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ABSTRACT. This paper derives inequalities for general linear recurrences. Optimal bounds for
solutions to the recurrence are obtained when the coefficients of the recursion lie in intervals that
include zero. An important aspect of the derived bounds is that they are easily computable. The
results bound solutions of triangular matrix equations and coefficients of ratios of power series.
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1. INTRODUCTION

This paper derives bounds for solutions to the linear recurrence

n—1
(1.1) bn=_ aniby, n>2.
k=1

Throughout, we assume that # 0 asb; = 0 implies thatb, = 0 for all n > 2. Our
results boundb,, }5° , in a term-by-term manner with a second order time-homogeneous linear
recursion that is readily analyzable.

Our motivation for studying (1]1) lies in applied probability. There it is useful to have a bound
for coefficients of a ratio of power series when limited information is available on the constituent
series (cf. Kijimal[14], Kendall[13], Heathcote [11], Feller [6]). The series comprising the ratio
are often probability generating functions. Linear algebra is another setting Whére (1.1) arises.
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2 KENNETH S. BERENHAUT AND ROBERTLUND

Example 1.1. What is the largesi;| possible in[(1.l) wheh, = —1 andw,,, € [—3,0] for
all n andk? In Sectior] R, we show thal;| < 99 for such situations, and that this value is
produced by, ;, having the alternating form

Qp1 Qp2 Qp3 Opg
n=2 =3
(1.2) n=3 0 -3
n=4 -3 0 -3
n=> 0 -3 0 -3

Specifically, thesey, ;. givebs = 3,b3 = —9, b, = 30, andb; = —99. We return to this example
in Sectior 2.
Example 1.2.For a fixed! C R, let F; be the set of -power series defined by

(1.3) Fr={f:f(z) =1+ ay2" anday € I for eachk > 1}.
k=1

Flatto, Lagarias, and Poonén [7] and Solomyak [22] proved independently thist & root of
a series inFjp ;j, then|z| > 2/(1++/5). Asz = —2/(1++/5)isaroot ofl + z + 2%+ 2°+- - -,
this bound is tight ovefFy ;). The coefficients of the multiplicative inverse of a seriesFjp;
cannot increase at a rate larger than the golden ratio.

We will show later that the coefficients of the multiplicative inverse of a power series in
Fio,1) are bounded by the ubiquitous Fibonacci numbers. This gives a “first constant” for the
aforementioned rate. Observe that

~ -1
(1.4) (1—1—2,22”_1) =1—z24+22-223 4324524+,
n=1

the coefficients on the right hand side [of (1.4) having the magnitude of the Fibonacci numbers.
Hence, the first constant is also good. We return to this setting in Sé¢tion 4.

Example 1.3.Consider the lower triangular linear systém = bwhereL is thel0 x 10 matrix
with (7, j)th entry

1, ifi=j
(1.5) Lij=2% 10, ifi>j ,
0, ifi<y
and theith component ob is b; =% for 1 < i < 10. The exact solution is
_ 1 ;
—6
59
—524
4725 o
—42514 '
382639
—3443736
30993641
—278942750 |

8y
Il
Il
5
>

(1.6)
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The condition number of. is 26633841560.0; this essentially drives the rate of growth of

in ¢ (cf. Trefethen and Bau [23] for general discussion). Our results will imply that all matrix
equationsLz = b, with L ann x n unit lower triangular matrix with’; ; € [0, 10] for 1 <i <

j < nand|b;| <%, have solutions whosi¢gh component; is bounded by (coefficients rounded
to three decimal places)

(1.7) |z < (0.142) 10.099° + 3.538 (—0.099)" — 0.400i + 0.320, 1 < i < n.

The first four values of the right hand side pf (1.7) &areé4, 145, and1472. These show essen-
tially the same order of magnitude as thés; hence the bound is performing reasonably. We
return to this example in Sectiph 3.

Recurrences with varying or random coefficients have been studied by many previous au-
thors. A partial survey of such literature contains Viswanath [24] and [25], Viswanath and
Trefethen [[26], Embree and Trefethen [5], Wright and Trefethen [28], Mallik [16], Popenda
[20], Kittapa [15], and Odlyzkd [19].

