Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 5, Issue 4, Article 90, 2004

REARRANGEMENTS OF THE COEFFICIENTS OF ORDINARY DIFFERENTIAL EQUATIONS

SAMIR KARAA
Department of Mathematics and Statistics
Sultan Qaboos University
P.O. Box 36, Al-Khod 123
Muscat, Sultanate of Oman.
skaraa@squ.edu.om

Received 12 March, 2004; accepted 04 August, 2004
Communicated by D. Hinton

AbSTRACT. We establish extremal values of a solution y of a second-order initial value problem as the coefficients vary in a nonconvex set. These results extend earlier work by M. Essen in particular by allowing a coefficient in the second derivative expression.

Key words and phrases: Rearrangements, Nonconvex set, Extremal couples.

2000 Mathematics Subject Classification 26D15.

1. Introduction

Let $L_{+}^{1}(0, l)$ denote the set of all nonnegative functions from $L^{1}(0, l) . l$ is a positive number. Let $f \in L_{+}^{1}(0, l)$ and μ_{f} its distribution function

$$
\mu_{f}(t)=|\{x \in(0, l): f(x)>t\}| \quad \text { for } t \geq 0,
$$

where, here and below, $|I|$ is the measure of the set I. Let f^{*} denote the decreasing rearrangement of f,

$$
f^{*}(x)=\sup \left\{t>0: \mu_{f}(t)>x\right\} .
$$

It is known that f^{*} is nonnegative, right continuous and that [2]

$$
\begin{gather*}
\int_{0}^{t} f d s \leq \int_{0}^{t} f^{*} d s, \quad t \in[0, l] \tag{1.1}\\
\int_{0}^{l} f d s=\int_{0}^{l} f^{*} d s \tag{1.2}
\end{gather*}
$$

[^0]The increasing rearrangement of f is simply $f^{* *}$ defined by $f^{* *}(t)=f^{*}(l-t)$. A crucial property of rearrangements is that if f and g are nonnegative with $f \in L^{1}(0, l)$ and $g \in L^{\infty}(0,1)$ then

$$
\begin{equation*}
\int_{0}^{l} f^{* *} g^{*} d s \leq \int_{0}^{l} f g d s \leq \int_{0}^{l} f^{*} g^{*} d s \tag{1.3}
\end{equation*}
$$

We will say that f and g are equimeasurable or equivalently that f is a rearrangement of g if they have the same distribution function. We will denote this equivalence relation by $f \sim g$. Let f_{0} be a member of $L_{+}^{1}(0, l)$ and $C\left(f_{0}\right)$ its equivalence class for the relation \sim, i.e.,

$$
C\left(f_{0}\right)=\left\{f \in L_{+}^{1}(0, l), f^{*}=f_{0}^{*}\right\} .
$$

A function $\sigma:[0, l] \rightarrow[0, l]$ is measure-preserving if, for each measurable set $I \subset[0, l], \sigma^{-1}(I)$ is measurable and $\left|\sigma^{-1}(I)\right|=|I|$. Let Σ be the class of such functions. According to Ryff [6], to each $f \in L_{+}^{1}(0, l)$ there corresponds $\sigma \in \Sigma$ such that $f=f^{*} \circ \sigma$. In particular, we have

$$
C\left(f_{0}\right)=\left\{f \in L_{+}^{1}(0, l), f=f_{0}^{*} \circ \sigma, \sigma \in \Sigma\right\}
$$

Let p and q be in $L_{+}^{1}(0, l)$ and consider the second-order differential equation

$$
\begin{equation*}
\left(p^{-1}(x) y^{\prime}(x)\right)^{\prime}+q(x) y(x)=0, \quad y(0)=1, \quad\left(p^{-1} y^{\prime}\right)(0)=0 . \tag{1.4}
\end{equation*}
$$

${ }^{1}$ A solution of the equation is a function y such that y and y^{\prime} are absolutely continuous and the equation is satisfied almost everywhere. In the first part of this paper we are interested in finding the supremum and the infimum of $y(l)$ when the couple (p, q) varies in the set $C=$ $C\left(f_{0}\right) \times C\left(g_{0}\right)$, where g_{0} is also a member of $L_{+}^{\infty}(0, l)$. Consider

Problem 1. Determine $\inf y(l),(p, q) \in C$.
Problem 2. Determine $\sup y(l),(p, q) \in C$.
To solve these problems, we shall use a kind of calculus of variations which does not work in C; this class is not convex. Following Essen [3] and [4], and recalling that $C\left(f_{0}\right)$ and $C\left(g_{0}\right)$ are weakly relatively compact in $L^{1}(0, l)$, we introduce the set $K=K\left(f_{0}\right) \times K(g)$ consisting of all weak limits of sequences of C in $\left[L^{1}(0, l)\right]^{2}$. To simplify notations, we use the symbol \prec introduced by Hardy, Littlewood and Polya [5]. We say that f majorates g, written $g \prec f$, if

$$
\begin{gathered}
\int_{0}^{x} g^{*} d t \leq \int_{0}^{x} f^{*} d t, \quad x \in[0, l], \\
\int_{0}^{l} g^{*} d t=\int_{0}^{l} f^{*} d t
\end{gathered}
$$

