Journal of Inequalities in Pure and Applied Mathematics

REARRANGEMENTS OF THE COEFFICIENTS OF ORDINARY DIFFERENTIAL EQUATIONS

SAMIR KARAA
Department of Mathematics and Statistics
Sultan Qaboos University
P.O. Box 36, Al-khod 123

Muscat, Sultanate of Oman.
EMail: skaraa@squ.edu.om

Abstract

We establish extremal values of a solution y of a second-order initial value problem as the coefficients vary in a nonconvex set. These results extend earlier work by M . Essen in particular by allowing a coefficient in the second derivative expression.

2000 Mathematics Subject Classification: 26D15 Key words: Rearrangements, Nonconvex set, Extremal couples.

Contents

1 Introduction 3
2 Oscillation and Nonoscillation Criteria 8
3 Characterization of the Extremal Couples 12
4 Problem 6 21
References

Rearrangements of the Coefficients of Ordinary Differential Equations

Samir Karaa

Title Page
Contents
Go Back
Close
Quit
Page 2 of 26

[^0]
1. Introduction

Let $L_{+}^{1}(0, l)$ denote the set of all nonnegative functions from $L^{1}(0, l) . l$ is a positive number. Let $f \in L_{+}^{1}(0, l)$ and μ_{f} its distribution function

$$
\mu_{f}(t)=|\{x \in(0, l): f(x)>t\}| \quad \text { for } t \geq 0,
$$

where, here and below, $|I|$ is the measure of the set I. Let f^{*} denote the decreasing rearrangement of f,

$$
f^{*}(x)=\sup \left\{t>0: \mu_{f}(t)>x\right\} .
$$

It is known that f^{*} is nonnegative, right continuous and that [2]

$$
\begin{gather*}
\int_{0}^{t} f d s \leq \int_{0}^{t} f^{*} d s, \quad t \in[0, l] \tag{1.1}\\
\int_{0}^{l} f d s=\int_{0}^{l} f^{*} d s \tag{1.2}
\end{gather*}
$$

The increasing rearrangement of f is simply $f^{* *}$ defined by $f^{* *}(t)=f^{*}(l-t)$. A crucial property of rearrangements is that if f and g are nonnegative with $f \in L^{1}(0, l)$ and $g \in L^{\infty}(0,1)$ then

$$
\begin{equation*}
\int_{0}^{l} f^{* *} g^{*} d s \leq \int_{0}^{l} f g d s \leq \int_{0}^{l} f^{*} g^{*} d s . \tag{1.3}
\end{equation*}
$$

We will say that f and g are equimeasurable or equivalently that f is a rearrangement of g if they have the same distribution function. We will denote this

Rearrangements of the Coefficients of Ordinary Differential Equations

Samir Karaa

Title Page
Contents

Go Back
Close
Quit
Page 3 of 26

equivalence relation by $f \sim g$. Let f_{0} be a member of $L_{+}^{1}(0, l)$ and $C\left(f_{0}\right)$ its equivalence class for the relation \sim, i.e.,

$$
C\left(f_{0}\right)=\left\{f \in L_{+}^{1}(0, l), f^{*}=f_{0}^{*}\right\}
$$

A function $\sigma:[0, l] \rightarrow[0, l]$ is measure-preserving if, for each measurable set $I \subset[0, l], \sigma^{-1}(I)$ is measurable and $\left|\sigma^{-1}(I)\right|=|I|$. Let Σ be the class of such functions. According to Ryff [6], to each $f \in L_{+}^{1}(0, l)$ there corresponds $\sigma \in \Sigma$ such that $f=f^{*} \circ \sigma$. In particular, we have

$$
C\left(f_{0}\right)=\left\{f \in L_{+}^{1}(0, l), f=f_{0}^{*} \circ \sigma, \sigma \in \Sigma\right\} .
$$

Let p and q be in $L_{+}^{1}(0, l)$ and consider the second-order differential equation

$$
\begin{equation*}
\left(p^{-1}(x) y^{\prime}(x)\right)^{\prime}+q(x) y(x)=0, \quad y(0)=1, \quad\left(p^{-1} y^{\prime}\right)(0)=0 \tag{1.4}
\end{equation*}
$$

${ }^{1}$ A solution of the equation is a function y such that y and y^{\prime} are absolutely continuous and the equation is satisfied almost everywhere. In the first part of this paper we are interested in finding the supremum and the infimum of $y(l)$ when the couple (p, q) varies in the set $C=C\left(f_{0}\right) \times C\left(g_{0}\right)$, where g_{0} is also a member of $L_{+}^{\infty}(0, l)$. Consider
Problem 1. Determine inf $y(l),(p, q) \in C$.
Problem 2. Determine sup $y(l),(p, q) \in C$.
To solve these problems, we shall use a kind of calculus of variations which does not work in C; this class is not convex. Following Essen [3] and [4], and

[^1]recalling that $C\left(f_{0}\right)$ and $C\left(g_{0}\right)$ are weakly relatively compact in $L^{1}(0, l)$, we introduce the set $K=K\left(f_{0}\right) \times K(g)$ consisting of all weak limits of sequences of C in $\left[L^{1}(0, l)\right]^{2}$. To simplify notations, we use the symbol \prec introduced by Hardy, Littlewood and Polya [5]. We say that f majorates g, written $g \prec f$, if
\[

$$
\begin{gathered}
\int_{0}^{x} g^{*} d t \leq \int_{0}^{x} f^{*} d t, \quad x \in[0, l] \\
\int_{0}^{l} g^{*} d t=\int_{0}^{l} f^{*} d t
\end{gathered}
$$
\]

