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Abstract

We establish extremal values of a solution y of a second-order initial value prob-
lem as the coefficients vary in a nonconvex set. These results extend earlier
work by M. Essen in particular by allowing a coefficient in the second derivative
expression.
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1. Introduction
Let L1

+(0, l) denote the set of all nonnegative functions fromL1(0, l). l is a
positive number. Letf ∈ L1

+(0, l) andµf its distribution function

µf (t) = |{x ∈ (0, l) : f(x) > t}| for t ≥ 0,

where, here and below,|I| is the measure of the setI. Let f ∗ denote the de-
creasing rearrangement off ,

f ∗(x) = sup{t > 0 : µf (t) > x}.

It is known thatf ∗ is nonnegative, right continuous and that [2]

(1.1)
∫ t

0

f ds ≤
∫ t

0

f ∗ ds, t ∈ [0, l],

(1.2)
∫ l

0

f ds =

∫ l

0

f ∗ ds.

The increasing rearrangement off is simplyf ∗∗ defined byf ∗∗(t) = f ∗(l− t).
A crucial property of rearrangements is that iff andg are nonnegative with
f ∈ L1(0, l) andg ∈ L∞(0, 1) then

(1.3)
∫ l

0

f ∗∗g∗ ds ≤
∫ l

0

fg ds ≤
∫ l

0

f ∗g∗ ds.

We will say thatf andg are equimeasurable or equivalently thatf is a rear-
rangement ofg if they have the same distribution function. We will denote this
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equivalence relation byf ∼ g. Let f0 be a member ofL1
+(0, l) andC(f0) its

equivalence class for the relation∼, i.e.,

C(f0) = {f ∈ L1
+(0, l), f ∗ = f ∗0}.

A function σ : [0, l] → [0, l] is measure-preserving if, for each measurable set
I ⊂ [0, l], σ−1(I) is measurable and|σ−1(I)| = |I|. Let Σ be the class of such
functions. According to Ryff [6], to eachf ∈ L1

+(0, l) there correspondsσ ∈ Σ
such thatf = f ∗ ◦ σ. In particular, we have

C(f0) = {f ∈ L1
+(0, l), f = f ∗0 ◦ σ, σ ∈ Σ}.

Let p andq be inL1
+(0, l) and consider the second-order differential equation

(1.4) (p−1(x)y′(x))′ + q(x)y(x) = 0, y(0) = 1, (p−1y′)(0) = 0.

1A solution of the equation is a functiony such thaty andy′ are absolutely
continuous and the equation is satisfied almost everywhere. In the first part of
this paper we are interested in finding the supremum and the infimum ofy(l)
when the couple(p, q) varies in the setC = C(f0)× C(g0), whereg0 is also a
member ofL∞+ (0, l). Consider

Problem 1. Determineinf y(l), (p, q) ∈ C.

Problem 2. Determinesup y(l), (p, q) ∈ C.

To solve these problems, we shall use a kind of calculus of variations which
does not work inC; this class is not convex. Following Essen [3] and [4], and

1The choice ofp−1 instead ofp is essential for the study of our problems.
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recalling thatC(f0) andC(g0) are weakly relatively compact inL1(0, l), we
introduce the setK = K(f0)×K(g) consisting of all weak limits of sequences
of C in [L1(0, l)]2. To simplify notations, we use the symbol≺ introduced by
Hardy, Littlewood and Polya [5]. We say thatf majoratesg, writteng ≺ f , if∫ x

0

g∗ dt ≤
∫ x

0

f ∗ dt, x ∈ [0, l],∫ l

0

g∗ dt =

∫ l

0

f ∗ dt.

We note that ifg ≺ f (f andg are inL∞+ (0, l)) then

ess supg ≤ ess supf,

ess inff ≤ ess infg.