We note that if $g \prec f\left(f\right.$ and g are in $\left.L_{+}^{\infty}(0, l)\right)$ then

$$
\begin{gathered}
\text { ess sup } g \leq \text { ess } \sup f, \\
\text { ess } \inf f \leq \text { ess } \inf g .
\end{gathered}
$$

The relations $g \prec f$ and $f \prec g$ imply that $f \sim g$. In [7], it is shown that

$$
K\left(f_{0}\right)=\left\{f \in L_{+}^{1}(0, l), f \prec f_{0}\right\},
$$

and $K\left(f_{0}\right)$ is the convex hull of $C\left(f_{0}\right) . K\left(f_{0}\right)$ is closed and weakly compact in $L^{1}(0, l)$. More generally, $K\left(f_{0}\right)$ is weakly compact in $L^{p}(0, l)$ if $f_{0} \in L_{+}^{p}(0, l), 1 \leq p \leq \infty$. According to [1], $C\left(f_{0}\right)$ in the set of " ∞-dimensional" extreme points of $K\left(f_{0}\right)$. That is if $f \in K\left(f_{0}\right)-C\left(f_{0}\right)$,

[^1]then for any $m \geq 1$, one can find f_{1}, \ldots, f_{m} linearly independent in $K\left(f_{0}\right)$ and $\theta_{1}, \ldots, \theta_{m} \in$ $(0,1)$ such that
$$
\sum_{i=1}^{m} \theta_{i}=1, \quad \sum_{i=1}^{m} \theta_{i} f_{i}=f
$$

The following result is given in [1].
Proposition 1.1. Let $h, g \in L_{+}^{1}(0, l)$. Then the following are equivalent
(i) $g \prec f$.
(ii) For all $h \in L_{+}^{\infty}(0, l)$,

$$
\int_{0}^{x} g h d t \leq \int_{0}^{x} f^{*} h^{*} d t, \quad \int_{0}^{l} g d t=\int_{0}^{l} f d t
$$

(iii) For all $h \in L_{+}^{\infty}(0, l)$,

$$
\int_{0}^{x} g^{*} h^{*} d t \leq \int_{0}^{x} f^{*} h^{*} d t, \quad \int_{0}^{l} g d t=\int_{0}^{l} f d t
$$

(iv) We have

$$
\int_{0}^{l} F(g) d t=\int_{0}^{l} F(f) d t
$$

for all convex, nonnegative functions F such that $F(0)=0, F$ is Lipschitz.
As previously remarked we will consider the following problems
Problem 3. Determine $\inf y(l),(p, q) \in K$.
Problem 4. Determine $\sup y(l),(p, q) \in K$.
Similar problems may be considered for the differential equation

$$
\begin{equation*}
\left(p^{-1}(x) y^{\prime}(x)\right)^{\prime}-q(x) y(x)=0, \quad y(0)=1, \quad\left(p^{-1} y^{\prime}\right)(0)=0 \tag{1.5}
\end{equation*}
$$

Let then
Problem 5. Determine $\inf y(l),(p, q) \in K$.
Problem 6. Determine $\sup y(l),(p, q) \in K$.
Proposition 1.2. Let y be the solution of (1.4) [resp. (1.5)]. Then

$$
\inf y(l) \leq \cos (A l) \leq \sup y(l)
$$

resp.

$$
\inf y(l) \leq \cosh (A l) \leq \sup y(l)
$$

where $A=\left(\left\|f_{0}\right\|_{L^{1}}\left\|g_{0}\right\|_{L^{1}}\right)^{1 / 2}$.
These estimates hold since the functions

$$
p \equiv l^{-1} \mid\left\|f_{0}\right\|_{L^{1}} \quad \text { and } \quad q \equiv l^{-1}\left\|g_{0}\right\|_{L^{1}}
$$

are respectively members of $K\left(f_{0}\right)$ and $K\left(g_{0}\right)$.

2. OsCillation and Nonoscillation Criteria

To simplify this section, we assume that p, p^{-1} and q are in $L_{+}^{\infty}(0, l)$.
Lemma 2.1. If

$$
\int_{0}^{l} p(x) d t \int_{0}^{l} q(x) d t \leq 1
$$

then a solution of (1.4) does not vanish in $[0, l]$.
Proof. Let y_{0} be a solution of (1.4) vanishing in ($0, l$], and denote by a its smallest zero. We have

$$
\begin{equation*}
\left(p^{-1}(x) y_{0}^{\prime}(x)\right)^{\prime}+q(x) y_{0}(x)=0, \quad\left(p^{-1} y_{0}^{\prime}\right)(0)=0, \quad y_{0}(a)=0 . \tag{2.1}
\end{equation*}
$$

Multiplying (2.1) by y_{0}, we then integrate by parts to obtain

$$
\int_{0}^{a} p^{-1}\left(y^{\prime}\right)^{2} d x=\int_{0}^{a} q y^{2} d x \leq y_{\max }^{2} \int_{0}^{a} q d x
$$

and then apply the inequality (y^{\prime} and p are linearly independent)

$$
\left|y_{\max }\right| \leq \int_{0}^{a}\left|y^{\prime}\right| d x<\left(\int_{0}^{a} p d x\right)^{\frac{1}{2}}\left(\int_{0}^{a} p^{-1}\left(y^{\prime}\right)^{2} d x\right)^{\frac{1}{2}}
$$

By substitution of the bound for $\left|y_{\max }\right|$ into the first inequality and cancelling the term $\int_{0}^{a} p^{-1}\left(y^{\prime}\right)^{2} d x$, the conclusion follows (by contradiction) since $a \leq l$.