We note that if $g \prec f\left(f\right.$ and g are in $\left.L_{+}^{\infty}(0, l)\right)$ then

$$
\begin{gathered}
\text { ess sup } g \leq \text { ess sup } f \\
\text { ess inf } f \leq \text { ess inf } g
\end{gathered}
$$

The relations $g \prec f$ and $f \prec g$ imply that $f \sim g$. In [7], it is shown that

$$
K\left(f_{0}\right)=\left\{f \in L_{+}^{1}(0, l), f \prec f_{0}\right\}
$$

and $K\left(f_{0}\right)$ is the convex hull of $C\left(f_{0}\right) . K\left(f_{0}\right)$ is closed and weakly compact in $L^{1}(0, l)$. More generally, $K\left(f_{0}\right)$ is weakly compact in $L^{p}(0, l)$ if $f_{0} \in L_{+}^{p}(0, l)$, $1 \leq p \leq \infty$. According to [1], $C\left(f_{0}\right)$ in the set of " ∞-dimensional" extreme points of $K\left(f_{0}\right)$. That is if $f \in K\left(f_{0}\right)-C\left(f_{0}\right)$, then for any $m \geq 1$, one can find f_{1}, \ldots, f_{m} linearly independent in $K\left(f_{0}\right)$ and $\theta_{1}, \ldots, \theta_{m} \in(0,1)$ such that

$$
\sum_{i=1}^{m} \theta_{i}=1, \quad \sum_{i=1}^{m} \theta_{i} f_{i}=f
$$

The following result is given in [1].

Proposition 1.1. Let $h, g \in L_{+}^{1}(0, l)$. Then the following are equivalent
(i) $g \prec f$.
(ii) For all $h \in L_{+}^{\infty}(0, l)$,

$$
\int_{0}^{x} g h d t \leq \int_{0}^{x} f^{*} h^{*} d t, \quad \int_{0}^{l} g d t=\int_{0}^{l} f d t
$$

(iii) For all $h \in L_{+}^{\infty}(0, l)$,

$$
\int_{0}^{x} g^{*} h^{*} d t \leq \int_{0}^{x} f^{*} h^{*} d t, \quad \int_{0}^{l} g d t=\int_{0}^{l} f d t
$$

(iv) We have

$$
\int_{0}^{l} F(g) d t=\int_{0}^{l} F(f) d t
$$

for all convex, nonnegative functions F such that $F(0)=0, F$ is Lipschitz.
As previously remarked we will consider the following problems
Problem 3. Determine $\inf y(l),(p, q) \in K$.
Problem 4. Determine sup $y(l),(p, q) \in K$.
Similar problems may be considered for the differential equation

$$
\begin{equation*}
\left(p^{-1}(x) y^{\prime}(x)\right)^{\prime}-q(x) y(x)=0, \quad y(0)=1, \quad\left(p^{-1} y^{\prime}\right)(0)=0 \tag{1.5}
\end{equation*}
$$

Let then

Problem 5. Determine $\inf y(l),(p, q) \in K$.
Problem 6. Determine $\sup y(l),(p, q) \in K$.
Proposition 1.2. Let y be the solution of (1.4) [resp. (1.5)]. Then

$$
\inf y(l) \leq \cos (A l) \leq \sup y(l)
$$

resp.

$$
\inf y(l) \leq \cosh (A l) \leq \sup y(l)
$$

where $A=\left(\left\|f_{0}\right\|_{L^{1}}\left\|g_{0}\right\|_{L^{1}}\right)^{1 / 2}$.
These estimates hold since the functions

$$
p \equiv l^{-1}\left\|f_{0}\right\|_{L^{1}} \quad \text { and } \quad q \equiv l^{-1}\left\|g_{0}\right\|_{L^{1}}
$$

are respectively members of $K\left(f_{0}\right)$ and $K\left(g_{0}\right)$.

Rearrangements of the Coefficients of Ordinary Differential Equations

Samir Karaa

Title Page
Contents

Go Back
Close
Quit
Page 7 of 26
J. Ineq. Pure and Appl. Math. 5(4) Art. 90, 2004 http://jipam.vu.edu.au

2. Oscillation and Nonoscillation Criteria

To simplify this section, we assume that p, p^{-1} and q are in $L_{+}^{\infty}(0, l)$.
Lemma 2.1. If

$$
\int_{0}^{l} p(x) d t \int_{0}^{l} q(x) d t \leq 1
$$

then a solution of (1.4) does not vanish in $[0, l]$.
Proof. Let y_{0} be a solution of (1.4) vanishing in ($\left.0, l\right]$, and denote by a its smallest zero. We have

$$
\begin{equation*}
\left(p^{-1}(x) y_{0}^{\prime}(x)\right)^{\prime}+q(x) y_{0}(x)=0, \quad\left(p^{-1} y_{0}^{\prime}\right)(0)=0, \quad y_{0}(a)=0 \tag{2.1}
\end{equation*}
$$

Multiplying (2.1) by y_{0}, we then integrate by parts to obtain

$$
\int_{0}^{a} p^{-1}\left(y^{\prime}\right)^{2} d x=\int_{0}^{a} q y^{2} d x \leq y_{\max }^{2} \int_{0}^{a} q d x
$$

and then apply the inequality (y^{\prime} and p are linearly independent)

$$
\left|y_{\max }\right| \leq \int_{0}^{a}\left|y^{\prime}\right| d x<\left(\int_{0}^{a} p d x\right)^{\frac{1}{2}}\left(\int_{0}^{a} p^{-1}\left(y^{\prime}\right)^{2} d x\right)^{\frac{1}{2}}
$$

By substitution of the bound for $\left|y_{\max }\right|$ into the first inequality and cancelling the term $\int_{0}^{a} p^{-1}\left(y^{\prime}\right)^{2} d x$, the conclusion follows (by contradiction) since $a \leq l$.