The relationsg ≺ f andf ≺ g imply thatf ∼ g. In [7], it is shown that

K(f0) = {f ∈ L1
+(0, l), f ≺ f0},

andK(f0) is the convex hull ofC(f0). K(f0) is closed and weakly compact in
L1(0, l). More generally,K(f0) is weakly compact inLp(0, l) if f0 ∈ Lp

+(0, l),
1 ≤ p ≤ ∞. According to [1], C(f0) in the set of "∞-dimensional" extreme
points ofK(f0). That is if f ∈ K(f0) − C(f0), then for anym ≥ 1, one can
find f1, . . . , fm linearly independent inK(f0) andθ1, . . . , θm ∈ (0, 1) such that

m∑
i=1

θi = 1,
m∑

i=1

θifi = f.

The following result is given in [1].
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Proposition 1.1. Leth, g ∈ L1
+(0, l). Then the following are equivalent

(i) g ≺ f .

(ii) For all h ∈ L∞+ (0, l),∫ x

0

gh dt ≤
∫ x

0

f ∗h∗ dt,

∫ l

0

g dt =

∫ l

0

f dt.

(iii) For all h ∈ L∞+ (0, l),∫ x

0

g∗h∗ dt ≤
∫ x

0

f ∗h∗ dt,

∫ l

0

g dt =

∫ l

0

f dt.

(iv) We have ∫ l

0

F (g) dt =

∫ l

0

F (f) dt,

for all convex, nonnegative functionsF such thatF (0) = 0, F is Lipschitz.

As previously remarked we will consider the following problems

Problem 3. Determineinf y(l), (p, q) ∈ K.

Problem 4. Determinesup y(l), (p, q) ∈ K.

Similar problems may be considered for the differential equation

(1.5) (p−1(x)y′(x))′ − q(x)y(x) = 0, y(0) = 1, (p−1y′)(0) = 0.

Let then
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mailto:skaraa@squ.edu.om
http://jipam.vu.edu.au/


Rearrangements of the
Coefficients of Ordinary
Differential Equations

Samir Karaa

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 7 of 26

J. Ineq. Pure and Appl. Math. 5(4) Art. 90, 2004

http://jipam.vu.edu.au

Problem 5. Determineinf y(l), (p, q) ∈ K.

Problem 6. Determinesup y(l), (p, q) ∈ K.

Proposition 1.2. Lety be the solution of(1.4) [resp.(1.5)]. Then

inf y(l) ≤ cos(Al) ≤ sup y(l),

resp.
inf y(l) ≤ cosh(Al) ≤ sup y(l),

whereA = (||f0||L1||g0||L1)1/2.

These estimates hold since the functions

p ≡ l−1||f0||L1 and q ≡ l−1||g0||L1

are respectively members ofK(f0) andK(g0).
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2. Oscillation and Nonoscillation Criteria
To simplify this section, we assume thatp, p−1 andq are inL∞+ (0, l).

Lemma 2.1. If ∫ l

0

p(x) dt

∫ l

0

q(x) dt ≤ 1,

then a solution of(1.4) does not vanish in[0, l].

Proof. Let y0 be a solution of (1.4) vanishing in(0, l], and denote bya its small-
est zero. We have

(2.1) (p−1(x)y′0(x))′ + q(x)y0(x) = 0, (p−1y′0)(0) = 0, y0(a) = 0.

Multiplying (2.1) by y0, we then integrate by parts to obtain∫ a

0

p−1(y′)2 dx =

∫ a

0

qy2 dx ≤ y2
max

∫ a

0

q dx,

and then apply the inequality (y′ andp are linearly independent)

|ymax| ≤
∫ a

0

|y′| dx <

(∫ a

0

p dx

) 1
2
(∫ a

0

p−1(y′)2 dx

) 1
2

.

By substitution of the bound for|ymax| into the first inequality and cancelling the
term

∫ a

0
p−1(y′)2 dx, the conclusion follows (by contradiction) sincea ≤ l.

http://jipam.vu.edu.au/
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Lemma 2.2. If

(2.2) ‖p‖∞ ‖q‖∞ <
( π

2l

)2

,

then a solution of(1.4) does not vanish in[0, l].

Proof. Let y0 be as in the previous proof, so thatλ0 = 1 is the first eigenvalue
of the problem(

p−1(x)y′(x)
)′

+ λq(x)y(x) = 0, (p−1y′)(0) = 0, y(a) = 0.