Lemma 2.2. If

$$
\begin{equation*}
\|p\|_{\infty}\|q\|_{\infty}<\left(\frac{\pi}{2 l}\right)^{2} \tag{2.2}
\end{equation*}
$$

then a solution of (1.4) does not vanish in $[0, l]$.
Proof. Let y_{0} be as in the previous proof, so that $\lambda_{0}=1$ is the first eigenvalue of the problem

$$
\left(p^{-1}(x) y^{\prime}(x)\right)^{\prime}+\lambda q(x) y(x)=0, \quad\left(p^{-1} y^{\prime}\right)(0)=0, \quad y(a)=0
$$

According to a variational principle,

$$
\begin{aligned}
\lambda_{0}=\inf _{y(a)=0} \frac{\int_{0}^{a} p^{-1}(x) y^{\prime}(x)^{2} d x}{\int_{0}^{a} q(x) y(x)^{2} d x} & \leq\|p\|_{\infty}^{-1}\|q\|_{\infty}^{-1} \inf _{y(a)=0} \frac{\int_{0}^{a} y^{\prime}(x)^{2} d x}{\int_{0}^{a} y(x)^{2} d x} \\
& =\|p\|_{\infty}^{-1}\|q\|_{\infty}^{-1} \pi^{2}(2 a)^{-2}
\end{aligned}
$$

Hence,

$$
a^{2} \geq\left(\frac{\pi}{2}\right)^{2}\|p\|_{\infty}^{-1}\|q\|_{\infty}^{-1}
$$

which contradicts (2.2).
The proof shows that if $\|p\|_{\infty}\|q\|_{\infty}=\pi^{2} /(2 l)^{2}$, then a solution of 1.4 may vanish only at $x=l$. It is not difficult to show that this case holds only when p and q are constants.

The following lemma gives sufficient conditions for oscillations.
Lemma 2.3. Assume that p is nondecreasing, $p^{-1} \in C^{1}[0, l]$ and $p(x) \leq h^{-1}$ on $[0, l]$, where h is a positive constant. There exists a number $H>0$ (depending on h) such that if $q \geq H$ a.e. on ($0, l$) then every solution of (1.4) changes its sign on $(0, l)$.

Proof. Let $z(x)=(l-x)^{2}(l+x)^{2}$. Multiplying both sides in (1.4) by $z(x)$ and integrating over $(0, l)$, we obtain

$$
\begin{equation*}
\int_{0}^{l} y(x)\left[\left(p^{-1} z^{\prime}\right)^{\prime}(x)+q(x) z(x)\right] d x=0 \tag{2.3}
\end{equation*}
$$

As p is nondecreasing we have for all $x \in(0, l)$

$$
\left(p^{-1} z^{\prime}\right)^{\prime}(x)=\left(p^{-1}\right)^{\prime}(x) z^{\prime}(x)+p^{-1}(x) z^{\prime \prime}(x) \geq p^{-1}(x) z^{\prime \prime}(x)
$$

Let ε be a positive number such that $z^{\prime \prime}$ is positive on $[l-\varepsilon, l]$. Suppose that $y(x) \geq 0$ on $[0, l]$. Then 2.3 implies that

$$
\begin{equation*}
\int_{0}^{l-\varepsilon} y(x)\left[\left(p^{-1} z^{\prime}\right)^{\prime}(x)+q(x) z(x)\right] d x \leq 0 \tag{2.4}
\end{equation*}
$$

Let

$$
H>h \max _{[0, l]}\left(-z^{\prime \prime}\right)(l-\varepsilon)^{-2}(l+\varepsilon)^{-2}
$$

Then,

$$
\left(p^{-1} z^{\prime}\right)^{\prime}(x)+q(x) z(x) \geq h z^{\prime \prime}(x)+H z(x)>0
$$

for all $x \in(0, l-\varepsilon)$, which contradicts (2.4).
Lemma 2.4. Any solution of (1.5) is positive and nondecreasing. Moreover, if $\|p\|_{L^{1}}\|q\|_{L^{1}}<1$ then

$$
y(l) \leq\left(1-\|p\|_{L^{1}}\|q\|_{L^{1}}\right)^{-1}
$$

Proof. Let y be a solution of (1.5). We have

$$
y^{\prime}(x)=p(x) \int_{0}^{x} q(t) y(t) d t
$$

which implies that $y(x) \geq 1$ and y is nondecreasing. Therefore,

$$
y^{\prime}(x) \leq y(l) p(x) \int_{0}^{x} q(t) d t
$$

Integrating both sides of the last inequality over $(0, l)$, we get

$$
y(l)-1 \leq y(l) \int_{0}^{l} p(t) d t \int_{0}^{l} q(t) d t
$$

Hence,

$$
y(l) \leq\left(1-\|p\|_{L^{1}}\|q\|_{L^{1}}\right)^{-1}
$$

3. CHARACTERIZATION OF THE EXTREMAL COUPLES

The existence of extremal couples will be discussed at the end of this section. We suppose that $f_{0}, g_{0} \in L_{+}^{\infty}(0, l)$ and $f_{0} \geq h$ where h is a positive constant.