Our methods of proof are based on a careful analysis of sign changes in solutipns to (1.1).
This differs considerably from past authors, who typically take a more analytic approach. An
advantage of our discourse is that it is entirely elementary, discrete, and self-contained. A
disadvantage of our arguments lie with laborious bookkeeping.

Study of [1.1) could alternatively be based on linear algebraic or analytic techniques. Some
of the applications considered here, namely solutions of linear matrix equations and coefficients
of ratios of power series, are indeed classical problems. However, linear algebraic and analytic
techniques have yielded disappointing explicit bounds to date. Hence, this paper explores alter-
native methods.

The rest of this paper proceeds as follows. Segtjon 2 presents the main theorem, some vari-
ants of this result, and discussion of the hypotheses and optimality. Sedtion$ [3 and 4 consider
application of the results to lower triangular linear systems and coefficients of ratios of power
series, respectively. Proofs are deferred to Seglion 5. There, a simple case of our main result is
first proven to convey the logic of our sign change analyses.

2. RESULTS

The general form of our main result is the following.

Theorem 2.1. Suppose thatl > 1 and0 < B < A are constants and thatD,}>, is a
nondecreasing sequence of nonnegative real numbers. Suppose that the coefficients in (1.1)
are restricted to intervalsw,,; € [—-D,,D,| forn > 2 anda,, € [—-A, B] forn > 2 and

2 < k < n—1. Then solutions td (1] 1) satisfy,|/|b:| < U, for all n > 1, where

(1, ifn=1
DQ, |f n =2
2.1) U, = ,
ADQ —f- Dg, |f n = 3
AUn_l -+ (1 + B)Un_z + D, — Dn—2; ifn>3

\

Neglecting the bookkeeping complications induced by a gedébal, the difference equa-
tion in (2.1) is second-order, time-homogeneous, and linear. In many cases, one cdgn solve (2.1)
explicitly for U,,. As such, we view/,, as being “easy to compute”. The generality added by a
non-decreasingD,, } is relevant in probabilistic settings where generalized renewal equations
are common (cf. Fellef [6] and Heathcatel[11]).

For cases where asymmetric boundsxgn are available, we offer the following.
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Theorem 2.2. Suppose that! > 1 and thatC > 0 andD > 0. If oy,; € [-C, D] and
an i, € [-A,0]foralln > 2and2 < k <n —1, then|b,|/|b:| < U, forall n > 1, where

(1, ifn=1
max(C, D), ifn=2

(2.2) U, = .
Amax(C, D) +min(C, D), ifn=3

L AUn_l + Un_g, ifn>3

Theorems$ 2]1 ar{d 3.2 are proven in Sedfipn 5. There, we first prove the results in the simple
settingwhered = C' = A > 1, D = 0, andb; = —1 to convey the basic ideas of a sign change
analysis. In particular, we prove the following Corollary.

Corollary 2.3. Suppose thati; = —1 and thata,, , € [—A, 0] for all n, k whereA > 1. Then
|b,| < U, forall n > 1, where{U,, } satisfies

AL ifn <2
(2.3) U, = :
AUp—1 + Uy, ifn>3

Solving [2.3) explicitly forU,, gives

A o1 _i n—1
(24) Un = \/ﬁ (7’1 < T1> ) s

for n > 2, wherer; is the root

A+ VA2 +4
2
of the characteristic polynomial associated wfith|(2.3). The other root of the characteristic poly-
nomial in ) isro = 271(A — /A2 + 4). Observe thalr,| > |r,| andr;ry = —1.

The flexibility allowed in bounds fotv, ; in Theorem$ 2]1 and 2.2 comes at a bookkeeping
price during the proof in Secti¢n 5. The benefits of such generality will become apparentin Sec-
tions|3 andl 4 where we bound solutions of nonhomogeneous (rather than merely homogeneous)
matrix equations and the coefficients of power series ratios (rather than merely reciprocals).

This section concludes with some comments on the assumptions and optimality of Theorems
2.1 and Z2.P.

