Journal of Inequalities in Pure and Applied Mathematics

L^{p} IMPROVING PROPERTIES FOR MEASURES ON \mathbb{R}^{4} SUPPORTED ON HOMOGENEOUS SURFACES IN SOME NON ELLIPTIC CASES

E. FERREYRA, T. GODOY AND M. URCIUOLO

Facultad de Matematica,
Astronomia y Fisica-CIEM,
Universidad Nacional de Cordoba,
Ciudad Universitaria,
5000 Cordoba, Argentina
EMail: eferrey@mate.uncor.edu
EMail: godoy@mate.uncor.edu
EMail: urciuolo@mate.uncor.edu
volume 2, issue 3, article 37, 2001.

Received 08 January, 2001; accepted 05 June, 2001.

Communicated by: L. Pick

Abstract
Contents
Gome Page
Go Back
Close

Abstract

In this paper we study convolution operators T_{μ} with measures μ in \mathbb{R}^{4} of the form $\mu(E)=\int_{B} \chi_{E}(x, \varphi(x)) d x$, where B is the unit ball of \mathbb{R}^{2}, and φ is a homogeneous polynomial function. If $\inf _{h \in S^{1}}\left|\operatorname{det}\left(d_{x}^{2} \varphi(h,).\right)\right|$ vanishes only on a finite union of lines, we prove, under suitable hypothesis, that T_{μ} is bounded from L^{p} into L^{q} if $\left(\frac{1}{p}, \frac{1}{q}\right)$ belongs to a certain explicitly described trapezoidal region.

2000 Mathematics Subject Classification: 42B20, 42B10.
Key words: Singular measures, L^{p}-improving, convolution operators.
Partially supported by Agencia Cordoba Ciencia, Secyt-UNC and Conicet

Contents

1 Introduction .. 3

2 Preliminaries 5
3 About the Type Set . 16
References

Improvement of An Ostrowski Type Inequality for Monotonic Mappings and Its Application for Some Special Means
E. Ferreyra, T. Godoy and M. Urciuolo

J. Ineq. Pure and Appl. Math. 2(3) Art. 37, 2001 http://jipam.vu.edu.au

1. Introduction

It is well known that a complex measure μ on \mathbb{R}^{n} acts as a convolution operator on the Lebesgue spaces $L^{p}\left(\mathbb{R}^{n}\right): \mu * L^{p} \subset L^{p}$ for $1 \leq p \leq \infty$. If for some p there exists $q>p$ such that $\mu * L^{p} \subset L^{q}, \mu$ is called L^{p} - improving. It is known that singular measures supported on smooth submanifolds of \mathbb{R}^{n} may be L^{p} - improving. See, for example, [2], [5], [8], [9], [7] and [4].

Let φ_{1}, φ_{2} be two homogeneous polynomial functions on \mathbb{R}^{2} of degree $m \geq$ 2 and let $\varphi=\left(\varphi_{1}, \varphi_{2}\right)$. Let μ be the Borel measure on \mathbb{R}^{4} given by

$$
\begin{equation*}
\mu(E)=\int_{B} \chi_{E}(x, \varphi(x)) d x \tag{1.1}
\end{equation*}
$$

where B denotes the closed unit ball around the origin in \mathbb{R}^{2} and $d x$ is the Lebesgue measure on \mathbb{R}^{2}. Let T_{μ} be the convolution operator given by $T_{\mu} f=$ $\mu * f, f \in S\left(\mathbb{R}^{4}\right)$ and let E_{μ} be the type set corresponding to the measure μ defined by

$$
E_{\mu}=\left\{\left(\frac{1}{p}, \frac{1}{q}\right):\left\|T_{\mu}\right\|_{p, q}<\infty, 1 \leq p, q \leq \infty\right\}
$$

where $\left\|T_{\mu}\right\|_{p, q}$ denotes the operator norm of T_{μ} from $L^{p}\left(\mathbb{R}^{4}\right)$ into $L^{q}\left(\mathbb{R}^{4}\right)$ and where the L^{p} spaces are taken with respect to the Lebesgue measure on \mathbb{R}^{4}.

For $x, h \in \mathbb{R}^{2}$, let $\varphi^{\prime \prime}(x) h$ be the 2×2 matrix whose $j-$ th column is $\varphi_{j}^{\prime \prime}(x) h$, where $\varphi_{j}^{\prime \prime}(x)$ denotes the Hessian matrix of φ_{j} at x. Following [3, p. 152], we say that $x \in \mathbb{R}^{2}$ is an elliptic point for φ if $\operatorname{det}\left(\varphi^{\prime \prime}(x) h\right) \neq 0$ for all $h \in \mathbb{R}^{2} \backslash\{0\}$. For $A \subset \mathbb{R}^{2}$, we will say that φ is strongly elliptic on A if $\operatorname{det}\left(\varphi_{1}^{\prime \prime}(x) h, \varphi_{2}^{\prime \prime}(y) h\right) \neq 0$ for all $x, y \in A$ and $h \in \mathbb{R}^{2} \backslash\{0\}$.
E. Ferreyra, T. Godoy and
M. Urciuolo

Title Page
Contents

4	-
4	\checkmark
Go Back	
Close	
Quit	

Page 3 of 27

If every point $x \in B \backslash\{0\}$ is elliptic for φ, it is proved in [4] that for $m \geq 3$, E_{μ} is the closed trapezoidal region Σ_{m} with vertices $(0,0),(1,1),\left(\frac{m}{m+1}, \frac{m-1}{m+1}\right)$ and $\left(\frac{2}{m+1}, \frac{1}{m+1}\right)$.