Rearrangements of the Coefficients of Ordinary Differential Equations

Samir Karaa

Title Page
Contents

Go Back
Close
Quit

Page 8 of 26

$$
\begin{equation*}
\|p\|_{\infty}\|q\|_{\infty}<\left(\frac{\pi}{2 l}\right)^{2} \tag{2.2}
\end{equation*}
$$

then a solution of (1.4) does not vanish in $[0, l]$.
Proof. Let y_{0} be as in the previous proof, so that $\lambda_{0}=1$ is the first eigenvalue of the problem

$$
\left(p^{-1}(x) y^{\prime}(x)\right)^{\prime}+\lambda q(x) y(x)=0, \quad\left(p^{-1} y^{\prime}\right)(0)=0, \quad y(a)=0
$$

According to a variational principle,

$$
\begin{aligned}
\lambda_{0}=\inf _{y(a)=0} \frac{\int_{0}^{a} p^{-1}(x) y^{\prime}(x)^{2} d x}{\int_{0}^{a} q(x) y(x)^{2} d x} & \leq\|p\|_{\infty}^{-1}\|q\|_{\infty}^{-1} \inf _{y(a)=0} \frac{\int_{0}^{a} y^{\prime}(x)^{2} d x}{\int_{0}^{a} y(x)^{2} d x} \\
& =\|p\|_{\infty}^{-1}\|q\|_{\infty}^{-1} \pi^{2}(2 a)^{-2}
\end{aligned}
$$

Hence,

$$
a^{2} \geq\left(\frac{\pi}{2}\right)^{2}\|p\|_{\infty}^{-1}\|q\|_{\infty}^{-1}
$$

which contradicts (2.2).
The proof shows that if $\|p\|_{\infty}\|q\|_{\infty}=\pi^{2} /(2 l)^{2}$, then a solution of (1.4) may vanish only at $x=l$. It is not difficult to show that this case holds only when p and q are constants.

Rearrangements of the Coefficients of Ordinary Differential Equations

Samir Karaa

Title Page
Contents

Go Back
Close
Quit
Page 9 of 26
The following lemma gives sufficient conditions for oscillations.

Lemma 2.3. Assume that p is nondecreasing, $p^{-1} \in C^{1}[0, l]$ and $p(x) \leq h^{-1}$ on $[0, l]$, where h is a positive constant. There exists a number $H>0$ (depending on h) such that if $q \geq H$ a.e. on $(0, l)$ then every solution of (1.4) changes its sign on $(0, l)$.

Proof. Let $z(x)=(l-x)^{2}(l+x)^{2}$. Multiplying both sides in (1.4) by $z(x)$ and integrating over $(0, l)$, we obtain

$$
\begin{equation*}
\int_{0}^{l} y(x)\left[\left(p^{-1} z^{\prime}\right)^{\prime}(x)+q(x) z(x)\right] d x=0 \tag{2.3}
\end{equation*}
$$

As p is nondecreasing we have for all $x \in(0, l)$

$$
\left(p^{-1} z^{\prime}\right)^{\prime}(x)=\left(p^{-1}\right)^{\prime}(x) z^{\prime}(x)+p^{-1}(x) z^{\prime \prime}(x) \geq p^{-1}(x) z^{\prime \prime}(x)
$$

Let ε be a positive number such that $z^{\prime \prime}$ is positive on $[l-\varepsilon, l]$. Suppose that $y(x) \geq 0$ on $[0, l]$. Then (2.3) implies that

$$
\begin{equation*}
\int_{0}^{l-\varepsilon} y(x)\left[\left(p^{-1} z^{\prime}\right)^{\prime}(x)+q(x) z(x)\right] d x \leq 0 \tag{2.4}
\end{equation*}
$$

Let

$$
H>h \max _{[0, l]}\left(-z^{\prime \prime}\right)(l-\varepsilon)^{-2}(l+\varepsilon)^{-2}
$$

Then,

$$
\left(p^{-1} z^{\prime}\right)^{\prime}(x)+q(x) z(x) \geq h z^{\prime \prime}(x)+H z(x)>0
$$

Rearrangements of the Coefficients of Ordinary Differential Equations

Samir Karaa

Title Page
Contents

Go Back
Close
Quit
Page 10 of 26
for all $x \in(0, l-\varepsilon)$, which contradicts (2.4).

Lemma 2.4. Any solution of (1.5) is positive and nondecreasing. Moreover, if $\|p\|_{L^{1}}\|q\|_{L^{1}}<1$ then

$$
y(l) \leq\left(1-\|p\|_{L^{1}}\|q\|_{L^{1}}\right)^{-1}
$$

Proof. Let y be a solution of (1.5). We have

$$
y^{\prime}(x)=p(x) \int_{0}^{x} q(t) y(t) d t
$$

which implies that $y(x) \geq 1$ and y is nondecreasing. Therefore,

$$
y^{\prime}(x) \leq y(l) p(x) \int_{0}^{x} q(t) d t
$$

Integrating both sides of the last inequality over $(0, l)$, we get

$$
y(l)-1 \leq y(l) \int_{0}^{l} p(t) d t \int_{0}^{l} q(t) d t
$$

Hence,

$$
y(l) \leq\left(1-\|p\|_{L^{1}}\|q\|_{L^{1}}\right)^{-1}
$$

Rearrangements of the Coefficients of Ordinary Differential Equations

Samir Karaa

Title Page
Contents

Go Back
Close
Quit
Page 11 of 26

3. Characterization of the Extremal Couples

The existence of extremal couples will be discussed at the end of this section. We suppose that $f_{0}, g_{0} \in L_{+}^{\infty}(0, l)$ and $f_{0} \geq h$ where h is a positive constant.

