for Linear Recurrences
lemma which we prove after the arguments for Theoe(one can verify with Restricted Coefficients
non-circularity of discourse). Kenneth S. Berenhaut and

Robert Lund
Lemma 5.1. Consider the setup in TheoréiriLand defind £, }2° | via Ey = 1,
El = A, E2 == A2 + B, andEJ - AEj,l + (1 + B)Ej,g fOI’j 2 3 ThenUn

Title P
can be expressed as Lok
1 Contents
(5.14) Upn=Dy+ Y E.;D; <« S
. | . = < >
for n > 2, with the inequality
Go Back
(5.15) Up — (14 B)Un-1 > Dy — Dy
Close
holding forn > 3. Finally, in the case where > 2andB; < 0for1 < j < _
n—1(G €Nforl <j<n-1)andB, >0 (n € P), we have Quit
n—1 Page 23 of 34
(5.16) B,=D,+» A(l+B)"77'D;.
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We now return to the proof of Theoretnl. Assume first thak € P (B,, >
0). We start inductive verification thaB;| < U, for all j > 1 by noting that
|B1| = Uy = 1and|By| = Dy, = U,. For Bs, first note that ifB, > 0 and
Bs; >0({2,3} C P), then

‘B3| - D3 + BD2
(5.17) < Us,

where the inequality in5.17) follows from (2.1), D; > 0 for all j, andB < A.
In the case wher&, < 0 andB; < 0 ({2,3} C N), then 6.17) again holds. In
the cases where there is one negative and one positive sign ariéhgst; },
one can verify that

|Bg| = D3 + ADQ
(5.18) < Us;
by direct application of4.1).

Now assume tha3,| < Uy for1 < k <n—1. Whenn—1 € P (B,,_1 > 0),
use 6.11]) to get

(5.19) Bn=(14B)By_1+ Dy — Dy_1.

Applying the induction hypothesis that, ; < U,,_; and 6.15 in (5.19 pro-
duces

Bn <1+B)Unfl+Dn_anl
Un

IAINA

(5.20)
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as claimed.

It remains to consider the case where- 1 € N. First suppose thate N
forallr <n—1. FromLemmd.1, E; = AandE, = A*+ B > A(1+ B) since
A>1landA > B. UsingA > B and Lemmab.1in an induction argument
will easily verify the inequalityZ; > A(1 + B)’~! for all j > 1. Comparing
coefficients in .16 and 6.14) now yields|B,,| < U, as claimed.

Having dealt with the case where the are negative forall < j <n —1,
now suppose that there exists a non-negatlyamongst the first — 1 indices.
In particular, suppose thate P for some2 < r < n — 2 and letr* denote the
largest such integer. Set= n—r*—1. For signs of B,,}, we haveB,, ;1 >0
(n—k—-1€P),B;<0(eNforn—k<j<n-—1),and our standing
assumption thaB,, > 0 (n € P). Using these facts irb(11) produces

(5.21) B,=D,—A Y B +A Y B

n—k<r<n-—1 2<r<n—k—2

reN

+B > Byt B|Bul.

2<r<n—k-—2
reP

Now combine the definition of,,_;_ in (5.11) with (5.21) to get

(5.22) B,=Dy+(1+B)|Bygoi| = Dus1—A > B.

n—k<r<n—1

Returning to $.11) with the fact thatB; < 0 forn — k < j < n — 1 identifies
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the rightmost summation irb(22):

k-1
(523) > B.=—|B,4|> (1+B)

n—k<r<n—1 =
k—2 k—1
+ D,y (14+B)' =) (1+B)"'D,_;.
=0 =1

Combining 6.22 and 6.23 expresses3, explicitly in terms of B,_, and

ankfl:
k—1
(5.24) B, =D, + (14 B)|By_j—1| — Dng—1 + A[Bu_| > (1 + B)’
=0
k—2 k—1
—AD, Y (1+B)'+AY (1+B)"'D,_;.
=0 =1

The induction hypothesis gives,, 1| < U,_x_1 and|B,,_| < U,,_; using
these in $.24) along withB,, = | B,,| gives the bound

k—1
(5.25) |B.| < Dy, + (14 B)Un—-1 — Dpj—1 + AU, »_(1+ B)'
=0
k—2 k—1
—AD, Y (1+B)'+AY (1+B)"'D,_:.
=0 =1
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Making the substitutio; = AS"! _ (1 + B)™ into (5.25 now yields

(526) |Bn| < Dn + (]- + B)Un—k—l - Dn—k—l + Un—ka—l
k—1
— Dy iJia+ A (14 B)7'D,_;.