Our aim in this paper is to study the case where the set of non elliptic points consists of a finite union of lines through the origin, L_{1}, \ldots, L_{k}. We assume from now on, that for $x \in R^{2}-\{0\}$, $\operatorname{det}\left(\varphi^{\prime \prime}(x) h\right)$ does not vanish identically, as a function of h. For each $l=1,2, \ldots, k$, let $\pi_{L_{l}}$ and $\pi_{L_{l}^{\perp}}$ be the orthogonal projections from \mathbb{R}^{2} onto L_{l} and L_{l}^{\perp} respectively. For $\delta>0,1 \leq l \leq k$, let

$$
V_{\delta}^{l}=\left\{x \in B: 1 / 2 \leq\left|\pi_{L_{l}}(x)\right| \leq 1 \text { and }\left|\pi_{L_{l}^{\perp}}(x)\right| \leq \delta\left|\pi_{L_{l}}(x)\right|\right\}
$$

It is easy to see (see Lemma 2.1 and Remark 3.2) that for δ small enough, there exists $\alpha_{l} \in \mathbb{N}$ and positive constants c and c^{\prime} such that

$$
c\left|\pi_{L_{l}^{\perp}}(x)\right|^{\alpha_{l}} \leq \inf _{h \in S^{1}}\left|\operatorname{det}\left(\varphi^{\prime \prime}(x) h\right)\right| \leq c^{\prime}\left|\pi_{L_{l}^{\perp}}(x)\right|^{\alpha_{l}}
$$

for all $x \in V_{\delta}^{l}$. Following the approach developed in [3], we prove, in Theorem 3.5, that if $\alpha=\max _{1 \leq l \leq k} \alpha_{l}$ and if $7 \alpha \leq m+1$, then the interior of E_{μ} agrees with the interior of Σ_{m}.

Moreover in Theorem 3.6 we obtain that $\stackrel{\circ}{E}_{\mu}=\stackrel{\circ}{\Sigma}_{m}$ still holds in some cases where $7 \alpha>m+1$, if we require a suitable hypothesis on the behavior, near the lines L_{1}, \ldots, L_{k}, of the map $(x, y) \rightarrow \inf _{h \in S^{1}}\left|\operatorname{det}\left(\varphi_{1}^{\prime \prime}(x) h, \varphi_{2}^{\prime \prime}(y) h\right)\right|$.

In any case, even though we can not give a complete description of the interior of E_{μ}, we obtain a polygonal region contained in it.

Throughout the paper c will denote a positive constant not necessarily the same at each occurrence.
E. Ferreyra, T. Godoy and
M. Urciuolo

Title Page
Contents

$\boldsymbol{T 4}$	
Go Back	
Close	
Quit	

Page 4 of 27
J. Ineq. Pure and Appl. Math. 2(3) Art. 37, 2001 http://jipam.vu.edu.au

2. Preliminaries

Let $\varphi_{1}, \varphi_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be two homogeneous polynomials functions of degree $m \geq 2$ and let $\varphi=\left(\varphi_{1}, \varphi_{2}\right)$. For $\delta>0$ let

$$
\begin{equation*}
V_{\delta}=\left\{\left(x_{1}, x_{2}\right) \in B: \frac{1}{2} \leq\left|x_{1}\right| \leq 1 \text { and }\left|x_{2}\right| \leq \delta\left|x_{1}\right|\right\} \tag{2.1}
\end{equation*}
$$

We assume in this section that, for some $\delta_{0}>0$, the set of the non elliptic points for φ in $V_{\delta_{0}}$ is contained in the x_{1} axis.

For $x \in \mathbb{R}^{2}$, let $P=P(x)$ be the symmetric matrix that realizes the quadratic form $h \rightarrow \operatorname{det}\left(\varphi^{\prime \prime}(x) h\right)$, so

$$
\begin{equation*}
\operatorname{det}\left(\varphi^{\prime \prime}(x) h\right)=\langle P(x) h, h\rangle \tag{2.2}
\end{equation*}
$$