Theorem 3.1. Assume that all solutions of (1.4) are positive when (p, q) varies in $K\left(f_{0}\right) \times$ $K\left(g_{0}\right)$. Let $\left(p_{0}, q_{0}\right)$ be an extremal couple for Problem 3 and y_{0} the corresponding solution in (1.4). Then $q_{0}=g_{0}^{*}$ and in the open set where

$$
\int_{0}^{t} p_{0}(s) d s>\int_{0}^{t} f_{0}^{* *}(s) d s
$$

we have $P^{\prime}(t)=0$ where

$$
P(t)=\frac{y_{0}^{\prime 2}(t)}{p_{0}^{2}(t)}\left(\int_{t}^{l} p_{0}(t) y_{0}(t)^{-2} d t\right)-\frac{y_{0}^{\prime}(t)}{\left(p_{0} y_{0}\right)(t)}, \quad t \in[0, l]
$$

If f_{0} is bounded below by a positive constant then the above set is empty and $p_{0}=f_{0}^{* *}$, i.e., the infimum over the larger class K coincides with the infimum over the smallest class C.
Theorem 3.2. Assume that all solutions of (1.4) are positive when (p, q) varies in $K\left(f_{0}\right) \times$ $K\left(g_{0}\right)$. Let $\left(p_{0}, q_{0}\right)$ be an extremal couple for Problem 4 and y_{0} the corresponding solution in (1.4). Then $q_{0}=g_{0}^{* *}$ and in the open set where

$$
\int_{0}^{t} p_{0}(s) d s<\int_{0}^{t} f_{0}^{*}(s) d s
$$

we have $P^{\prime}(t)=0$ where P is as above. If f_{0} is far from zero then the above set is empty and $p_{0}=f_{0}^{*}$, i.e. the supremum over the larger class K coincides with the supremum over the smallest class C.

Let a_{i} and $b_{i},(i=1,2)$, be positive numbers such that $a_{1}<a_{2}$ and $b_{1}<b_{2}$. Define the sets E and F by

$$
E=\left\{p \in L^{\infty}(0, l), a_{1} \leq p \leq a_{2}, \int_{0}^{l} p d x=A\right\}
$$

and

$$
F=\left\{q \in L^{\infty}(0, l), b_{1} \leq p \leq b_{2}, \int_{0}^{l} q d x=B\right\}
$$

where A and B are such that $a_{1} l<A<a_{2} l$ and $b_{1} l<B<b_{2} l$. Then we have
Corollary 3.3. If $A B \leq 1$, then $\inf y(l)$ when (p, q) varies in $E \times F$ is reached by

$$
p_{0}(x)= \begin{cases}a_{1} & \text { if } x \in(0, \alpha), \\ a_{2} & \text { if } x \in(\alpha, l),\end{cases}
$$

and

$$
q_{0}(x)= \begin{cases}b_{2} & \text { if } x \in(0, \beta) \\ b_{1} & \text { if } x \in(\beta, l)\end{cases}
$$

where α and β are chosen so that $\int_{0}^{l} p_{0} d x=A$ and $\int_{0}^{l} q_{0} d x=B$. The supremum of $y(l)$ over $E \times F$ is reached by $\bar{p}=p_{0}^{*}$ and $\bar{q}=q_{0}^{* *}$.
A counterexample. We show that Theorem 3.2 does not hold if the solutions of (1.4) are allowed to vanish. Set $l=2 \pi$, and let $p_{0} \equiv 1$ in $(0, l)$ and

$$
q_{0}(x)= \begin{cases}0 & \text { if } x \in\left(0, l_{0}\right) \\ 4 & \text { if } x \in\left(l_{0}, l\right)\end{cases}
$$

where $l_{0}=3 \pi / 2$. Then it is easily verified that the solution in (1.4) with $(p, q)=\left(p_{0}, q_{0}\right)$ is

$$
y_{0}(x)= \begin{cases}1 & \text { if } x \in\left(0, l_{0}\right) \\ \cos 4\left(x-l_{0}\right) & \text { if } x \in\left(l_{0}, l\right)\end{cases}
$$

Let $\bar{p}(x) \equiv \bar{q}(x) \equiv 1$ in $(0,2 \pi)$. The corresponding solution in 1.4 is $\bar{y}(x)=\cos x$. We see that $\bar{y}(l)>y_{0}(l)$ in spite of $\bar{q} \prec q_{0}$. The assumption in Theorem 3.1 is also necessary.