According to a variational principle,

λ0 = inf
y(a)=0

∫ a

0
p−1(x)y′(x)2 dx∫ a

0
q(x)y(x)2 dx

≤ ‖p‖−1
∞ ‖q‖−1

∞ inf
y(a)=0

∫ a

0
y′(x)2 dx∫ a

0
y(x)2 dx

= ‖p‖−1
∞ ‖q‖−1

∞ π2(2a)−2.

Hence,

a2 ≥
(π

2

)2

‖p‖−1
∞ ‖q‖−1

∞ ,

which contradicts (2.2).

The proof shows that if‖p‖∞ ‖q‖∞ = π2/(2l)2, then a solution of (1.4) may
vanish only atx = l. It is not difficult to show that this case holds only whenp
andq are constants.

The following lemma gives sufficient conditions for oscillations.
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mailto:skaraa@squ.edu.om
http://jipam.vu.edu.au/


Rearrangements of the
Coefficients of Ordinary
Differential Equations

Samir Karaa

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 10 of 26

J. Ineq. Pure and Appl. Math. 5(4) Art. 90, 2004

http://jipam.vu.edu.au

Lemma 2.3.Assume thatp is nondecreasing,p−1 ∈ C1[0, l] andp(x) ≤ h−1 on
[0, l], whereh is a positive constant. There exists a numberH > 0 (depending
on h) such that ifq ≥ H a.e. on(0, l) then every solution of(1.4) changes its
sign on(0, l).

Proof. Let z(x) = (l− x)2(l + x)2. Multiplying both sides in (1.4) by z(x) and
integrating over(0, l), we obtain

(2.3)
∫ l

0

y(x)[(p−1z′)′(x) + q(x)z(x)] dx = 0.

As p is nondecreasing we have for allx ∈ (0, l)

(p−1z′)′(x) = (p−1)′(x)z′(x) + p−1(x)z′′(x) ≥ p−1(x)z′′(x).

Let ε be a positive number such thatz′′ is positive on[l − ε, l]. Suppose that
y(x) ≥ 0 on [0, l]. Then (2.3) implies that

(2.4)
∫ l−ε

0

y(x)[(p−1z′)′(x) + q(x)z(x)] dx ≤ 0.

Let
H > h max

[0,l]
(−z′′)(l − ε)−2(l + ε)−2.

Then,
(p−1z′)′(x) + q(x)z(x) ≥ hz′′(x) + Hz(x) > 0

for all x ∈ (0, l − ε), which contradicts (2.4).

http://jipam.vu.edu.au/
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Lemma 2.4. Any solution of(1.5) is positive and nondecreasing. Moreover, if
||p||L1||q||L1 < 1 then

y(l) ≤ (1− ||p||L1 ||q||L1)−1.

Proof. Let y be a solution of (1.5). We have

y′(x) = p(x)

∫ x

0

q(t)y(t) dt,

which implies thaty(x) ≥ 1 andy is nondecreasing. Therefore,

y′(x) ≤ y(l)p(x)

∫ x

0

q(t) dt.

Integrating both sides of the last inequality over(0, l), we get

y(l)− 1 ≤ y(l)

∫ l

0

p(t) dt

∫ l

0

q(t) dt.

Hence,
y(l) ≤ (1− ||p||L1 ||q||L1)−1.
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3. Characterization of the Extremal Couples
The existence of extremal couples will be discussed at the end of this section.
We suppose thatf0, g0 ∈ L∞+ (0, l) andf0 ≥ h whereh is a positive constant.

Theorem 3.1.Assume that all solutions of(1.4) are positive when(p, q) varies
in K(f0)×K(g0). Let (p0, q0) be an extremal couple for Problem3 andy0 the
corresponding solution in(1.4). Thenq0 = g∗0 and in the open set where∫ t

0

p0(s) ds >

∫ t

0

f ∗∗0 (s) ds,

we haveP ′(t) = 0 where

P (t) =
y′0

2(t)

p2
0(t)

(∫ l

t

p0(t)y0(t)
−2dt

)
− y′0(t)

(p0y0)(t)
, t ∈ [0, l].