Theorem 3.1. Assume that all solutions of (1.4) are positive when (p, q) varies in $K\left(f_{0}\right) \times K\left(g_{0}\right)$. Let $\left(p_{0}, q_{0}\right)$ be an extremal couple for Problem 3 and y_{0} the corresponding solution in (1.4). Then $q_{0}=g_{0}^{*}$ and in the open set where

$$
\int_{0}^{t} p_{0}(s) d s>\int_{0}^{t} f_{0}^{* *}(s) d s
$$

we have $P^{\prime}(t)=0$ where

$$
P(t)=\frac{y_{0}^{\prime 2}(t)}{p_{0}^{2}(t)}\left(\int_{t}^{l} p_{0}(t) y_{0}(t)^{-2} d t\right)-\frac{y_{0}^{\prime}(t)}{\left(p_{0} y_{0}\right)(t)}, \quad t \in[0, l] .
$$

If f_{0} is bounded below by a positive constant then the above set is empty and $p_{0}=f_{0}^{* *}$, i.e., the infimum over the larger class K coincides with the infimum over the smallest class C.

Theorem 3.2. Assume that all solutions of (1.4) are positive when (p, q) varies in $K\left(f_{0}\right) \times K\left(g_{0}\right)$. Let $\left(p_{0}, q_{0}\right)$ be an extremal couple for Problem 4 and y_{0} the corresponding solution in (1.4). Then $q_{0}=g_{0}^{* *}$ and in the open set where

$$
\int_{0}^{t} p_{0}(s) d s<\int_{0}^{t} f_{0}^{*}(s) d s
$$

we have $P^{\prime}(t)=0$ where P is as above. If f_{0} is far from zero then the above set

Rearrangements of the Coefficients of Ordinary Differential Equations

Samir Karaa

Title Page
Contents

$\mathbf{4}$	
Go Back	
Close	
Quit	

Page 12 of 26

Let a_{i} and $b_{i},(i=1,2)$, be positive numbers such that $a_{1}<a_{2}$ and $b_{1}<b_{2}$. Define the sets E and F by

$$
E=\left\{p \in L^{\infty}(0, l), a_{1} \leq p \leq a_{2}, \int_{0}^{l} p d x=A\right\}
$$

and

$$
F=\left\{q \in L^{\infty}(0, l), b_{1} \leq p \leq b_{2}, \int_{0}^{l} q d x=B\right\}
$$

where A and B are such that $a_{1} l<A<a_{2} l$ and $b_{1} l<B<b_{2} l$. Then we have
Corollary 3.3. If $A B \leq 1$, then $\inf y(l)$ when (p, q) varies in $E \times F$ is reached by

$$
p_{0}(x)= \begin{cases}a_{1} & \text { if } x \in(0, \alpha), \\ a_{2} & \text { if } x \in(\alpha, l),\end{cases}
$$

and

$$
q_{0}(x)= \begin{cases}b_{2} & \text { if } x \in(0, \beta) \\ b_{1} & \text { if } x \in(\beta, l)\end{cases}
$$

where α and β are chosen so that $\int_{0}^{l} p_{0} d x=A$ and $\int_{0}^{l} q_{0} d x=B$. The supremum of $y(l)$ over $E \times F$ is reached by $\bar{p}=p_{0}^{*}$ and $\bar{q}=q_{0}^{* *}$.
A counterexample. We show that Theorem 3.2 does not hold if the solutions of (1.4) are allowed to vanish. Set $l=2 \pi$, and let $p_{0} \equiv 1$ in $(0, l)$ and

$$
q_{0}(x)= \begin{cases}0 & \text { if } x \in\left(0, l_{0}\right) \\ 4 & \text { if } x \in\left(l_{0}, l\right)\end{cases}
$$

Rearrangements of the Coefficients of Ordinary Differential Equations

Samir Karaa

Title Page
Contents

Go Back
Close
Quit
Page 13 of 26
J. Ineq. Pure and Appl. Math. 5(4) Art. 90, 2004 http://jipam.vu.edu.au
where $l_{0}=3 \pi / 2$. Then it is easily verified that the solution in (1.4) with $(p, q)=$ $\left(p_{0}, q_{0}\right)$ is

$$
y_{0}(x)= \begin{cases}1 & \text { if } x \in\left(0, l_{0}\right) \\ \cos 4\left(x-l_{0}\right) & \text { if } x \in\left(l_{0}, l\right)\end{cases}
$$

Let $\bar{p}(x) \equiv \bar{q}(x) \equiv 1$ in $(0,2 \pi)$. The corresponding solution in (1.4) is $\bar{y}(x)=$ $\cos x$. We see that $\bar{y}(l)>y_{0}(l)$ in spite of $\bar{q} \prec q_{0}$. The assumption in Theorem 3.1 is also necessary.