Lemma 2.1. There exist $\delta \in\left(0, \delta_{0}\right), \alpha \in \mathbb{N}$ and a real analytic function $g=$ $g\left(x_{1}, x_{2}\right)$ on V_{δ} with $g\left(x_{1}, 0\right) \neq 0$ for $x_{1} \neq 0$ such that

$$
\begin{equation*}
\inf _{|h|=1}\left|\operatorname{det}\left(\varphi^{\prime \prime}(x) h\right)\right|=\left|x_{2}\right|^{\alpha}|g(x)| \tag{2.3}
\end{equation*}
$$

for all $x \in V_{\delta}$.
Proof. Since $P(x)$ is real analytic on V_{δ} and $P(x) \neq 0$ for $x \neq 0$, it follows that, for δ small enough, there exists two real analytic functions $\lambda_{1}(x)$ and $\lambda_{2}(x)$ wich are the eigenvalues of $P(x)$. Also, $\inf _{|h|=1}\left|\operatorname{det}\left(\varphi^{\prime \prime}(x) h\right)\right|=$ $\min \left\{\left|\lambda_{1}(x)\right|,\left|\lambda_{2}(x)\right|\right\}$ for $x \in V_{\delta}$. Since we have assumed that $(1,0)$ is not an elliptic point for φ and that $P(x) \neq 0$ for $x \neq 0$, diminishing δ if necessary, we can assume that $\lambda_{1}(1,0)=0$ and that $\left|\lambda_{1}\left(1, x_{2}\right)\right| \leq\left|\lambda_{2}\left(1, x_{2}\right)\right|$ for $\left|x_{2}\right| \leq \delta$.
E. Ferreyra, T. Godoy and
M. Urciuolo

Since $P(x)$ is homogeneous in x, we have that $\lambda_{1}(x)$ and $\lambda_{2}(x)$ are homogeneous in x with the same homogeneity degree d. Thus $\left|\lambda_{1}(x)\right| \leq\left|\lambda_{2}(x)\right|$ for all $x \in V_{\delta}$. Now, $\lambda_{1}\left(1, x_{2}\right)=x_{2}^{\alpha} G\left(x_{2}\right)$ for some real analytical function $G=$ $G\left(x_{2}\right)$ with $G(0) \neq 0$ and so $\lambda_{1}\left(x_{1}, x_{2}\right)=x_{1}^{d} \lambda_{1}\left(1, \frac{x_{2}}{x_{1}}\right)=x_{1}^{d-\alpha} x_{2}^{\alpha} G\left(\frac{x_{2}}{x_{1}}\right)$. Taking $g\left(x_{1}, x_{2}\right)=x_{1}^{d-\alpha} G\left(\frac{x_{2}}{x_{1}}\right)$ the lemma follows.

Following [3], for $U \subset \mathbb{R}^{2}$ let $J_{U}: \mathbb{R}^{2} \rightarrow \mathbb{R} \cup\{\infty\}$ given by

$$
J_{U}(h)=\inf _{x, x+h \in U}\left|\operatorname{det}\left(\varphi^{\prime}(x+h)-\varphi^{\prime}(x)\right)\right|
$$

where the infimum of the empty set is understood to be ∞. We also set, as there, for $0<\alpha<1$

$$
R_{\alpha}^{U}(f)(x)=\int J_{U}(x-y)^{-1+\alpha} f(y) d y
$$

For $r>0$ and $w \in \mathbb{R}^{2}$, let $B_{r}(w)$ denotes the open ball centered at w with radius r.

We have the following
Lemma 2.2. Let w be an elliptic point for φ. Then there exist positive constants c and c^{\prime} depending only on $\left\|\varphi_{1}\right\|_{C^{3}(B)}$ and $\left\|\varphi_{2}\right\|_{C^{3}(B)}$ such that if $0<r \leq$ $c \inf _{|h|=1}\left|\operatorname{det}\left(\varphi^{\prime \prime}(w) h\right)\right|$ then
(1) $\left|\operatorname{det}\left(\varphi^{\prime}(x+h)-\varphi^{\prime}(x)\right)\right| \geq \frac{1}{2}\left|\operatorname{det}\left(\varphi^{\prime \prime}(w) h\right)\right|$ if $x, x+h \in B_{r}(w)$.
(2) $\left\|R_{\frac{1}{2}}^{B_{r}(w)}(f)\right\|_{6} \leq c^{\prime} r^{-\frac{1}{2}}\|f\|_{\frac{3}{2}}, f \in S\left(\mathbb{R}^{4}\right)$.
E. Ferreyra, T. Godoy and
M. Urciuolo

Title Page
Contents
Go Back
Close
Qage 6 of 27

Proof. Let $F(h)=\operatorname{det}\left(\varphi^{\prime}(x+h)-\varphi^{\prime}(x)\right)$ and let $d_{x}^{j} F$ denotes the j-th differential of F at x. Applying the Taylor formula to $F(h)$ around $h=0$ and taking into account that $F(0)=0, d_{0} F(h)=0$ and that $d_{0}^{2} F(h, h) \equiv$ $2 \operatorname{det}\left(\varphi^{\prime \prime}(x) h\right)$ we obtain

$$
\operatorname{det}\left(\varphi^{\prime}(x+h)-\varphi^{\prime}(x)\right)=\operatorname{det}\left(\varphi^{\prime \prime}(x) h\right)+\int_{0}^{1} \frac{(1-t)^{2}}{2} d_{t h}^{3} F(h, h, h) d t
$$