If f0 is bounded below by a positive constant then the above set is empty and
p0 = f ∗∗0 , i.e., the infimum over the larger classK coincides with the infimum
over the smallest classC.

Theorem 3.2.Assume that all solutions of(1.4) are positive when(p, q) varies
in K(f0)×K(g0). Let (p0, q0) be an extremal couple for Problem4 andy0 the
corresponding solution in(1.4). Thenq0 = g∗∗0 and in the open set where∫ t

0

p0(s) ds <

∫ t

0

f ∗0 (s) ds,

we haveP ′(t) = 0 whereP is as above. Iff0 is far from zero then the above set
is empty andp0 = f ∗0 , i.e. the supremum over the larger classK coincides with
the supremum over the smallest classC.
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Let ai andbi, (i = 1, 2), be positive numbers such thata1 < a2 andb1 < b2.
Define the setsE andF by

E =

{
p ∈ L∞(0, l), a1 ≤ p ≤ a2,

∫ l

0

p dx = A

}
and

F =

{
q ∈ L∞(0, l), b1 ≤ p ≤ b2,

∫ l

0

q dx = B

}
,

whereA andB are such thata1l < A < a2l andb1l < B < b2l. Then we have

Corollary 3.3. If AB ≤ 1, theninf y(l) when(p, q) varies inE ×F is reached
by

p0(x) =

{
a1 if x ∈ (0, α),

a2 if x ∈ (α, l),

and

q0(x) =

{
b2 if x ∈ (0, β),

b1 if x ∈ (β, l),

whereα andβ are chosen so that
∫ l

0
p0 dx = A and

∫ l

0
q0 dx = B. The supre-

mum ofy(l) overE × F is reached bȳp = p∗0 and q̄ = q∗∗0 .

A counterexample. We show that Theorem3.2 does not hold if the solutions
of (1.4) are allowed to vanish. Setl = 2π, and letp0 ≡ 1 in (0, l) and

q0(x) =

{
0 if x ∈ (0, l0),

4 if x ∈ (l0, l),

http://jipam.vu.edu.au/
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wherel0 = 3π/2. Then it is easily verified that the solution in (1.4) with (p, q) =
(p0, q0) is

y0(x) =

{
1 if x ∈ (0, l0),

cos 4(x− l0) if x ∈ (l0, l).

Let p̄(x) ≡ q̄(x) ≡ 1 in (0, 2π). The corresponding solution in (1.4) is ȳ(x) =
cos x. We see that̄y(l) > y0(l) in spite of q̄ ≺ q0. The assumption in Theo-
rem3.1 is also necessary.

Proofs of Theorems3.1and3.2. Necessary conditions onp0. By the change of
variableu = −y′/(py), i.e.,

(3.1) y(x) = e−
∫ x
0 pu dt x ∈ [0, l],

equation (1.4) is changed into

(3.2) u′ − pu2 = q, u(0) = 0.

The solution of (3.2) is written

u(t) =

∫ t

0

q(s)

{
exp

∫ t

s

p(r)u(r) dr

}
ds.

In view of (3.1), Problem3 is equivalent to

maximising
∫ l

0

pu dt subject to (p, q) ∈ K.

http://jipam.vu.edu.au/
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Let p0 be an extremal function for the infimum problem andp an arbitrary mem-
ber inK(f0). Define

pδ = (1− δ)p0 + δp, δ ∈ [0, 1].

We note that this type of variation is not possible inC(f0). Let uδ satisfy

(3.3) u′δ − pδu
2
δ = q0, uδ(0) = 0.

Forming the difference of (3.3) and (3.3) with δ = 0, we have

u′δ − u′0 = pδ(uδ − u0)(uδ + u0) + δ(p− p0)u
2
0.

Therefore,

(uδ − u0)(t) = δ

∫ t

0

(p− p0)u
2
0

{
exp

∫ t

s

pδ(r)(uδ + u0)(r) dr

}
ds.