Proofs of Theorems 3.1 and 3.2 Necessary conditions on p_{0}. By the change of variable $u=$ $-y^{\prime} /(p y)$, i.e.,

$$
\begin{equation*}
y(x)=e^{-\int_{0}^{x} p u d t} \quad x \in[0, l] \tag{3.1}
\end{equation*}
$$

equation (1.4) is changed into

$$
\begin{equation*}
u^{\prime}-p u^{2}=q, \quad u(0)=0 \tag{3.2}
\end{equation*}
$$

The solution of (3.2) is written

$$
u(t)=\int_{0}^{t} q(s)\left\{\exp \int_{s}^{t} p(r) u(r) d r\right\} d s
$$

In view of (3.1), Problem 3 is equivalent to

$$
\text { maximising } \int_{0}^{l} p u d t \quad \text { subject to } \quad(p, q) \in K
$$

Let p_{0} be an extremal function for the infimum problem and p an arbitrary member in $K\left(f_{0}\right)$. Define

$$
p_{\delta}=(1-\delta) p_{0}+\delta p, \quad \delta \in[0,1]
$$

We note that this type of variation is not possible in $C\left(f_{0}\right)$. Let u_{δ} satisfy

$$
\begin{equation*}
u_{\delta}^{\prime}-p_{\delta} u_{\delta}^{2}=q_{0}, \quad u_{\delta}(0)=0 \tag{3.3}
\end{equation*}
$$

Forming the difference of (3.3) and (3.3) with $\delta=0$, we have

$$
u_{\delta}^{\prime}-u_{0}^{\prime}=p_{\delta}\left(u_{\delta}-u_{0}\right)\left(u_{\delta}+u_{0}\right)+\delta\left(p-p_{0}\right) u_{0}^{2}
$$

Therefore,

$$
\left(u_{\delta}-u_{0}\right)(t)=\delta \int_{0}^{t}\left(p-p_{0}\right) u_{0}^{2}\left\{\exp \int_{s}^{t} p_{\delta}(r)\left(u_{\delta}+u_{0}\right)(r) d r\right\} d s
$$

Writing $p_{\delta} u_{\delta}-p_{0} u_{0}=p_{\delta}\left(u_{\delta}-u_{0}\right)+\left(p_{\delta}-p_{0}\right) u_{0}$ and integrating over $(0, l)$, we obtain

$$
\begin{aligned}
& \int_{0}^{l}\left(p_{\delta} u-p_{0} u_{0}\right) d t=\int_{0}^{l} p_{\delta}\left(\delta \int_{0}^{t}\left(p-p_{0}\right) u_{0}^{2}\left\{\exp \int_{s}^{t} p_{\delta}\left(u_{\delta}+u_{0}\right) d r\right\} d s\right) d t \\
&+\delta \int_{0}^{l}\left(p-p_{0}\right) u_{0} d t \\
&=\delta \int_{0}^{l}\left(p-p_{0}\right) u_{0}^{2}\left(\int_{s}^{l} p_{\delta}\left\{\exp \int_{s}^{t} p_{\delta}\left(u_{\delta}+u_{0}\right) d r\right\} d t\right) d s \\
&+\delta \int_{0}^{l}\left(p-p_{0}\right) u_{0} d t
\end{aligned}
$$

For Problem 3 the left-hand side is nonpositive. Dividing by δ and letting $\delta \rightarrow 0^{+}$brings

$$
\begin{equation*}
\int_{0}^{l}\left(p-p_{0}\right)(t) P(t) d t \leq 0, \quad \text { for all } p \in K\left(f_{0}\right) \tag{3.4}
\end{equation*}
$$

where P is given in Theorem 3.1. If p_{0} is an extremal coefficient for Problem 4 then we find

$$
\begin{equation*}
\int_{0}^{l}\left(p-p_{0}\right)(t) P(t) d t \geq 0, \quad \text { for all } p \in K\left(f_{0}\right) \tag{3.5}
\end{equation*}
$$

Let us first discuss (3.4). By Ryff's characterization, there exists $\sigma \in \Sigma$ such that $P=P^{*} \circ \sigma$. Substituting $p=p_{0}^{*} \circ \sigma$ into (3.4) we see that

$$
\begin{equation*}
\int_{0}^{l} P^{*} p_{0}^{*} d t=\int_{0}^{l} P p d t \leq \int_{0}^{l} P p_{0} d t \leq \int_{0}^{l} P^{*} p_{0}^{*} d t \tag{3.6}
\end{equation*}
$$

In the last step we used (1.3) which requires that P is nonnegative. This will be proved later. As a result, equalities hold everywhere in (3.6) and we have

$$
\begin{equation*}
\int_{0}^{\infty}\left\{\int_{\{P(t)>s\}} p_{0}(t) d t\right\} d s=\int_{0}^{\infty}\left\{\int_{\left\{P^{*}(t)>s\right\}} p_{0}^{*}(t) d t\right\} d s \tag{3.7}
\end{equation*}
$$

for all s. As

$$
|\{P(t)>s\}|=\left|\left\{P^{*}(t)>s\right\}\right|
$$

we know that

$$
\int_{\{P(t)>s\}} p_{0}(t) d t \leq \int_{\left\{P^{*}(t)>s\right\}} p_{0}^{*}(t) d t
$$

for all s. It follows from (3.7) that

$$
\begin{align*}
& \int_{\{P(t)>s\}} p_{0}(t) d t=\int_{\left\{P^{*}(t)>s\right\}} p_{0}^{*}(t) d t, \tag{3.8}\\
& \text { ess } \inf _{\{P(t)>s\}} p_{0}(t) \geq \text { ess } \inf _{\{P(t) \leq s\}} p_{0}(t) . \tag{3.9}
\end{align*}
$$

for all s. From (3.9) one deduces that if P is increasing on the interval I, then p_{0} must be nondecreasing on this interval if we neglect a set of measure zero. Similarly, if P is decreasing on some interval, p_{0} will be nonincreasing. If these relations hold, we say that P and p_{0} are codependent.