Let $H(x)=\operatorname{det}\left(\varphi^{\prime \prime}(x) h\right)$. The above equation gives

$$
\begin{aligned}
\operatorname{det}\left(\varphi^{\prime}(x+h)-\varphi^{\prime}(x)\right)=\operatorname{det}\left(\varphi^{\prime \prime}(w) h\right) & +\int_{0}^{1} d_{w+t(x-w)} H(h) d t \\
& +\int_{0}^{1} \frac{(1-t)^{2}}{2} d_{t h}^{3} F(h, h, h) d t
\end{aligned}
$$

Then, for $x, x+h \in B_{r}(w)$ we have

$$
\left|\operatorname{det}\left(\varphi^{\prime}(x+h)-\varphi^{\prime}(x)\right)-\operatorname{det}\left(\varphi^{\prime \prime}(w) h\right)\right| \leq M|h|^{3} \leq 2 M r|h|^{2}
$$

with M depending only $\left\|\varphi_{1}\right\|_{C^{3}(B)}$ and $\left\|\varphi_{2}\right\|_{C^{3}(B)}$. If we choose $c \leq \frac{1}{4 M}$, we get, for $0<r<c \inf _{|h|=1}\left|\operatorname{det}\left(\varphi^{\prime \prime}(w) h\right)\right|$ that

$$
\left|\operatorname{det}\left(\varphi^{\prime}(x+h)-\varphi^{\prime}(x)\right)\right| \geq \frac{1}{2}\left|\operatorname{det}\left(\varphi^{\prime \prime}(w) h\right)\right|
$$

and that

$$
J_{B_{r}(w)}(h) \geq \frac{1}{2}\left|\operatorname{det}\left(\varphi^{\prime \prime}(w) h\right)\right| \geq \frac{1}{2 c} r|h|^{2}
$$

Thus $\left\|R_{\frac{1}{2}}^{B_{r}(w)}(f)\right\|_{6} \leq c^{\prime} r^{-\frac{1}{2}}\left\|I_{2}(f)\right\|_{6} \leq c^{\prime} r^{-\frac{1}{2}}\|f\|_{\frac{3}{2}}$, where I_{α} denotes the Riesz potential on \mathbb{R}^{4}, defined as in [10, p. 117]. So the lemma follows from the Hardy-Littlewood-Sobolev theorem of fractional integration as stated e.g. in [10, p. 119].
Lemma 2.3. Let w be an elliptic point for φ. Then there exists a positive constant c depending only on $\left\|\varphi_{1}\right\|_{C^{3}(B)}$ and $\left\|\varphi_{2}\right\|_{C^{3}(B)}$ such that if $0<r \leq$ $c \inf _{|h|=1}\left|\operatorname{det}\left(\varphi^{\prime \prime}(w) h\right)\right|$ then for all $h \neq 0$ the map $x \rightarrow \varphi(x+h)-\varphi(x)$ is injective on the domain $\left\{x \in B: x, x+h \in B_{r}(w)\right\}$.

Proof. Suppose that $x, y, x+h$ and $y+h$ belong to $B_{r}(w)$ and that

$$
\varphi(x+h)-\varphi(x)=\varphi(y+h)-\varphi(y) .
$$

From this equation we get
$0=\int_{0}^{1}\left(\varphi^{\prime}(x+t h)-\varphi^{\prime}(y+t h)\right) h d t=\int_{0}^{1} \int_{0}^{1} d_{x+t h+s(y-x)}^{2} \varphi(y-x, h) d s d t$.
Now, for $z \in B_{r}(w)$,

$$
\begin{aligned}
\left|\left(d_{z}^{2} \varphi-d_{w}^{2} \varphi\right)(y-x, h)\right| & =\left|\int_{0}^{1} d_{z+u(w-z)}^{3} \varphi(w-z, y-x, h) d u\right| \\
& \leq M r|y-x||h|
\end{aligned}
$$

then

$$
\begin{aligned}
0 & =\int_{0}^{1} \int_{0}^{1} d_{x+t h+s(y-x)}^{2} \varphi(y-x, h) d s d t \\
& =d_{w}^{2} \varphi(y-x, h)+\int_{0}^{1} \int_{0}^{1}\left[d_{x+t h+s(y-x)}^{2} \varphi-d_{w}^{2} \varphi\right](y-x, h) d s d t
\end{aligned}
$$

E. Ferreyra, T. Godoy and
M. Urciuolo

Title Page
Contents

Go Back
Close
Quit
Page 8 of 27
J. Ineq. Pure and Appl. Math. 2(3) Art. 37, 2001

So $\left|d_{w}^{2} \varphi(y-x, h)\right| \leq M r|y-x||h|$ with M depending only on $\left\|\varphi_{1}\right\|_{C^{3}(B)}$ and $\left\|\varphi_{2}\right\|_{C^{3}(B)}$.