Remark 2.4. (Optimality of Theorem$ 2|1 arjd 2.2). For a givien {D,,}>>,, A, and B, the
bound in[(2.1) cannot be improved upon. To see this, set

(25) T1

—-D, ifnisodd
(26) Qn1 =
D, if niseven
and
—A ifn+kisodd
(27) An k=
B ifn+kiseven

forn > 2andl < k < n — 1. Itis easy to verify from[(1]1) that, = (—1)"U,b; for n > 2,
implying that the bound in Theorem 2.1 is achieved. A similar construction shows that the
bound in Theorerp 22 is also optimal.

For completeness, we also consider situations wheteA < B. In this case, a straightfor-
ward analysis will yield the following bound for solutions fo (1.1).
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Remark 2.5. Consider the setup in Theordm [2.1 except that A < B. Then{U;}>,
defined by

(1, ifn=1
DQ, ifn=2
(2.8) Ur =
BD2+D3, ifn:3
| B+1)U;  +Dy— Dy, ifn>3

is a bound satisfyingp,|/|b:| < U for all n» > 1. This bound is achieved in the case where
ap1 =D, anda, ;= Bforn>2and2 <k <n-1.

The above results provide optimal bounds figy} whena,, , € [—A, B] except wher) <
B < A < 1. As our next remark shows, the conditidn> 1 is essential for optimality.

Remark 2.6. Optimality of Theoreni 2]1 may not occur whein< 1. To see this, suppose that
B < A < 1and considefb, }°>2, satisfying [1.1) withh; = —1, a1 = Do, 31 = D3, a3 =
B, Qg1 = —Dy, Qg9 = —A, andOé473 = —A. Then ) giVE$2 = —Dy, b3 = —(BDQ + Dg),
and
by = Dy + A(BDs + Ds3) + AD,

=(A+ AB)Dy + AD3 + D,
(2.9) > (A*+ B)Dy + AD3 + Dy,
where the strict inequality above follows froh+ AB > A? + B (which follows fromB <
A < 1). Applying (2.1) now gives

by > A(ADy + D3) + (B +1)Dy + Dy — Dy
=AUs+ (1+ B)Uy+ Dy — Dy

(2.10) = Uy.
Hence,U,, may not boundb, | in this setting.

Example 2.1. In the setting of Examplg 1.1, thgv, ,} producing the maxima{|b, |} are
obtained via the argument in Remark]2.4. Whey, € [-3,0] for all n andk, the maximal
|b,|'s are produced withy,, . either—3 or 0 in the alternating fashion depicted in the table in

Examplg 1.1L.
3. TRIANGULAR LINEAR SYSTEMS WITH RESTRICTED ENTRIES

Theorems 2]1 and 2.2 have applications to systems of linear equations. Consider the lower
triangular linear system

i ll,l 0 e O xTq C1
31) SO B I S R
B ln,l ln,? T ln,n | Ln Cn

with /;; # 0 for 1 < ¢ < n. Solving this for{z;} gives

m lm
(3.2) T = gy — Sk 1 <m <o,
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with z( = 1. Lettingb,, 1 = z,, for 0 < m < n produces
b=

k=2

Cm
(3.3) b1 = 7—

m,m

[
k 1bl<:

lm,m

which is ) WithOémJ = Cm—l/lm—l,m—l andamk = _lm—l,k—l/lm—l,m—l for2<k<m-—1.
Hence, Theorenjs 2.1 apd P.2 become the following.
Corollary 3.1. Consider the linear system ip (8.1). Suppose that B < A and thatD, is
nondecreasing ik. Then
(|) If Ci/li,i € [_Di+17Di+1] for 1 <1 <n and li,j/li,i € [—B,A] for 2 <i:1<n and
1 < j <4, then|z;| < Uiy for 2 <i < nwhere{U,} isasin [2.1).
(i) f ¢;/l;; € [-C,D]for1 <i <mnandl;;/l;; € [0,A]for2 <i<mnandl <j <ji,
then|z;| < U4 for 1 < i < nwhere{U,} is as in[2.2).
Example 3.1. Returning to Example 1.3, the bound [in (1.7) follows from Part (i) of Corollary
with D; = (i — 1)?, A = 10, andB = 0. The difference equation ip (2.1) simplifies to

(3.4) Up,=10U,—1 + Up—2 +4n — 8.