=1

The difference equatior2(1) gives
Un—k-‘,—l = AUn—k + (1 + B)Un—k:—l + Dn—kz—i—l - Dn—k—l-

Using this in £.26) and algebraically simplifying produces

(5.27) |B,| <Uyps1— Dppi1 + (14 B)Up_iJr—2
k—1
+ D, = DypJea+AY (1+B)7'D,;,
=1

where the fact that, ; — A = (1 + B)Jy_» has been applied. An algebraic
rearrangement of the right hand side Bf7) now produces

(5.28) |B,| £ (1 = Ji—2)[Upn—t41 — (1 + B)Up—i]
+ Jp—2Up—ps1 + (1 4+ B)Up—, — Dyt
k-1
+ D, = DypJea+AY (1+B)7'D,_;.

=1
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Noting that.J,_, > 1 for all £ and applying $.15 to the bracketed term in the
right hand side of%.28 now produces

|Bn| < (1 = Ji—2)[Dn—tt1 — D] + Jp—2Upn—p1 + (1 + B)Up—p,
k—1
~ Dy-gsr+ Dy = Doy + A Y (14 B) "' Dy

i=1

Invoking the difference equation i (1) again will give

(5.29) |Bun| < Un 1o — Dors + (14 B)Un 13
k2

+ Dy = Dygsrdis + A Y (1+B) "' Dy

i=1

The discourse betweeb.@7) — (5.29 is purely algebraic, justified via the
difference equation in2(1). Observe that the bounds foB,| in (5.27) and
(5.29 are similar in form, except thdtis replaced byt — 1. As such, one can
continue iterating the arguments 27 — (5.29 until £ = 3. This will give

(530) ‘Bn’ < Un—l - Dn—l + (1 + B)Un—QJO + Dn - Dn—2JO + ADn—1~

Now useJ, = A in (5.30, employ @.1) and regroup terms to get

(531) |Bn| S Un + Dn—2 + (1 - A)[Un—l - (1 + B)Un—2]
- anl - Dn72A + Aanl-
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Applying (5.20 once more to the bracketed termsin31) andA > 1 to get

|Bn| S Un + Dn—2 + (1 - A)(Dn—l - Dn—2)
- -Dn—l - Dn—ZA + A-Dn—l
(5.32) —U,.

This completes the arguments for Theor2rin the case where € P. The
discourse for the case whetec N is similar and is hence omitted. O

Proof of Lemm&.1 The convolution identity%.14) is easy to verify directly
from (2.1). To prove 6.16), return to £.11) with the facts thaty € N for
1 <j<n-1toget|By| = Dy, B, = AY")|B;| + Dy, and|B;| =
(1 + B)|Bj_1| — Dj_l + Dj for 3 < j <n-—1.

To prove 6.15, we get an induction started by applying ) with n = 2
andn = 3:

= (A— B)Dy+ D3 — D,
(5.33) >0,

where the last inequality follows from > B, D, > 0 andD3 > D,. Equation
(5.19 with i = 4 follows from the inequalitiest > 1 andA > B:

Uy — (14 B)Us = [AUs + (1 + B)Us + Dy — Ds] — (1 + B)[ADs + D5
(5.34) > Dy — Ds,
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where the last inequality follows fromd > 1, A > B, D3 > 0 andD, > Ds.
For the general inductive step, take an> 4 and suppose thdf; — (1 +
B)U;_y > D; — D;_ for3 <i <n—1. Then @.1) gives

Up— (14 B)Un_1 = [AUp—1 + (1 + B)Un_2 + Dy, — Dy 3]
— (14 B)[AU, 5+ (14 B)Up_3+ D,y — D, _3]
— AlUp—1 — (1+ B)Un_s) + (14 B)[Un_5 — (1 + B)U,_3]
(5.35) + Dy — Dy_s — (1 + B)Dy_y + (1 + B)D,_s.

Applying the inductive hypothesis to the bracketed term$if4) and collect-
ing terms gives the inequality

U,— (1+ B)U,,
> A(Dy—1 — Dy2) + (1 + B)(Dy—g — Dyy_3) + D,, — D,,_5
—(1+B)Dp1+ (14 B)Dy_3
(5.36) =D, —Dyp_1+ (A= B)[D,_1 — D,,_3].

The assumed monotonicity @, in k andA > B give
(5.37) Up— (14 B)Up_y > Dy — Dy

and the proof is complete. O
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