Proofs of Theorems 3.1 and 3.2. Necessary conditions on p_{0}. By the change of variable $u=-y^{\prime} /(p y)$, i.e.,

$$
\begin{equation*}
y(x)=e^{-\int_{0}^{x} p u d t} \quad x \in[0, l] \tag{3.1}
\end{equation*}
$$

equation (1.4) is changed into

$$
\begin{equation*}
u^{\prime}-p u^{2}=q, \quad u(0)=0 \tag{3.2}
\end{equation*}
$$

The solution of (3.2) is written

$$
u(t)=\int_{0}^{t} q(s)\left\{\exp \int_{s}^{t} p(r) u(r) d r\right\} d s
$$

In view of (3.1), Problem 3 is equivalent to

$$
\text { maximising } \int_{0}^{l} p u d t \quad \text { subject to } \quad(p, q) \in K .
$$

Rearrangements of the Coefficients of Ordinary Differential Equations

Samir Karaa

Title Page
Contents

Go Back
Close
Quit
Page 14 of 26
J. Ineq. Pure and Appl. Math. 5(4) Art. 90, 2004 http://jipam.vu.edu.au

Let p_{0} be an extremal function for the infimum problem and p an arbitrary member in $K\left(f_{0}\right)$. Define

$$
p_{\delta}=(1-\delta) p_{0}+\delta p, \quad \delta \in[0,1]
$$

We note that this type of variation is not possible in $C\left(f_{0}\right)$. Let u_{δ} satisfy

$$
\begin{equation*}
u_{\delta}^{\prime}-p_{\delta} u_{\delta}^{2}=q_{0}, \quad u_{\delta}(0)=0 \tag{3.3}
\end{equation*}
$$

Forming the difference of (3.3) and (3.3) with $\delta=0$, we have

$$
u_{\delta}^{\prime}-u_{0}^{\prime}=p_{\delta}\left(u_{\delta}-u_{0}\right)\left(u_{\delta}+u_{0}\right)+\delta\left(p-p_{0}\right) u_{0}^{2}
$$

Therefore,

$$
\left(u_{\delta}-u_{0}\right)(t)=\delta \int_{0}^{t}\left(p-p_{0}\right) u_{0}^{2}\left\{\exp \int_{s}^{t} p_{\delta}(r)\left(u_{\delta}+u_{0}\right)(r) d r\right\} d s
$$

Writing $p_{\delta} u_{\delta}-p_{0} u_{0}=p_{\delta}\left(u_{\delta}-u_{0}\right)+\left(p_{\delta}-p_{0}\right) u_{0}$ and integrating over $(0, l)$, we obtain

$$
\begin{aligned}
& \int_{0}^{l}\left(p_{\delta} u-p_{0} u_{0}\right) d t=\int_{0}^{l} p_{\delta}\left(\delta \int_{0}^{t}\left(p-p_{0}\right) u_{0}^{2}\left\{\exp \int_{s}^{t} p_{\delta}\left(u_{\delta}+u_{0}\right) d r\right\} d s\right) d t \\
&+\delta \int_{0}^{l}\left(p-p_{0}\right) u_{0} d t \\
&=\delta \int_{0}^{l}\left(p-p_{0}\right) u_{0}^{2}\left(\int_{s}^{l} p_{\delta}\left\{\exp \int_{s}^{t} p_{\delta}\left(u_{\delta}+u_{0}\right) d r\right\} d t\right) d s \\
&+\delta \int_{0}^{l}\left(p-p_{0}\right) u_{0} d t
\end{aligned}
$$

Rearrangements of the Coefficients of Ordinary Differential Equations

Samir Karaa

Title Page
Contents

Go Back
Close
Quit
Page 15 of 26
J. Ineq. Pure and Appl. Math. 5(4) Art. 90, 2004 http://jipam.vu.edu.au

For Problem 3 the left-hand side is nonpositive. Dividing by δ and letting $\delta \rightarrow$ 0^{+}brings

$$
\begin{equation*}
\int_{0}^{l}\left(p-p_{0}\right)(t) P(t) d t \leq 0, \quad \text { for all } p \in K\left(f_{0}\right) \tag{3.4}
\end{equation*}
$$

where P is given in Theorem 3.1. If p_{0} is an extremal coefficient for Problem 4 then we find

$$
\begin{equation*}
\int_{0}^{l}\left(p-p_{0}\right)(t) P(t) d t \geq 0, \quad \text { for all } p \in K\left(f_{0}\right) \tag{3.5}
\end{equation*}
$$

Let us first discuss (3.4). By Ryff's characterization, there exists $\sigma \in \Sigma$ such that $P=P^{*} \circ \sigma$. Substituting $p=p_{0}^{*} \circ \sigma$ into (3.4) we see that

$$
\begin{equation*}
\int_{0}^{l} P^{*} p_{0}^{*} d t=\int_{0}^{l} P p d t \leq \int_{0}^{l} P p_{0} d t \leq \int_{0}^{l} P^{*} p_{0}^{*} d t \tag{3.6}
\end{equation*}
$$

In the last step we used (1.3) which requires that P is nonnegative. This will be proved later. As a result, equalities hold everywhere in (3.6) and we have

$$
\begin{equation*}
\int_{0}^{\infty}\left\{\int_{\{P(t)>s\}} p_{0}(t) d t\right\} d s=\int_{0}^{\infty}\left\{\int_{\left\{P^{*}(t)>s\right\}} p_{0}^{*}(t) d t\right\} d s \tag{3.7}
\end{equation*}
$$

for all s. As

$$
|\{P(t)>s\}|=\left|\left\{P^{*}(t)>s\right\}\right|
$$

we know that

$$
\int_{\{P(t)>s\}} p_{0}(t) d t \leq \int_{\left\{P^{*}(t)>s\right\}} p_{0}^{*}(t) d t
$$

$$
\begin{equation*}
\int_{\{P(t)>s\}} p_{0}(t) d t=\int_{\left\{P^{*}(t)>s\right\}} p_{0}^{*}(t) d t \tag{3.8}
\end{equation*}
$$

$$
\begin{equation*}
\text { ess } \inf _{\{P(t)>s\}} p_{0}(t) \geq \text { ess } \inf _{\{P(t) \leq s\}} p_{0}(t) \tag{3.9}
\end{equation*}
$$

for all s. From (3.9) one deduces that if P is increasing on the interval I, then relations hold, we say that P and p_{0} are codependent. calculation yields equation (3.4) and integrating by parts gives