Corollary[3.]1 compares favorably to the bounds for matrix equation solutions with coef-
ficients that are restricted to more general intervals in Neumaier [17], Hansen [9] Jand [8],
Hansen and Smith [10], and Kearfott [12]. Here, optimal bounds are obtained regardless of
interval widths and dimension; moreover, the computational burden is limited to solving the
second-order linear recurrences[in [2.1) or|(2.2).

If ¢; = 0fori > 2in (3.J) (this situation is discussed further in Viswanath and Trefethen

[26]), then [3.2) is

m—1
Im
(3.5) xm:—Z—’kxk,lgmgn,

k=1 T

with z; = ¢1/; ;. One can now bounit, | via Theorenj 21 dr 2]2.

4. RATIOS OF POWER SERIES

The recurrence equation (IL.1) arises when computing coefficients of ratios of formal power
series. Equating coefficients in the expansion

go+ g1z + gz + -
4.1 ho + hiz 4+ ho2? + -+ =
*1) o ’ fot+ fiz+ fo22 + -+

(take fy = 1 andgy = 1 for simplicity) givesh, = 1 and

n—1
(42) hn = (gn - fn)hO - an—jhja n Z 1.
j=1

The theorems in Secti¢n 2 translate to the following.
Corollary 4.1. Suppose that < B < A, that{D,}°2, is a nondecreasing sequence of non-
negative real numbers, and th@f, }22, {g.}22, and{h, }22, satisfy [4.1) withfy = go = 1.
() f g, — fn € [=Dpi1,Dpiq] forall n > 1 and f,, € [—B, A] for all n > 0, then
|hn| < Uyyq forall n > 0 where{U, }>2, isasin [2.1).
(i) If g, — fn € [-C,D]forn>1andf, €0, A] forn > 0, then|h,| < U, forn >0
where{U, }°2, is as in [2.2).
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Merely inverting a power series simplifies the statements in Cordllaty 4.1. biere,0 for
all k > 1andg, = 1. Using this in [[4.R), applying Part (i) of Corollafy 3.1 (wifh, = A) and

Part (ii) of Corollary[ 3.1 (withC' = A andD = 0), and solving[(2]1) and (2.2) fdi,,} gives
the following results.

Corollary 4.2. Suppose thai < B < A and thatg, = 0 for k£ > 1 andgy, = 1. Let
A+ /A2+4(1+B)
B 2
be a root of the characteristic polynomial in (2.1).
(i) If f, € [-B,A]forall n > 0, then

(4.3) (8}

(4.4) | < K17 + Ko [ﬂr

1
for all n > 1 where

2(B+1)— A+ /A2 +4(1 + B)

(4.5) T T B )/ 411 B)

)

and

2(B+1)—A—/A2+4(1+ B)
2B+ 1)y/A2+4(1+B)
(i) If f, € [0, A]forall n > 0 (B = 0), then

(46) Rg = —

(4.7) || < 4.4 {llr
ey JAZr 4| n

forall n > 1.
Remark 4.3. Corollary[4.2 (ii) is optimal as the bound is attained fgr) = 1 + Az + A23 +
Az®+---. Regarding the sharpness of Corollary| 4.2 (i),et) = 1+ Az — Bz>+ Az%+- - -
If u, is taken to be the bound on the right hand side of (4.4) then it is not difficult to show that
u, andh,, are similar in magnitudex, /|h,| < 1+ 2(A — B)/A? and

_ 2 _
4.8) i Y g (A— B)(y/A2+4(1 + B) A).
n—oo |hy,| AB +2A + B\/A2 + 4(1 + B)
Hence, the rate is again sharp.

Corollarieq 4.]1 anfl 4|2 are useful when generating functions or formal power series are uti-
lized such as in enumerative combinatorics and stochastic processes (ci._Wilf [27], [Eeller [6],
Kijima [14]).