We now return to the function P. We have $P(0)=0$ and a straightforward calculation yields

$$
P^{\prime}(t)=q_{0}\left(1-2 \frac{q_{0}}{p_{0}} y_{0} y_{0}^{\prime} \int_{t}^{l} p_{0}(s) y_{0}^{-2}(s) d s\right)
$$

that is nonnegative for all $t \in(0, l)$. Choosing $p=f_{0}^{* *}$ in the variational equation (3.4) and integrating by parts gives

$$
0 \geq \int_{0}^{l}\left(f_{0}^{* *}-p_{0}\right) P(t) d t=\int_{0}^{l}\left(\int_{0}^{t}\left(f_{0}^{* *}-p_{0}\right) d s\right) d(-P(t)) \geq 0
$$

We used the inequality

$$
\int_{0}^{t} p_{0} d s \geq \int_{0}^{t} f_{0}^{* *} d s, \quad t \in[0, l]
$$

Consequently,

$$
P^{\prime}(t) \int_{0}^{t}\left(f_{0}^{* *}-p_{0}\right) d s=0, \quad t \in[0, l],
$$

and the second part of Theorem 3.1 is proved.
For the supremum problem we use the same arguments. If $P=P^{*} \circ \sigma$, where $\sigma \in \Sigma$, we choose $p=p_{0}^{* *} \circ \sigma$ in (3.5) to obtain

$$
\begin{equation*}
\int_{0}^{l} P^{*} p_{0}^{* *} d t=\int_{0}^{l} P p d t \geq \int_{0}^{l} P p_{0} d t \geq \int_{0}^{l} P^{*} p_{0}^{* *} d t \tag{3.10}
\end{equation*}
$$

Thus, there is equality everywhere in (3.10) and

$$
\begin{equation*}
\int_{0}^{\infty}\left\{\int_{\{P(t)>s\}} p_{0}(t) d t\right\} d s=\int_{0}^{\infty}\left\{\int_{\left\{P^{*}(t)>s\right\}} p_{0}^{* *}(t) d t\right\} d s \tag{3.11}
\end{equation*}
$$

Since

$$
\int_{\left\{P^{* *}(t)>s\right\}} p^{* *}(t) d t \leq \int_{\{P(t)>s\}} p_{0}(t) d t,
$$

for all s, (3.11) implies that

$$
\begin{aligned}
& \int_{\{P(t)>s\}} p_{0}(t) d t=\int_{\left\{P^{*}(t)>s\right\}} p_{0}^{* *}(t) d t, \\
& \text { ess } \inf _{\{P(t)>s\}} p_{0}(t) \geq \text { ess } \inf _{\{P(t) \leq s\}} p_{0}(t),
\end{aligned}
$$

for all s. In this case P and p_{0} are contra-dependent, i.e. if P is increasing (resp. decreasing) on an interval I, p_{0} will be nonincreasing (resp. nondecreasing) on I. Choosing $p=f_{0}^{*}$ in the variational equation (3.5) and arguing as above, we prove the second part of Theorem 3.2 .
Necessary conditions on q_{0}. Let q_{0} be an extremal function for Problem 3. For $q \in K\left(g_{0}\right)$, we define

$$
q_{\delta}=(1-\delta) q_{0}+\delta q, \quad \delta \in[0,1] .
$$

Let u_{δ} be the solution of

$$
\begin{equation*}
u^{\prime}-p_{0} u^{2}=q_{\delta}, \quad u(0)=0 \tag{3.12}
\end{equation*}
$$

Forming the difference of (3.12) and (3.12) with $\delta=0$, calculations similar to those of the preceding case allow us to derive the necessary conditions of optimality

$$
\int_{0}^{l}\left(q-q_{0}\right)(t) Q(t) d t \leq 0 \quad \text { for all } q \in K\left(g_{0}\right)
$$

where

$$
Q(t)=y_{0}^{2}(t) \int_{t}^{l} p_{0}(s) y_{0}^{-2}(s) d s
$$

We remark that $Q(l)=0$ and

$$
Q^{\prime}(t)=2 y_{0} y_{0}^{\prime} \int_{t}^{l} p_{0}(s) y_{0}^{-2}(s) d s-p_{0}
$$

is nonpositive on $(0, l)$. For Problem $4, q_{0}$ satisfies

$$
\int_{0}^{l}\left(q-q_{0}\right)(t) Q(t) d t \geq 0 \quad \text { for all } q \in K\left(g_{0}\right)
$$

Reasoning as above, we deduce that q_{0} and Q are codependent for the infimum problem. The argument for characterizing p_{0} yields $q_{0}=g_{0}^{*}$. For the supremum problem q_{0} and Q are contradependent and we get $q_{0}=g_{0}^{* *}$ which completes the proofs.