Writing pδuδ − p0u0 = pδ(uδ − u0) + (pδ − p0)u0 and integrating over(0, l),
we obtain∫ l

0

(pδu− p0u0)dt =

∫ l

0

pδ

(
δ

∫ t

0

(p− p0)u
2
0

{
exp

∫ t

s

pδ(uδ + u0) dr

}
ds

)
dt

+ δ

∫ l

0

(p− p0)u0 dt

= δ

∫ l

0

(p− p0)u
2
0

(∫ l

s

pδ

{
exp

∫ t

s

pδ(uδ + u0) dr

}
dt

)
ds

+ δ

∫ l

0

(p− p0)u0 dt.
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For Problem3 the left-hand side is nonpositive. Dividing byδ and lettingδ →
0+ brings

(3.4)
∫ l

0

(p− p0)(t)P (t) dt ≤ 0, for all p ∈ K(f0),

whereP is given in Theorem3.1. If p0 is an extremal coefficient for Problem4
then we find

(3.5)
∫ l

0

(p− p0)(t)P (t) dt ≥ 0, for all p ∈ K(f0).

Let us first discuss (3.4). By Ryff’s characterization, there existsσ ∈ Σ such
thatP = P ∗ ◦ σ. Substitutingp = p∗0 ◦ σ into (3.4) we see that

(3.6)
∫ l

0

P ∗p∗0 dt =

∫ l

0

Pp dt ≤
∫ l

0

Pp0 dt ≤
∫ l

0

P ∗p∗0 dt.

In the last step we used (1.3) which requires thatP is nonnegative. This will be
proved later. As a result, equalities hold everywhere in (3.6) and we have

(3.7)
∫ ∞

0

{∫
{P (t)>s}

p0(t) dt

}
ds =

∫ ∞

0

{∫
{P ∗(t)>s}

p∗0(t) dt

}
ds

for all s. As
|{P (t) > s}| = |{P ∗(t) > s}|,

we know that ∫
{P (t)>s}

p0(t) dt ≤
∫
{P ∗(t)>s}

p∗0(t) dt
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for all s. It follows from (3.7) that

(3.8)
∫
{P (t)>s}

p0(t) dt =

∫
{P ∗(t)>s}

p∗0(t) dt,

(3.9) ess inf
{P (t)>s}

p0(t) ≥ ess inf
{P (t)≤s}

p0(t).

for all s. From (3.9) one deduces that ifP is increasing on the intervalI, then
p0 must be nondecreasing on this interval if we neglect a set of measure zero.
Similarly, if P is decreasing on some interval,p0 will be nonincreasing. If these
relations hold, we say thatP andp0 arecodependent.

We now return to the functionP . We haveP (0) = 0 and a straightforward
calculation yields

P ′(t) = q0

(
1− 2

q0

p0

y0y
′
0

∫ l

t

p0(s)y
−2
0 (s) ds

)
that is nonnegative for allt ∈ (0, l). Choosingp = f ∗∗0 in the variational
equation (3.4) and integrating by parts gives

0 ≥
∫ l

0

(f ∗∗0 − p0)P (t) dt =

∫ l

0

(∫ t

0

(f ∗∗0 − p0) ds

)
d(−P (t)) ≥ 0.

We used the inequality∫ t

0

p0 ds ≥
∫ t

0

f ∗∗0 ds, t ∈ [0, l].
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Consequently,

P ′(t)

∫ t

0

(f ∗∗0 − p0) ds = 0, t ∈ [0, l],

and the second part of Theorem3.1 is proved.
For the supremum problem we use the same arguments. IfP = P ∗ ◦ σ,

whereσ ∈ Σ, we choosep = p∗∗0 ◦ σ in (3.5) to obtain

(3.10)
∫ l

0

P ∗p∗∗0 dt =

∫ l

0

Pp dt ≥
∫ l

0

Pp0 dt ≥
∫ l

0

P ∗p∗∗0 dt.