The above results provide bounds for the location of the smallest root of a complex valued
power series. Power series with restricted coefficients have been studied in the context of deter-
mining distributions of zeroes (cf. Flated al. [7], Solomyak [22], Beaucouet al. [1], [2], and
Pinner [21]). Related problems for polynomials have been considered by Odlyzko and Poonen
[18], Yamamoto[[29], Borwein and Pinner![4], and Borwein and Erdelyi [3]. As mentioned
above, Flattcet al. [7] and Solomyak!([22] independently proved thatifs a root of a series
in Fpo..j, then|z| > 2/(1 + +/5). The following extension of this result is a consequence of

Corollary[4.2.
Corollary 4.4. If z is a root of a power series iff|_p 4 With0 < B < A, then

|z| > 2 .
A+ /A2 +4(1+ B)

4.9
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Proof. Suppose thaf € F_p 4. Apply Part (i) of Corollaryf 4.2 and note from (4.4) that
f(2)~Lis finite for |z| < ;! (Observe that; is the root of the characteristic polynomial with
largest magnitude). If had a rootin{z : |z| < r;'}, say atz = z;, then we would have the
contradiction| f(zy)| ! = oc. O

The result in Corollar-4 is again optlmal forgiverk B < A, f(2) =1+ Az — B2 +
Az® — Bz*+ ... hasarootat = —r; .

5. PROOFS

This section proves Theorgm P.1. As the arguments for Theforgm 2.2 are similar, we concen-
trate on Theorern 2.1 only. While the proof of Theofenj 2.1 is self-contained and elementary, it
does employ a “sign change analysis™{of,} >, which is case-by-case intensive and delicate.
Attempts to find a direct analytic argument, by other authors as well as ourselves, have been un-
successful to date. In particular, standard manipulations with classical inequalities do not yield
the sharpness or generality of Theofenj 2.1. The rudimentary structure of the problem emerges
with the sign change arguments. Moreover, the arguments provide both a convergence rate and
explicit “first constant” bound for the rate. Obtaining an explicit first constant, a practical matter
needed to apply the bounds, takes considerably more effort in general.

The sign-change arguments below first bound all solutiorjs tb (1.1) that have a particular sign
configuration; in the notation below, this|is,| < |B,| for all n > 1. A subsequent analysis is
needed to boun,,| by an accessible quantity; in the notation below, thigdg < U,, where
U, is defined in[(2.]1). We first consider the arguments for Coroflary 2.3 as these are reasonably
brief and convey the essence of the general analysis.

Arguments for Corollary Suppose that; = —1 and letP = {n > 1 : b, > 0} and
N ={n >1:b, < 0} partition the sign configuration db,, }>° ,. Now defineB,, recursively
inn from N andP via B; = —1 and

A=A > B, neP
2<r<n—1

(5.1) B, = reN

~A > B, neN

2<r<n-—1
reP

forn > 2. A simple induction with[(5.]1) will show thaB,, andb,, have the same sign far> 1.
We now prove by induction that,,| < |B,| for all n > 1. First, assume that > 1 and that
n € P. Returning to[(1]1) and collecting positive and negative terms gives

(52) bn = Qn,lbl + Z an,rbr+ Z Oén,rbr
2<r<n-—1 2<r<n-—1
reP reN
Usingb, = —1, the boundw,, , € [—A, 0] for all n, k, and neglecting the first summation in
(52) gives
by <A+ ) —Ab,
2<r<n-—1
reN
(5.3) =A+A D bl
2<r<n-—1
reN
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Using the inductive hypothesis and the fact that = b,, in (5.3) produces
b SA+A D) |B

2<r<n-—1
reN

=A-A > B,

2<r<n-—1
reN

(5.4) =B,

after (5.1) is applied. An analogous argument works when.\ .

We now finish the arguments for Corolldry .3 by inductively showing tBat < U,, from
(5.1). First, it is easy to verify thaB;| < U;, for 1 < i < 3 for all possible sign configurations
of { By, By, Bs}. Now assume that € P (B, > 0) wheren > 3. Ifn—1¢€ P (B, > 0),
thenB, = B,,_1 by ) andB,| = |B,_1| < U,_; < U, sincel, is nondecreasing in (this
follows from A > 1). So we need only consider the case where 1 € N (B,,_1 < 0). If
reNforallr <n—-1(B, <0forl <r<n-—1),thenBy=B;=---=B,_; =0by (5.1)
and we haveB,, = A = Us < U,.