We used the inequality
p_{0} must be nondecreasing on this interval if we neglect a set of measure zero. Similarly, if P is decreasing on some interval, p_{0} will be nonincreasing. If these

We now return to the function P. We have $P(0)=0$ and a straightforward

$$
P^{\prime}(t)=q_{0}\left(1-2 \frac{q_{0}}{p_{0}} y_{0} y_{0}^{\prime} \int_{t}^{l} p_{0}(s) y_{0}^{-2}(s) d s\right)
$$

that is nonnegative for all $t \in(0, l)$. Choosing $p=f_{0}^{* *}$ in the variational

$$
0 \geq \int_{0}^{l}\left(f_{0}^{* *}-p_{0}\right) P(t) d t=\int_{0}^{l}\left(\int_{0}^{t}\left(f_{0}^{* *}-p_{0}\right) d s\right) d(-P(t)) \geq 0
$$

Rearrangements of the Coefficients of Ordinary Differential Equations

Samir Karaa

Title Page
Contents

Go Back
Close
Quit

Page 17 of 26

$$
\int_{0}^{t} p_{0} d s \geq \int_{0}^{t} f_{0}^{* *} d s, \quad t \in[0, l]
$$

J. Ineq. Pure and Appl. Math. 5(4) Art. 90, 2004 http://jipam.vu.edu.au

Consequently,

$$
P^{\prime}(t) \int_{0}^{t}\left(f_{0}^{* *}-p_{0}\right) d s=0, \quad t \in[0, l]
$$

and the second part of Theorem 3.1 is proved.
For the supremum problem we use the same arguments. If $P=P^{*} \circ \sigma$, where $\sigma \in \Sigma$, we choose $p=p_{0}^{* *} \circ \sigma$ in (3.5) to obtain

$$
\begin{equation*}
\int_{0}^{l} P^{*} p_{0}^{* *} d t=\int_{0}^{l} P p d t \geq \int_{0}^{l} P p_{0} d t \geq \int_{0}^{l} P^{*} p_{0}^{* *} d t \tag{3.10}
\end{equation*}
$$

Thus, there is equality everywhere in (3.10) and

$$
\begin{equation*}
\int_{0}^{\infty}\left\{\int_{\{P(t)>s\}} p_{0}(t) d t\right\} d s=\int_{0}^{\infty}\left\{\int_{\left\{P^{*}(t)>s\right\}} p_{0}^{* *}(t) d t\right\} d s \tag{3.11}
\end{equation*}
$$

Since

$$
\int_{\left\{P^{* *}(t)>s\right\}} p^{* *}(t) d t \leq \int_{\{P(t)>s\}} p_{0}(t) d t
$$

for all s, (3.11) implies that

$$
\begin{aligned}
& \int_{\{P(t)>s\}} p_{0}(t) d t=\int_{\left\{P^{*}(t)>s\right\}} p_{0}^{* *}(t) d t \\
& \text { ess } \inf _{\{P(t)>s\}} p_{0}(t) \geq \text { ess } \inf _{\{P(t) \leq s\}} p_{0}(t),
\end{aligned}
$$

for all s. In this case P and p_{0} are contra-dependent, i.e. if P is increasing (resp. decreasing) on an interval I, p_{0} will be nonincreasing (resp. nondecreasing) on
I. Choosing $p=f_{0}^{*}$ in the variational equation (3.5) and arguing as above, we prove the second part of Theorem 3.2.
Necessary conditions on q_{0}. Let q_{0} be an extremal function for Problem 3. For $q \in K\left(g_{0}\right)$, we define

$$
q_{\delta}=(1-\delta) q_{0}+\delta q, \quad \delta \in[0,1]
$$

Let u_{δ} be the solution of

$$
\begin{equation*}
u^{\prime}-p_{0} u^{2}=q_{\delta}, \quad u(0)=0 \tag{3.12}
\end{equation*}
$$

Forming the difference of (3.12) and (3.12) with $\delta=0$, calculations similar to those of the preceding case allow us to derive the necessary conditions of optimality

$$
\int_{0}^{l}\left(q-q_{0}\right)(t) Q(t) d t \leq 0 \quad \text { for all } q \in K\left(g_{0}\right)
$$

where

$$
Q(t)=y_{0}^{2}(t) \int_{t}^{l} p_{0}(s) y_{0}^{-2}(s) d s
$$

We remark that $Q(l)=0$ and

$$
Q^{\prime}(t)=2 y_{0} y_{0}^{\prime} \int_{t}^{l} p_{0}(s) y_{0}^{-2}(s) d s-p_{0}
$$

is nonpositive on $(0, l)$. For Problem 4, q_{0} satisfies

$$
\int_{0}^{l}\left(q-q_{0}\right)(t) Q(t) d t \geq 0 \quad \text { for all } q \in K\left(g_{0}\right)
$$

Rearrangements of the Coefficients of Ordinary Differential Equations

Samir Karaa

Title Page
Contents

Go Back
Close
Quit
Page 19 of 26
J. Ineq. Pure and Appl. Math. 5(4) Art. 90, 2004 http://jipam.vu.edu.au

Reasoning as above, we deduce that q_{0} and Q are codependent for the infimum problem. The argument for characterizing p_{0} yields $q_{0}=g_{0}^{*}$. For the supremum problem q_{0} and Q are contra-dependent and we get $q_{0}=g_{0}^{* *}$ which completes the proofs.

Existence.