Thus, there is equality everywhere in (3.10) and

(3.11)
∫ ∞

0

{∫
{P (t)>s}

p0(t) dt

}
ds =

∫ ∞

0

{∫
{P ∗(t)>s}

p∗∗0 (t) dt

}
ds.

Since ∫
{P ∗∗(t)>s}

p∗∗(t) dt ≤
∫
{P (t)>s}

p0(t) dt,

for all s, (3.11) implies that∫
{P (t)>s}

p0(t) dt =

∫
{P ∗(t)>s}

p∗∗0 (t) dt,

ess inf
{P (t)>s}

p0(t) ≥ ess inf
{P (t)≤s}

p0(t),

for all s. In this caseP andp0 arecontra-dependent, i.e. if P is increasing (resp.
decreasing) on an intervalI, p0 will be nonincreasing (resp. nondecreasing) on
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I. Choosingp = f ∗0 in the variational equation (3.5) and arguing as above, we
prove the second part of Theorem3.2.

Necessary conditions onq0. Let q0 be an extremal function for Problem3. For
q ∈ K(g0), we define

qδ = (1− δ)q0 + δq, δ ∈ [0, 1].

Let uδ be the solution of

(3.12) u′ − p0u
2 = qδ, u(0) = 0.

Forming the difference of (3.12) and (3.12) with δ = 0, calculations similar
to those of the preceding case allow us to derive the necessary conditions of
optimality ∫ l

0

(q − q0)(t)Q(t) dt ≤ 0 for all q ∈ K(g0),

where

Q(t) = y2
0(t)

∫ l

t

p0(s)y
−2
0 (s) ds.

We remark thatQ(l) = 0 and

Q′(t) = 2y0y
′
0

∫ l

t

p0(s)y
−2
0 (s) ds− p0

is nonpositive on(0, l). For Problem4, q0 satisfies∫ l

0

(q − q0)(t)Q(t) dt ≥ 0 for all q ∈ K(g0).
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Reasoning as above, we deduce thatq0 andQ are codependent for the infimum
problem. The argument for characterizingp0 yieldsq0 = g∗0. For the supremum
problemq0 andQ are contra-dependent and we getq0 = g∗∗0 which completes
the proofs.

Existence.
Let m0 denote the infimum ofy(l) when(p, q) varies inK and(pn, qn) a min-
imizing sequence inK. Let {un} be an associated sequence of solutions in the
differential equation (3.2) so thatlimn→∞

∫ l

0
pnun dt = m0. Using weak∗ com-

pactness, we find that(p0, q0) ∈ K such thatpn → p andqn → q weakly in
L∞(0, l). From the expression ofun, we see that

un(t) ≤
∫ l

0

qn(t)e−
∫ l
0 pnun ds dt ≤ ||g0||L1 e−m0 .

It follows from (3.2) that the sequence{u′n} is uniformly bounded inL∞(0, l).
By Ascoli’s theorem, there exists a subsequence (we may assume that it is the
original sequence) such thatun → u0 uniformly in [0, l]. It is easy to check
thatu0 is the solution of (3.2) for (p, q) = (p0, q0). The proof of the supremum
problem is quite the same.
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4. Problem 6
Suppose thatf0, g0 ∈ L∞+ (0, l) andf0 ≥ 1 over(0, l). The existence of extremal
couples for Problems5 and6 may be proved as above. Let

P (t) =
y′0

2(t)

p2
0(t)

(∫ l

t

p0(s)y0(s)
−2 ds

)
− y′0(t)

(p0y0)(t)
,

Q(t) = y2
0(t)

∫ l

t

p0(s)y0(s)
−2 ds, t ∈ [0, l].

Theorem 4.1. Let (p0, q0) be the extremal couple for Problem6, and y0 an
associated solution in(1.5). In the open set where∫ t

0

p0 ds >

∫ t

0

f ∗∗0 ds

resp. ∫ t

0

q0 ds <

∫ t

0

g∗0 ds,

we haveP ′(t) = 0, resp.Q′(t) = 0.

Proof. By the change of variableu = y′/(py) equation (1.5) is changed into

u′ + pu2 = q, u(0) = 0, t ∈ [0, l].