Finally, consider the case where a non-negative elemefiBin. .., B, _»} exists; that is,
r € Pforsome2 < r <n — 2. Letr* be the largest such integer and ket n — r* — 1. For
signs of{ B,,}, we haveB,,_;_; > 0 (B,_;—1 € P)andB; < 0forn —k < j <n— 1. Using

these in[(5.]1) give®,,_, = --- = B,,_;. Applying (5.1) yet again produces
B,=A-A ) B
e
n—1
=A-A>Y B-A ) B

r=n—=k 2§r§en]</vk72
(5.5) =B, 1 — AkB, 4.
Applying the induction hypothesis and the triangle inequality in|(5.5) produces
(56) |Bn‘ < Unfkfl + AkUnfka

and the difference equation in (2.3) can be used to increase the smallest subscript appearing on
the right hand side of (5.6) to — &:

SinceU,, is nondecreasing in andA(k — 1) > 1, we may swap the coefficients @h x4
andU,_; in (5.7) to obtain

(58) |Bn| S Un—k + A<k - 1)Un—k+1-

Note that[(5.B) i5(516) witlk replaced by — 1. As the discourse fronj (5.6) |- (5.8) is merely
algebraic, we iterate the above arguments to obtain

(5.9) |Bn| < Un—(k—j)-1 + Ak — j)Un—(k—j)
for each0 < j < k — 1. In particular, takingi = £ — 1 in (5.9) now gives
(5.10) |Bn| < Up—2 + AU, ;.
Applying (2.3) in [5.10) immediately gives the required boust| < U, and finishes our
work. The arguments for the case where N are similar. O

Following the logic of the above arguments, we now present the proof of Th¢orem 2.1 in its
generality.
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Proof of Theorerp 2]1We first reduce to the case where= —1 by examiningb,,/b;. Again
letP ={n>1:0b, >0}andN = {n > 1: b, < 0} be the sign partition fofb,, }>° .
This time, define a bounding sequer{dg, }>° , for this sign configuration recursively invia
By = —1, and forn > 2 by

D,-A> B+B > B, neP

2<r<n-—1 2<r<n-—1
N P
(5.11) B, = e e .
~D,~A Y B.+B Y B, neN
2<r<n-—1 2<r<n—1
L reP reN

As before, an induction will show tha, andb,, have the same sign for eagh> 1. This fact
will be used repeatedly in the discourse below.

We now justify the majorizing properties ¢3,,} by inductively showing thap,,| < |B,|
for all n > 1. First, consider the case whetec P. Now partition positive and negative terms
in (1.1) and apply the bounds assumed onfg’s in Theorenj 2.1 to get

(5.12) bo< D1 +B Y b -4 > b
2<r<n-—1 2<r<n-—1
reP reN

Applying b; = —1 and the induction hypothesis, and then (5.11) gives

bn<Dn+B > [B]+A > |B]

2<r<n-—1 2<r<n-—1
repP reN
=D,+B E B, — A g B,
2<r<n-—1 2<r<n-—1
repP reN

(5.13) = B,.

Similar arguments tackle the case where= N. Equation [(5.13) represents the core of our
arguments. The remainder of our work lies with devising a useful bound fds ftsein (5.11).

To complete the proof of Theore.l, it remains to show tBat < U, for alln > 1.
For this it will be convenient to have the following technical lemma which we prove after the
arguments for Theorem 2.1 (one can verify non-circularity of discourse).

Lemma 5.1. Consider the setup in Theorém [2.1 and defiig }>°, via Ey, = 1, By = A,
Ey=A?+ B,andE; = AE;_; + (1+ B)E;_, for j > 3. ThenU, can be expressed as

n—1
(5.14) Un=Dy+ Y E.;Dj,
j=2
for n > 2, with the inequality
(5.15) Uy — (1 + B)Un_1 > Dy — Dy

holding forn > 3. Finally, in the case where > 2andB; < 0for1 <j<n—1(j € N for
1<j<n-—1)andB, >0 (n € P), we have

n—1
(5.16) B,=D,+>» A(l+B)"7~'D;.