On the other hand, w is an elliptic point for φ and so, for $|u|=1$, the matrix $A:=\varphi^{\prime \prime}(w) u$ is invertible. Also $A^{-1}=(\operatorname{det} A)^{-1} A d(A)$, then

$$
\left|A^{-1} x\right|=|\operatorname{det} A|^{-1}|\operatorname{Ad}(A) x| \leq \frac{\widetilde{M}}{|\operatorname{det} A|}|x|,
$$

where \widetilde{M} depends only on $\left\|\varphi_{1}\right\|_{C^{2}(B)}$ and $\left\|\varphi_{2}\right\|_{C^{2}(B)}$. Then, for $|v|=1$ and $x=A v$, we have $|A v| \geq|\operatorname{det} A| / \widetilde{M}$. Thus

$$
\begin{aligned}
\left|d_{w}^{2} \varphi(y-x, h)\right| & \geq|y-x||h| \inf _{|u|=1,|v|=1}\left|d_{w}^{2} \varphi(u, v)\right| \\
& =|y-x||h| \inf _{|u|=1,|v|=1}\left|\left\langle\varphi^{\prime \prime}(w) u, v\right\rangle\right| \\
& \geq \frac{1}{\widetilde{M}}|y-x||h| \inf _{|u|=1}\left|\operatorname{det} \varphi^{\prime \prime}(w) u\right|
\end{aligned}
$$

If we choose $r<\frac{1}{M \widetilde{M}} \inf _{|u|=1}\left|\operatorname{det} \varphi^{\prime \prime}(w) u\right|$ the above inequality implies $x=y$ and the lemma is proved.

For any measurable set $A \subset B$, let μ_{A} be the Borel measure defined by $\mu_{A}(E)=\int_{A} \chi_{E}(x, \varphi(x)) d x$ and let $T_{\mu_{A}}$ be the convolution operator given by $T_{\mu_{A}} f=\mu_{A} * f$.

Proposition 2.4. Let w be an elliptic point for φ. Then there exist positive constants c and c^{\prime} depending only on $\left\|\varphi_{1}\right\|_{C^{3}(B)}$ and $\left\|\varphi_{2}\right\|_{C^{3}(B)}$ such that if
E. Ferreyra, T. Godoy and
M. Urciuolo

Title Page
Contents
Go Back
Close
Quit 9

$0<r<c \inf _{|h|=1}\left|\operatorname{det} \varphi^{\prime \prime}(w) h\right|$ then

$$
\left\|T_{\mu_{B_{r}(w)}} f\right\|_{3} \leq c^{\prime} r^{-\frac{1}{3}}\|f\|_{\frac{3}{2}} .
$$

Proof. Taking account of Lemma 2.3, we can proceed as in Theorem 0 in [3] to obtain, as there, that

$$
\left\|\mu_{B_{r}(w)} * f\right\|_{3}^{3} \leq\left(A_{1} A_{2} A_{3}\right)^{\frac{1}{3}}
$$

where

$$
A_{j}=\int_{\mathbb{R}^{2}} F_{j}(x) \prod_{1 \leq m \leq 3, m \neq j} R_{\frac{1}{2}}^{B_{r}(w)} F_{m}(x) d x
$$

and $F_{j}(x)=\|f(x, .)\|_{\frac{3}{2}}$
Then the proposition follows from Lemma 2.2 and an application of the triple Hölder inequality.

For $0<a<1$ and $j \in N$ let

$$
U_{a, j}=\left\{\left(x_{1}, x_{2}\right) \in B:\left|x_{1}\right| \geq a, 2^{-j}\left|x_{1}\right| \leq\left|x_{2}\right| \leq 2^{-j+1}\left|x_{1}\right|\right\}
$$

and let $U_{a, j, i}, i=1,2,3,4$ the connected components of $U_{a, j}$.
We have
Lemma 2.5. Let $0<a<1$. Suppose that there exist $\beta \in \mathbb{N}, j_{0} \in \mathbb{N}$ and a positive constant c such that $\left|\operatorname{det}\left(\varphi_{1}^{\prime \prime}(x) h, \varphi_{2}^{\prime \prime}(y) h\right)\right| \geq c 2^{-j \beta}|h|^{2}$ for all $h \in \mathbb{R}^{2}, x, y \in U_{a, j, i}, j \geq j_{0}$ and $i=1,2,3,4$. Thus

Improvement of An Ostrowski Type Inequality for Monotonic Mappings and Its Application for Some Special Means
E. Ferreyra, T. Godoy and
M. Urciuolo

J. Ineq. Pure and Appl. Math. 2(3) Art. 37, 2001
(1) For all $j \geq j_{0}, i=1,2,3,4$ if x and $x+h$ belong to $U_{a, j, i}$ then

$$
\left|\operatorname{det}\left(\varphi^{\prime}(x+h)-\varphi^{\prime}(x)\right)\right| \geq c 2^{-j \beta}|h|^{2}
$$