Let m_{0} denote the infimum of $y(l)$ when (p, q) varies in K and $\left(p_{n}, q_{n}\right)$ a minimizing sequence in K. Let $\left\{u_{n}\right\}$ be an associated sequence of solutions in the differential equation (3.2) so that $\lim _{n \rightarrow \infty} \int_{0}^{l} p_{n} u_{n} d t=m_{0}$. Using weak ${ }^{*}$ compactness, we find that $\left(p_{0}, q_{0}\right) \in K$ such that $p_{n} \rightarrow p$ and $q_{n} \rightarrow q$ weakly in $L^{\infty}(0, l)$. From the expression of u_{n}, we see that

$$
u_{n}(t) \leq \int_{0}^{l} q_{n}(t) e^{-\int_{0}^{l} p_{n} u_{n} d s} d t \leq\left\|g_{0}\right\|_{L^{1}} e^{-m_{0}}
$$

It follows from (3.2) that the sequence $\left\{u_{n}^{\prime}\right\}$ is uniformly bounded in $L^{\infty}(0, l)$. By Ascoli's theorem, there exists a subsequence (we may assume that it is the original sequence) such that $u_{n} \rightarrow u_{0}$ uniformly in $[0, l]$. It is easy to check that u_{0} is the solution of (3.2) for $(p, q)=\left(p_{0}, q_{0}\right)$. The proof of the supremum problem is quite the same.

Rearrangements of the Coefficients of Ordinary Differential Equations

Samir Karaa

Title Page
Contents

44	-
4	-
Go Back	
Close	
Quit	

Page 20 of 26

4. Problem 6

Suppose that $f_{0}, g_{0} \in L_{+}^{\infty}(0, l)$ and $f_{0} \geq 1$ over $(0, l)$. The existence of extremal couples for Problems 5 and 6 may be proved as above. Let

$$
\begin{gathered}
P(t)=\frac{y_{0}^{\prime 2}(t)}{p_{0}^{2}(t)}\left(\int_{t}^{l} p_{0}(s) y_{0}(s)^{-2} d s\right)-\frac{y_{0}^{\prime}(t)}{\left(p_{0} y_{0}\right)(t)} \\
Q(t)=y_{0}^{2}(t) \int_{t}^{l} p_{0}(s) y_{0}(s)^{-2} d s, \quad t \in[0, l]
\end{gathered}
$$

Theorem 4.1. Let $\left(p_{0}, q_{0}\right)$ be the extremal couple for Problem 6, and y_{0} an associated solution in (1.5). In the open set where

$$
\int_{0}^{t} p_{0} d s>\int_{0}^{t} f_{0}^{* *} d s
$$

resp.

$$
\int_{0}^{t} q_{0} d s<\int_{0}^{t} g_{0}^{*} d s
$$

we have $P^{\prime}(t)=0$, resp. $Q^{\prime}(t)=0$.
Proof. By the change of variable $u=y^{\prime} /(p y)$ equation (1.5) is changed into

$$
u^{\prime}+p u^{2}=q, \quad u(0)=0, \quad t \in[0, l] .
$$

We shall then study the equivalent problem

Rearrangements of the Coefficients of Ordinary Differential Equations

Samir Karaa

Title Page
Contents

Go Back
Close
Quit

Page 21 of 26

$$
\max \int_{0}^{l} p u d t, \quad(p, q) \in K
$$

Let $\left(p_{0}, q_{0}\right)$ be the extremal couple for Problem 6. Arguing as above, we find that p_{0} and q_{0} satisfy the conditions

$$
\begin{equation*}
\int_{0}^{l}\left(p-p_{0}\right)(t) P(t) d t \geq 0 \quad \text { for all } p \in K\left(f_{0}\right) \tag{4.1}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{l}\left(q-q_{0}\right)(t) Q(t) d t \leq 0 \quad \text { for all } q \in K\left(g_{0}\right) n \tag{4.2}
\end{equation*}
$$

where P and Q are given above. Unlike the preceding case, it is difficult here to know the sign of P and Q. We shall then proceed as above: Let y_{1} be the function defined by

$$
y_{1}(t)=y_{0}(t) \int_{t}^{l} p_{0}(s) y_{0}^{-2}(s) d s, \quad t \in[0, l]
$$

y_{1} is a solution of the differential equation

$$
\left(p_{0}^{-1}(x) y^{\prime}(x)\right)^{\prime}-q_{0}(x) y(x)=0, \quad x \in(0, l)
$$

but $y_{1}(l)=0$ and $y_{1}^{\prime}(l)=-\left(y_{0} / p_{0}\right)^{-1}(l)$. Besides, it is easy to see that $y_{1}^{\prime}(t)<$ 0 for all $t \in(0, l)$. Let

$$
\xi=\left(\frac{y_{0}^{\prime}}{y_{0} p_{0}}-\frac{y_{1}^{\prime}}{y_{1} p_{0}}\right) / 2, \quad \eta=-\left(\frac{y_{0}^{\prime}}{y_{0} p_{0}}+\frac{y_{1}^{\prime}}{y_{1} p_{0}}\right) / 2
$$

Rearrangements of the Coefficients of Ordinary Differential Equations

Samir Karaa

Title Page
Contents

Go Back
Close
Quit
Page 22 of 26

Then, we have

$$
\begin{align*}
\xi^{\prime} & =2 \xi \eta p_{0} \\
\eta^{\prime} & =p_{0}\left(\xi^{2}+\eta^{2}\right)-q_{0} \tag{4.3}\\
\xi(0) & =\left(\int_{0}^{l} p_{0}(s) y_{0}^{-2}(s) d s\right)^{-1} / 2=\eta(0)
\end{align*}
$$

The key of deciding the sign of P and Q are the following relations

$$
\begin{equation*}
Q(t)=\frac{1}{2} \xi(t)^{-1} \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
P^{\prime}(t)=\frac{1}{2} \frac{q_{0}}{p_{0}}\left(\frac{1}{\xi}\right)^{-1} \tag{4.5}
\end{equation*}
$$