=2
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We now return to the proof of Theorem R.1. Assume first that P (B, > 0). We
start inductive verification thdtB;| < U; for all ; > 1 by noting that|B,| = U; = 1 and
|Bs| = Dy = Us. For B, first note that ifB, > 0 andB; > 0 ({2,3} C P), then

|Bs| = D3 + BD;
(5.17) < Us,

where the inequality inf (5.17) follows from (2.1)); > 0 for all j, andB < A. In the case
whereB, < 0 andB; < 0 ({2,3} C N), then (5.1}) again holds. In the cases where there is
one negative and one positive sign amordst, Bs}, one can verify that

|Bs| = Dy + AD,
(5.18) < U,

by direct application of (2]1).
Now assume thdt,| < U, for1 <k <n —1. Whenn — 1 € P (B,_; > 0), use|(5.11) to
get

Applying the induction hypothesis that,_; < U,,_; and [5.15) in[(5.1]9) produces

By < (14 B)Up_1 + Dy — Dy
(5.20) <U,

as claimed.

It remains to consider the case where 1 € N. First suppose thate N forall r <n — 1.
From Lemma5.1F; = AandFE, = A2+ B > A(1+ B) sinceA > 1andA > B. UsingA >
Band Lemma 5/1 in an induction argument will easily verify the inequdity> A(1+ B)’~*
for all j > 1. Comparing coefficients ifi (5.1L6) arjd (5.14) now yi€lBs| < U,, as claimed.

Having dealt with the case where the are negative for all < 5 <n—1, now suppose that
there exists a non-negative; amongst the first — 1 indices. In particular, suppose that P
for some2 < r < n — 2 and letr* denote the largest such integer. Set n — r* — 1. For
signs of{ B, }, we haveB,,_,_1 >0(n—k—1€ P),B; <0(je Nforn—k <j<n-—1),
and our standing assumption thg > 0 (n € P). Using these facts iffi (5.1L1) produces

(5.21)  B,=D,—A Y B.+A > B+B Y  B.+B|Buijl

n—k<r<n-—1 2<r<n—k—2 2<r<m—k—2
reN reP

Now combine the definition oB,,_,_; in (6.11) with [5.21) to get

(5.22) B,=Dy+(1+4B)|Byta| = Dug1—A > B

n—k<r<n-—1

Returning to[(5.11) with the fact thd; < 0 forn — k£ < j < n — 1 identifies the rightmost
summation in[(5.22):

k-1 k—2 k—1
(523) Y Br=—[Bukl> A+ B) +Dui Y (1 +B)Y =D (1+B) D,
n—k<r<n-—1 =0 =0 i=1
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Combining [5.2R) and (5.23) expresd@sexplicitly in terms ofB,,_, andB,,_j_1:

k—1
(5.24) B, = Dy + (1+ B)|Byx1| = Dns1 + A|By 4| > _(1+ B’
=0
k—2 k—1
—ADp Y (1+B)'+AY (1+B) ' Dy
=0 =1
The induction hypothesis give®,_;_i| < U,_x_1 and|B,,_;| < U,_y; using these in (5.24)
along with B,, = | B,,| gives the bound
k—1 ‘
(5.25) |By| < Dy+ (1+ B)Up—p—1 — Dy_ppo1 + AU, ¥ (1 + B)'
=0
k—2 k—1
—AD, Y (1+B)'+AY (14 B)"'D,_;.
=0 i=1

Making the substitution’; = AS>! _ (1 + B)™ into ) now yields

(526) ’Bn‘ < Dn + (1 + B)Un,k,1 - ankfl + Unfk']kfl
k—1
— Dy iJia+AY (14 B) ' D,
=1
The difference equation (2.1) givés_;+1 = AU, + (1 + B)Up——1 + Dyty1 — Dyg1.
Using this in [5.2B) and algebraically simplifying produces

(5.27) |B,| <Up-ti1 — Dnty1 + (1 + B)Up_pJio+ Dy — Dy Ji o
k—1
+AY (1+B)'Du,
=1
where the fact thaf,_; — A = (1 + B)Jx_» has been applied. An algebraic rearrangement of
the right hand side of (5.27) now produces