(2) There exists a positive constant c^{\prime} such that for all $j \geq j_{0}, i=1,2,3,4$

$$
\left\|R_{\frac{1}{2}}^{U_{a, j, i}}(f)\right\|_{6} \leq c^{\prime} 2^{\frac{j \beta}{2}}\|f\|_{\frac{3}{2}} .
$$

Proof. We fix i and $j \geq j_{0}$. For $x \in U_{a, j, i}$ we have

$$
\operatorname{det}\left(\varphi^{\prime}(x+h)-\varphi^{\prime}(x)\right)=\operatorname{det}\left(\int_{0}^{1} \varphi^{\prime \prime}(x+s h) h d s\right)
$$

For each $h \in \mathbb{R}^{2} \backslash\{0\}$ we have either $\operatorname{det}\left(\varphi_{1}^{\prime \prime}(x) h, \varphi_{2}^{\prime \prime}(y) h\right)>c 2^{-j \beta}|h|^{2}$ for all $x, y \in U_{a, j, i}$ or $\operatorname{det}\left(\varphi_{1}^{\prime \prime}(x) h, \varphi_{2}^{\prime \prime}(y) h\right)<-c 2^{-j \beta}|h|^{2}$ for all $x, y \in U_{a, j, i}$. We consider the first case. Let $F(t)=\operatorname{det}\left(\int_{0}^{t} \varphi^{\prime \prime}(x+s h) h d s\right)$. Then

$$
\begin{aligned}
F^{\prime}(t)= & \operatorname{det}\left(\int_{0}^{t} \varphi_{1}^{\prime \prime}(x+s h) h d s, \varphi_{2}^{\prime \prime}(x+t h) h\right) \\
& +\operatorname{det}\left(\varphi_{1}^{\prime \prime}(x+t h) h, \int_{0}^{t} \varphi_{2}^{\prime \prime}(x+s h) h d s\right) \\
= & \int_{0}^{t} \operatorname{det}\left(\varphi_{1}^{\prime \prime}(x+s h) h, \varphi_{2}^{\prime \prime}(x+t h) h\right) d s \\
& +\int_{0}^{t} \operatorname{det}\left(\varphi_{1}^{\prime \prime}(x+t h) h, \varphi_{2}^{\prime \prime}(x+s h) h\right) d s \geq c 2^{-j \beta}|h|^{2} t
\end{aligned}
$$

Improvement of An Ostrowski Type Inequality for Monotonic Mappings and Its Application for Some Special Means
E. Ferreyra, T. Godoy and
M. Urciuolo

Title Page
Contents

Go Back
Close
Quit

Page 11 of 27
J. Ineq. Pure and Appl. Math. 2(3) Art. 37, 2001

Since $F(0)=0$ we get $F(1)=\int_{0}^{1} F^{\prime}(t) d t \geq c 2^{-j \beta}|h|^{2}$. Thus

$$
\operatorname{det}\left(\varphi^{\prime}(x+h)-\varphi^{\prime}(x)\right)=F(1) \geq c 2^{-j \beta}|h|^{2}
$$

Then $J_{U_{a, j, i}},(h) \geq c 2^{-j \beta}|h|^{2}$, and the lemma follows, as in Lemma 2.2, from the Hardy-Littlewood-Sobolev theorem of fractional integration. The other case is similar.

For fixed $x^{(1)}, x^{(2)} \in \mathbb{R}^{2}$, let

$$
B_{a, j, i}^{x^{(1)}, x^{(2)}}=\left\{x \in \mathbb{R}^{2}: x-x^{(1)} \in U_{a, j, i} \text { and } x-x^{(2)} \in U_{a, j, i}\right\}, i=1,2,3,4
$$

We have
Lemma 2.6. Let $0<a<1$ and let $x^{(1)}, x^{(2)} \in \mathbb{R}^{2}$. Suppose that there exist $\beta \in \mathbb{N}, j_{0} \in \mathbb{N}$ and a positive constant c such that $\left|\operatorname{det}\left(\varphi_{1}^{\prime \prime}(x) h, \varphi_{2}^{\prime \prime}(y) h\right)\right| \geq$ $c 2^{-j \beta}|h|^{2}$ for all $h \in \mathbb{R}^{2}, x, y \in U_{a, j, i}, j \geq j_{0}$ and $i=1,2,3,4$. Then there exists $j_{1} \in \mathbb{N}$ independent of $x^{(1)}, x^{(2)}$ such that for all $j \geq j_{1}, i=1,2,3,4$ and all nonnegative $f \in S\left(\mathbb{R}^{4}\right)$ it holds that

$$
\begin{aligned}
\int_{B_{a, j, i}^{x^{(1)}, x^{(2)}} \times \mathbb{R}^{2}} f\left(y-\varphi\left(x-x^{(1)}\right), y-\varphi(x-\right. & \left.\left.x^{(2)}\right)\right) d x d y \\
& \leq \frac{m^{2}}{J_{U_{a, j, i}}\left(x^{(2)}-x^{(1)}\right)} \int_{\mathbb{R}^{4}} f
\end{aligned}
$$