In fact, we have

$$
\begin{equation*}
\xi Q=\xi y_{0} y_{1}=\frac{1}{2 p_{0}(t)}\left(y_{0}^{\prime} y_{1}-y_{0} y_{1}^{\prime}\right)=\frac{1}{2} \tag{4.6}
\end{equation*}
$$

and

$$
\begin{aligned}
P(t) & =2 \frac{q_{0}}{p_{0}} y_{0} y_{0}^{\prime} \int_{t}^{l} p_{0}(s) y_{0}^{-2}(s) d s-q_{0} \\
& =\frac{q_{0}}{p_{0}}\left(2 y_{0} y_{0}^{\prime} \int_{t}^{l} p_{0}(s) y_{0}^{-2}(s) d s-p_{0}\right) \\
& =\frac{q_{0}}{p_{0}} Q^{\prime}(t) .
\end{aligned}
$$

Rearrangements of the Coefficients of Ordinary Differential Equations

Samir Karaa

Title Page
Contents

Go Back
Close
Quit
Page 23 of 26
J. Ineq. Pure and Appl. Math. 5(4) Art. 90, 2004 http://jipam.vu.edu.au

Relation (4.6) implies that ξ is positive and $\lim \xi(t)=\infty, t \rightarrow l-$. From (4.3) it follows that $\lim \sup \eta(t) \geq 0, t \rightarrow l-$. Assume now that η changes its sign on $(0, l)$. Since $\eta(0)>0$, there exists an interval $[a, b] \subset[0, l)$ such that for some $c>0$, we have

$$
\begin{gathered}
\eta(t) \leq \eta(a)<0, \quad t \in[a, a+c] \\
\eta(t)<0, \quad t \in[a, b), \quad \eta(b)=0
\end{gathered}
$$

Since η is assumed negative on $(a, b), \xi$ will be decreasing on this interval. (4.4) and (4.5) imply that P and Q are both increasing on $[a, b]$. From (4.1) and (4.2) we see that p_{0} is nonincreasing and q_{0} is nondecreasing on this interval. As a result, we have

$$
\begin{aligned}
& 0 \geq \eta(t)-\eta(a) \\
&=\int_{a}^{t}\left(p_{0} \xi^{2}-q_{0}\right)+\int_{a}^{t} p_{0} \eta^{2} \\
& \geq(t-a)\left(p_{0}(t) \xi^{2}(t)-q_{0}(t)+\eta(a)^{2}\right) \\
& \quad \quad t \in(a, a+c)
\end{aligned}
$$

since $\operatorname{essinf}_{(0,1)} \mathrm{p}_{0}(\mathrm{t}) \geq 1$. Arguing as in [4], we arrive at the following contradiction: $\eta(b) \leq \eta(a)<0$. Hence, η is nonnegative and ξ is nondecreasing. Taking $p=f_{0}^{* *}$ in the variational equation (4.1), we obtain

$$
0 \leq \int_{0}^{l}\left(f_{0}^{* *}-p_{0}\right) P(t) d t=\int_{0}^{l}\left(\int_{0}^{t}\left(f_{0}^{* *}-p_{0}\right) d s\right) d(-P(t)) \leq 0
$$

Rearrangements of the Coefficients of Ordinary Differential Equations

Samir Karaa

Title Page
Contents

Go Back
Close
Quit
Page 24 of 26
and therefore

$$
P^{\prime}(t) \int_{0}^{t}\left(f_{0}^{* *}-p_{0}\right) d s=0, \quad t \in[0, l]
$$

which proves the first part of Theorem 4.1. To complete the proof, we choose $q=g_{0}^{*}$ in (4.2).

Remark 1. For Problem 5, the arguments for deciding the sign of η on $(0, l)$ break down and the problem requires the development of other arguments.

Rearrangements of the Coefficients of Ordinary Differential Equations

Samir Karaa

Title Page
Contents

Go Back
Close
Quit
Page 25 of 26
J. Ineq. Pure and Appl. Math. 5(4) Art. 90, 2004 http://jipam.vu.edu.au

References

[1] A. ALVINO, G. TROMBETTI AND P.L. LIONS, On optimization problems with prescribed rearrangements, Nonlinear Analysis, 13(2) (1989), 185220.
[2] C. BANDLE, Isoperimetric Inequalities and Applications, Pitman Monographs and Studies in Mathematics 7. Boston: Pitman, 1980.
[3] M. ESSEN, Optimization and α-Disfocality for ordinary differential equations, Canad. J. Math., 37(2) (1985), 310-323.
[4] M. ESSEN, Optimization and rearrangements of the coefficient in the operator $d^{2} / d t^{2}-p(t)^{2}$ on a finite interval, J. Math. Anal. Appl., 115 (1986), 278-304.
[5] G.H. HARDY, J.E. LITTLEWOOD AND G. POLYA, Inequalities, Cambridge University Press, London/New York, 1934.
[6] J. RYFF, Orbits of L^{1}-functions under doubly stochastic transformation, Trans. Amer. Math. Soc., 117 (1965), 92-100.
[7] J. RYFF, Majorized functions and measures, Nederl. Acad. Wekensch. Indag. Math., 30(4) (1968), 431-437.
rangements of the Coefficients of Ordinary Differential Equations

Samir Karaa

Title Page
Contents

Go Back
Close
Quit

Page 26 of 26

[^0]: J. Ineq. Pure and Appl. Math. 5(4) Art. 90, 2004 http://jipam.vu.edu.au

[^1]: ${ }^{1}$ The choice of p^{-1} instead of p is essential for the study of our problems.