We shall then study the equivalent problem

max

∫ l

0

p u dt, (p, q) ∈ K.
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Let (p0, q0) be the extremal couple for Problem6. Arguing as above, we find
thatp0 andq0 satisfy the conditions

(4.1)
∫ l

0

(p− p0)(t)P (t) dt ≥ 0 for all p ∈ K(f0),

(4.2)
∫ l

0

(q − q0)(t)Q(t) dt ≤ 0 for all q ∈ K(g0)n

whereP andQ are given above. Unlike the preceding case, it is difficult here
to know the sign ofP andQ. We shall then proceed as above: Lety1 be the
function defined by

y1(t) = y0(t)

∫ l

t

p0(s)y
−2
0 (s) ds, t ∈ [0, l].

y1 is a solution of the differential equation

(p−1
0 (x)y′(x))′ − q0(x)y(x) = 0, x ∈ (0, l),

buty1(l) = 0 andy′1(l) = −(y0/p0)
−1(l). Besides, it is easy to see thaty′1(t) <

0 for all t ∈ (0, l). Let

ξ =

(
y′0

y0p0

− y′1
y1p0

)/
2, η = −

(
y′0

y0p0

+
y′1

y1p0

)/
2.
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Then, we have

ξ′ = 2ξ η p0,

η′ = p0(ξ
2 + η2)− q0,(4.3)

ξ(0) =

(∫ l

0

p0(s)y
−2
0 (s) ds

)−1
/

2 = η(0).

The key of deciding the sign ofP andQ are the following relations

(4.4) Q(t) =
1

2
ξ(t)−1,

and

(4.5) P ′(t) =
1

2

q0

p0

(
1

ξ

)−1

.

In fact, we have

(4.6) ξQ = ξy0y1 =
1

2p0(t)
(y′0y1 − y0y

′
1) =

1

2
,

and

P (t) = 2
q0

p0

y0y
′
0

∫ l

t

p0(s)y
−2
0 (s) ds− q0

=
q0

p0

(
2y0y

′
0

∫ l

t

p0(s)y
−2
0 (s) ds− p0

)
=

q0

p0

Q′(t).
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Relation (4.6) implies thatξ is positive andlim ξ(t) = ∞, t → l−. From (4.3)
it follows that lim sup η(t) ≥ 0, t → l−. Assume now thatη changes its sign
on (0, l). Sinceη(0) > 0, there exists an interval[a, b] ⊂ [0, l) such that for
somec > 0, we have

η(t) ≤ η(a) < 0, t ∈ [a, a + c],

η(t) < 0, t ∈ [a, b), η(b) = 0.

Sinceη is assumed negative on(a, b), ξ will be decreasing on this interval. (4.4)
and (4.5) imply thatP andQ are both increasing on[a, b]. From (4.1) and (4.2)
we see thatp0 is nonincreasing andq0 is nondecreasing on this interval. As a
result, we have

0 ≥ η(t)− η(a)

=

∫ t

a

(p0ξ
2 − q0) +

∫ t

a

p0η
2

≥ (t− a)
(
p0(t)ξ

2(t)− q0(t) + η(a)2
)
,

t ∈ (a, a + c),

sinceess inf(0,l) p0(t) ≥ 1. Arguing as in [4], we arrive at the following con-
tradiction: η(b) ≤ η(a) < 0. Hence,η is nonnegative andξ is nondecreasing.
Takingp = f ∗∗0 in the variational equation (4.1), we obtain

0 ≤
∫ l

0

(f ∗∗0 − p0)P (t) dt =

∫ l

0

(∫ t

0

(f ∗∗0 − p0) ds

)
d(−P (t)) ≤ 0,
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and therefore

P ′(t)

∫ t

0

(f ∗∗0 − p0) ds = 0, t ∈ [0, l]

which proves the first part of Theorem4.1. To complete the proof, we choose
q = g∗0 in (4.2).

Remark 1. For Problem5, the arguments for deciding the sign ofη on (0, l)
break down and the problem requires the development of other arguments.
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