Proof. We assert that, if $j \geq j_{0}$ then for each $(z, w) \in \mathbb{R}^{2} \times \mathbb{R}^{2}$ and $i=1,2,3,4$, the set

$$
\left\{(x, y) \in B_{a, j, i}^{x^{(1)}, x^{(2)}} \times \mathbb{R}^{2}: z=y-\varphi\left(x-x^{(1)}\right) \text { and } w=y-\varphi\left(x-x^{(2)}\right)\right\}
$$

Improvement of An Ostrowski Type Inequality for Monotonic Mappings and Its Application for Some Special Means
E. Ferreyra, T. Godoy and
M. Urciuolo

Title Page
Contents
Go Back
Close
Quit

is a finite set with at most m^{2} elements. Indeed, if $z=y-\varphi\left(x-x^{(1)}\right)$ and $w=y-\varphi\left(x-x^{(2)}\right)$ with $x \in B_{a, j, i}^{x^{(1)}, x^{(2)}}$, Lemma 2.5 says that, for j large enough,

$$
\left|\operatorname{det}\left(\varphi^{\prime}\left(x-x^{(1)}\right)-\varphi^{\prime}\left(x-x^{(2)}\right)\right)\right| \geq c 2^{-j \beta}|h|^{2}
$$

Thus the Bezout's Theorem (See e.g.[1, Lemma 11.5.1, p. 281]) implies that for each $(z, w) \in \mathbb{R}^{2} \times \mathbb{R}^{2}$ the set

$$
\left\{x \in B_{a, j, i}^{x^{(1)}, x^{(2)}}: \varphi\left(x-x^{(2)}\right)-\varphi\left(x-x^{(1)}\right)=z-w\right\}
$$

is a finite set with at most m^{2} points. Since x determines y, the assertion follows.
For a fixed $\eta>0$ and for $k=\left(k_{1}, \ldots, k_{4}\right) \in Z^{4}$, let

$$
Q_{k}=\prod_{1 \leq n \leq 4}\left[k_{n} \eta,\left(1+k_{n}\right) \eta\right]
$$

Let $\Phi_{k, j, i}:\left(B_{a, j, i}^{x^{(1)}, x^{(2)}} \times \mathbb{R}^{2}\right) \cap Q_{k} \rightarrow \mathbb{R}^{2} \times \mathbb{R}^{2}$ be the function defined by

$$
\Phi_{k, j, i}(x, y)=\left(y-\varphi\left(x-x^{(1)}\right), y-\varphi\left(x-x^{(2)}\right)\right)
$$

and let $W_{k, j, i}$ its image. Also

$$
\operatorname{det}\left(\Phi_{k, j, i}^{\prime}\right)(x, y)=\operatorname{det}\left(\varphi^{\prime}\left(x-x^{(2)}\right)-\varphi^{\prime}\left(x-x^{(1)}\right)\right)
$$

Thus

$$
\begin{equation*}
\left|\operatorname{det}\left(\Phi_{k, j, i}^{\prime}\right)(x, y)\right| \geq J_{U_{a, j, i}}\left(x^{(2)}-x^{(1)}\right) \tag{2.4}
\end{equation*}
$$

E. Ferreyra, T. Godoy and
M. Urciuolo

Title Page
Contents
Go Back
Close
Page 13 of 27

for $(x, y) \in\left(B_{a, j, i}^{x^{(1)}, x^{(2)}} \times \mathbb{R}^{2}\right) \cap Q_{k}$.
Since $\Phi_{k, j, i}(x, y)=\Phi_{k, j, i}(\bar{x}, \bar{y})$ implies that $\varphi\left(x-x^{(1)}\right)-\varphi\left(\bar{x}-x^{(1)}\right)=$ $\varphi\left(x-x^{(2)}\right)-\varphi\left(\bar{x}-x^{(2)}\right)$, taking into account Lemma 2.1, from Lemma 2.3 it follows the existence of $\widetilde{j} \in N$ with \widetilde{j} independent of $x^{(1)}, x^{(2)}$ such that for $j \geq$ \widetilde{j} there exists $\widetilde{\eta}=\widetilde{\eta}(j)>0$ satisfying that for $0<\eta<\widetilde{\eta}(j)$ the map $\Phi_{k, j, i}$ is injective for all $k \in Z^{4}$. Let $\Psi_{k, j, i}: W_{k, j, i} \rightarrow\left(B_{a, j, i}^{x^{(1)}, x^{(2)}} \times \mathbb{R}^{2}\right) \cap Q_{k}$ its inverse. Lemma 2.5 says that $\left|\operatorname{det}\left(\Phi_{k, j, i}^{\prime}\right)\right| \geq c 2^{-j \beta}|h|^{2}$ on $\left(B_{a, j, i}^{x^{(1)}, x^{(2)}} \times \mathbb{R}^{2}\right) \cap Q_{k}$. We have