Existence.

Let m_{0} denote the infimum of $y(l)$ when (p, q) varies in K and $\left(p_{n}, q_{n}\right)$ a minimizing sequence in K. Let $\left\{u_{n}\right\}$ be an associated sequence of solutions in the differential equation (3.2) so that $\lim _{n \rightarrow \infty} \int_{0}^{l} p_{n} u_{n} d t=m_{0}$. Using weak* compactness, we find that $\left(p_{0}, q_{0}\right) \in K$ such that $p_{n} \rightarrow p$ and $q_{n} \rightarrow q$ weakly in $L^{\infty}(0, l)$. From the expression of u_{n}, we see that

$$
u_{n}(t) \leq \int_{0}^{l} q_{n}(t) e^{-\int_{0}^{l} p_{n} u_{n} d s} d t \leq\left\|g_{0}\right\|_{L^{1}} e^{-m_{0}}
$$

It follows from 3.2 that the sequence $\left\{u_{n}^{\prime}\right\}$ is uniformly bounded in $L^{\infty}(0, l)$. By Ascoli’s theorem, there exists a subsequence (we may assume that it is the original sequence) such that $u_{n} \rightarrow u_{0}$ uniformly in $[0, l]$. It is easy to check that u_{0} is the solution of (3.2) for $(p, q)=$ $\left(p_{0}, q_{0}\right)$. The proof of the supremum problem is quite the same.

4. Problem 6

Suppose that $f_{0}, g_{0} \in L_{+}^{\infty}(0, l)$ and $f_{0} \geq 1$ over $(0, l)$. The existence of extremal couples for Problems 5and 6 may be proved as above. Let

$$
\begin{aligned}
P(t) & =\frac{y_{0}^{\prime 2}(t)}{p_{0}^{2}(t)}\left(\int_{t}^{l} p_{0}(s) y_{0}(s)^{-2} d s\right)-\frac{y_{0}^{\prime}(t)}{\left(p_{0} y_{0}\right)(t)}, \\
Q(t) & =y_{0}^{2}(t) \int_{t}^{l} p_{0}(s) y_{0}(s)^{-2} d s, \quad t \in[0, l] .
\end{aligned}
$$

Theorem 4.1. Let $\left(p_{0}, q_{0}\right)$ be the extremal couple for Problem 6 and y_{0} an associated solution in (1.5). In the open set where

$$
\int_{0}^{t} p_{0} d s>\int_{0}^{t} f_{0}^{* *} d s
$$

resp.

$$
\int_{0}^{t} q_{0} d s<\int_{0}^{t} g_{0}^{*} d s
$$

we have $P^{\prime}(t)=0$, resp. $Q^{\prime}(t)=0$.
Proof. By the change of variable $u=y^{\prime} /(p y)$ equation 1.5 is changed into

$$
u^{\prime}+p u^{2}=q, \quad u(0)=0, \quad t \in[0, l]
$$

We shall then study the equivalent problem

$$
\max \int_{0}^{l} p u d t, \quad(p, q) \in K
$$

Let $\left(p_{0}, q_{0}\right)$ be the extremal couple for Problem 6. Arguing as above, we find that p_{0} and q_{0} satisfy the conditions

$$
\begin{array}{ll}
\int_{0}^{l}\left(p-p_{0}\right)(t) P(t) d t \geq 0 & \text { for all } p \in K\left(f_{0}\right), \\
\int_{0}^{l}\left(q-q_{0}\right)(t) Q(t) d t \leq 0 & \text { for all } q \in K\left(g_{0}\right) n \tag{4.2}
\end{array}
$$

where P and Q are given above. Unlike the preceding case, it is difficult here to know the sign of P and Q. We shall then proceed as above: Let y_{1} be the function defined by

$$
y_{1}(t)=y_{0}(t) \int_{t}^{l} p_{0}(s) y_{0}^{-2}(s) d s, \quad t \in[0, l]
$$

y_{1} is a solution of the differential equation

$$
\left(p_{0}^{-1}(x) y^{\prime}(x)\right)^{\prime}-q_{0}(x) y(x)=0, \quad x \in(0, l)
$$

but $y_{1}(l)=0$ and $y_{1}^{\prime}(l)=-\left(y_{0} / p_{0}\right)^{-1}(l)$. Besides, it is easy to see that $y_{1}^{\prime}(t)<0$ for all $t \in(0, l)$. Let

$$
\xi=\left(\frac{y_{0}^{\prime}}{y_{0} p_{0}}-\frac{y_{1}^{\prime}}{y_{1} p_{0}}\right) / 2, \quad \eta=-\left(\frac{y_{0}^{\prime}}{y_{0} p_{0}}+\frac{y_{1}^{\prime}}{y_{1} p_{0}}\right) / 2
$$

Then, we have

$$
\begin{align*}
\xi^{\prime} & =2 \xi \eta p_{0}, \\
\eta^{\prime} & =p_{0}\left(\xi^{2}+\eta^{2}\right)-q_{0}, \tag{4.3}\\
\xi(0) & =\left(\int_{0}^{l} p_{0}(s) y_{0}^{-2}(s) d s\right)^{-1} / 2=\eta(0) .
\end{align*}
$$