(56.28) |Bn| < (1 = Jp—2)[Un—ty1 — (1 + B)Up—i] + Je—2Un—ps1 + (1 + B)Up_y
k—1
— Dy + Dy = DypJia+AY (1+B)7'D,;.
=1
Noting thatJ,_, > 1 for all k£ and applying[(5.1]5) to the bracketed term in the right hand side
of (5.28) now produces

|Bn| < (1= Ji—2)[Dn—tt1 — D] + Jp—2Un—py1 + (1 + B)Up—p,
k—1
— Do+ Dy = DypJia+ AY (1+B)7'D,s.
=1
Invoking the difference equation in (2.1) again will give

(5.29) B, < Unky2 — Dnpro+ (1 + B)Ungy1Jr—3+ Dn — Dy g1 i3
k2
+A> (14 B)7'D,_;.

i=1
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The discourse betwegn (5]27] - (5.29) is purely algebraic, justified via the difference equation
in (2.1). Observe that the bounds fd, | in (5.27) and[(5.29) are similar in form, except tiat
is replaced by: — 1. As such, one can continue iterating the arguments in|(5.27) 4 (5.29) until
k = 3. This will give
(5.30) |Bn| <Up-1 — Dyp1+ (1 4+ B)Uy—2Jo + Dy, — Dyy—2Jo + AD,, 4.
Now useJ, = A in (5.30), employ[(2]1) and regroup terms to get
(531) |Bn| < Un + Dn—2 + (1 - A)[Un—l - (1 + B)Un—Q] - Dn—l - Dn—QA + ADn—l'
Applying (5.20) once more to the bracketed termg in (5.31).4ne 1 to get

|Bn| S Un + Dn—2 + (1 - A)(Dn—l - Dn—?) - Dn—l - Dn—ZA + ADn—l

(5.32) =U,.

This completes the arguments for Theofen 2.1 in the case wher®. The discourse for the
case where. € N is similar and is hence omitted. O

Proof of Lemma 5]1The convolution identity[(5.14) is easy to verify directly from (2.1). To
prove [5.16), return td (5.11) with the facts thag N for 1 < j < n — 1to get|B,| = D,
By =AY"") |Bj| + Dy, and|B;| = (14 B)|B;_1| = Dj_1 + D;for3 < j <n — 1.
To prove [(5.1p), we get an induction started by applyjng] (2.1) with 2 andn = 3:
Us — (14 B)Uy = ADy+ D3 — (1 + B) D,
= (A—B>D2+D3—D2
(5.33) >0,

where the last inequality follows fro > B, D, > 0 andDs; > D,. Equation[(5.15) with
1 = 4 follows from the inequalities! > 1 andA > B:

Uy — (14 B)Us = [AUs + (1 4+ B)Uy + Dy — Dy| — (1 + B)[ADy + Ds]
=(A—-1)(A—B)Dy+ (A— B)Ds+ Dy — Dj
(5.34) > Dy — Dy,
where the last inequality follows fromM > 1, A > B, D3 > 0 andD, > Ds.

For the general inductive step, takeran- 4 and suppose that, — (1+ B)U;_y > D;— D;_4
for3 <i <n—1. Then[2.1) gives

Uy — (1+ B)Un_y = [AU,_1 + (1 + B)Up—2 + Dy, — Dy
— (14 B)[AU, s+ (1 + B)U,_s + D,y — D,_3]
— AlUn 1 — (14 B)Un o]+ (14 B)[Uy_5 — (1 + B)U,_3]
(5.35) + Dy — Dy_o— (1L + B)Dy_y + (1 + B)D,_s.

Applying the inductive hypothesis to the bracketed term$ in {5.35) and collecting terms gives
the inequality

Un - (1 + B)Unfl 2 A(anl - Dn72) + (1 + B)(Dn72 - Dn73) + Dn - an2
—(1+B)Dp1+ (1+ B)Dy3

(5.36) =D, — Dp_1+ (A= B)[Dn_1 — D,_s].

The assumed monotonicity @, in k andA > B give

(5.37) U, — (14 B)Uu,_1 > D, — Dp_4

and the proof is complete. O
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