The key of deciding the sign of P and Q are the following relations

$$
\begin{equation*}
Q(t)=\frac{1}{2} \xi(t)^{-1}, \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
P^{\prime}(t)=\frac{1}{2} \frac{q_{0}}{p_{0}}\left(\frac{1}{\xi}\right)^{-1} \tag{4.5}
\end{equation*}
$$

In fact, we have

$$
\begin{equation*}
\xi Q=\xi y_{0} y_{1}=\frac{1}{2 p_{0}(t)}\left(y_{0}^{\prime} y_{1}-y_{0} y_{1}^{\prime}\right)=\frac{1}{2} \tag{4.6}
\end{equation*}
$$

and

$$
\begin{aligned}
P(t) & =2 \frac{q_{0}}{p_{0}} y_{0} y_{0}^{\prime} \int_{t}^{l} p_{0}(s) y_{0}^{-2}(s) d s-q_{0} \\
& =\frac{q_{0}}{p_{0}}\left(2 y_{0} y_{0}^{\prime} \int_{t}^{l} p_{0}(s) y_{0}^{-2}(s) d s-p_{0}\right) \\
& =\frac{q_{0}}{p_{0}} Q^{\prime}(t) .
\end{aligned}
$$

Relation (4.6) implies that ξ is positive and $\lim \xi(t)=\infty, t \rightarrow l-$. From (4.3) it follows that $\lim \sup \eta(t) \geq 0, t \rightarrow l-$. Assume now that η changes its sign on $(0, l)$. Since $\eta(0)>0$, there exists an interval $[a, b] \subset[0, l)$ such that for some $c>0$, we have

$$
\begin{gathered}
\eta(t) \leq \eta(a)<0, \quad t \in[a, a+c] \\
\eta(t)<0, \quad t \in[a, b), \quad \eta(b)=0 .
\end{gathered}
$$

Since η is assumed negative on $(a, b), \xi$ will be decreasing on this interval. (4.4) and (4.5) imply that P and Q are both increasing on $[a, b]$. From (4.1) and (4.2) we see that p_{0} is nonincreasing and q_{0} is nondecreasing on this interval. As a result, we have

$$
\begin{aligned}
& 0 \geq \eta(t)-\eta(a) \\
& =\int_{a}^{t}\left(p_{0} \xi^{2}-q_{0}\right)+\int_{a}^{t} p_{0} \eta^{2} \\
& \geq(t-a)\left(p_{0}(t) \xi^{2}(t)-q_{0}(t)+\eta(a)^{2}\right), \\
& \quad \quad t \in(a, a+c),
\end{aligned}
$$

since $\operatorname{essinf}_{(0,1)} \mathrm{p}_{0}(\mathrm{t}) \geq 1$. Arguing as in [4], we arrive at the following contradiction: $\eta(b) \leq$ $\eta(a)<0$. Hence, η is nonnegative and ξ is nondecreasing. Taking $p=f_{0}^{* *}$ in the variational equation (4.1), we obtain

$$
0 \leq \int_{0}^{l}\left(f_{0}^{* *}-p_{0}\right) P(t) d t=\int_{0}^{l}\left(\int_{0}^{t}\left(f_{0}^{* *}-p_{0}\right) d s\right) d(-P(t)) \leq 0
$$

and therefore

$$
P^{\prime}(t) \int_{0}^{t}\left(f_{0}^{* *}-p_{0}\right) d s=0, \quad t \in[0, l]
$$

which proves the first part of Theorem 4.1. To complete the proof, we choose $q=g_{0}^{*}$ in (4.2).

Remark 4.2. For Problem 5 , the arguments for deciding the sign of η on $(0, l)$ break down and the problem requires the development of other arguments.

References

[1] A. ALVINO, G. TROMBETTI and P.L. LIONS, On optimization problems with prescribed rearrangements, Nonlinear Analysis, 13(2) (1989), 185-220.
[2] C. BANDLE, Isoperimetric Inequalities and Applications, Pitman Monographs and Studies in Mathematics 7. Boston: Pitman, 1980.
[3] M. ESSEN, Optimization and α-Disfocality for ordinary differential equations, Canad. J. Math., 37(2) (1985), 310-323.
[4] M. ESSEN, Optimization and rearrangements of the coefficient in the operator $d^{2} / d t^{2}-p(t)^{2}$ on a finite interval, J. Math. Anal. Appl., 115 (1986), 278-304.
[5] G.H. HARDY, J.E. LITTLEWOOD and G. POLYA, Inequalities, Cambridge University Press, London/New York, 1934.
[6] J. RYFF, Orbits of L^{1}-functions under doubly stochastic transformation, Trans. Amer. Math. Soc., 117 (1965), 92-100.
[7] J. RYFF, Majorized functions and measures, Nederl. Acad. Wekensch. Indag. Math., 30(4) (1968), 431-437.

[^0]: ISSN (electronic): 1443-5756
 (c) 2004 Victoria University. All rights reserved.

 053-04

[^1]: ${ }^{1}$ The choice of p^{-1} instead of p is essential for the study of our problems.