$$
\begin{aligned}
& \int_{B_{a, j, i}^{x^{(1)}, x^{(2)}} \times \mathbb{R}^{2}} f\left(y-\varphi\left(x-x^{(1)}\right), y-\varphi\left(x-x^{(2)}\right)\right) d x d y \\
& \quad=\sum_{k \in Z^{4}} \int_{\left(B_{a, j, i}^{\left.x^{(1)}, x^{(2)} \times \mathbb{R}^{2}\right)}\right) Q_{k}} f\left(y-\varphi\left(x-x^{(1)}\right), y-\varphi\left(x-x^{(2)}\right)\right) d x d y \\
& \quad=\sum_{k \in Z^{4}} \int_{W_{k, j, i}} f(z, w) \frac{1}{\left|\operatorname{det}\left(\Phi_{k, j, i}^{\prime}\right)\left(\Psi_{k, j, i}(z, w)\right)\right|} d z d w \\
& \quad \leq \frac{1}{J_{U_{a, j, i}}\left(x^{(2)}-x^{(1)}\right)} \int_{\mathbb{R}^{4}} \sum_{k \in Z^{4}} \chi_{W_{k, j, i}}(v) f(v) d v \\
& \quad \leq \frac{m^{2}}{J_{U_{a, j, i}}\left(x^{(2)}-x^{(1)}\right)} \int_{\mathbb{R}^{4}} f
\end{aligned}
$$

where we have used (2.4).
Proposition 2.7. Let $0<a<1$. Suppose that there exist $\beta \in \mathbb{N}$, $j_{0} \in \mathbb{N}$ and a positive constant c such that $\left|\operatorname{det}\left(\varphi_{1}^{\prime \prime}(x) h, \varphi_{2}^{\prime \prime}(y) h\right)\right| \geq c 2^{-j \beta}|h|^{2}$ for all

Improvement of An Ostrowski Type Inequality for Monotonic Mappings and Its Application for Some Special Means
E. Ferreyra, T. Godoy and M. Urciuolo

Title Page
Contents

| Go Back |
| :---: | :---: |
| Close |
| Quit |
| Page 14 of 27 |

$h \in \mathbb{R}^{2}, x, y \in U_{a, j, i}, j \geq j_{0}, i=1,2,3,4$. Then, there exist $j_{1} \in N, c^{\prime}>0$ such that for all $j \geq j_{1}, f \in S\left(\mathbb{R}^{4}\right)$

$$
\left\|T_{\mu_{U_{a, j}}} f\right\|_{3} \leq c^{\prime} 2^{\frac{j \beta}{3}}\|f\|_{\frac{3}{2}} .
$$

Proof. For $i=1,2,3,4$, let

$$
\begin{aligned}
& K_{a, j, i}=\left\{\left(x, y, x^{(1)}, x^{(2)}, x^{(3)}\right)\right. \\
& \left.\quad \in \mathbb{R}^{2} \times \mathbb{R}^{2} \times \mathbb{R}^{2} \times \mathbb{R}^{2} \times \mathbb{R}^{2}: x-x^{(s)} \in U_{a, j, i}, s=1,2,3\right\}
\end{aligned}
$$

We can proceed as in Theorem 0 in [3] to obtain, as there, that

$$
\left\|\mu_{U_{a, j, i}} * f\right\|_{3}^{3}=\int_{K_{a, j, i}} \prod_{1 \leq j \leq 3} f\left(x_{j}, y-\varphi\left(x-x_{j}\right)\right) d x d y d x^{(1)} d x^{(2)} d x^{(3)}
$$

taking into account of Lemma 2.6 and reasoning, with the obvious changes, as in [3], Theorem 0, we obtain that

$$
\left\|\mu_{U_{a, j, i}} * f\right\|_{3}^{3} \leq m^{2}\left(A_{1} A_{2} A_{3}\right)^{\frac{1}{3}}
$$

with

$$
A_{j}=\int_{\mathbb{R}^{2}} F_{j}(x) \prod_{1 \leq m \leq 3, m \neq j} R_{\frac{1}{2}}^{U_{a, j, i}} F_{m}(x) d x
$$

and $F_{j}(x)=\|f(x, .)\|_{\frac{3}{2}}$. Now the proof follows as in Proposition 2.4.
E. Ferreyra, T. Godoy and
M. Urciuolo

3. About the Type Set

Proposition 3.1. For $\delta>0$ let V_{δ} be defined by (2.1). Suppose that the set of the non elliptic points for φ in V_{δ} are those lying in the x_{1} axis and let α be defined by (2.3).Then $E_{\mu_{V_{\delta}}}$ contains the closed trapezoidal region with vertices $(0,0)$, $(1,1),\left(\frac{7 \alpha-1}{7 \alpha}, \frac{7 \alpha-2}{7 \alpha}\right),\left(\frac{2}{7 \alpha}, \frac{1}{7 \alpha}\right)$, except perhaps the closed edge parallel to the principal diagonal.

Proof. We first show that $(1-\theta)(1,1)+\theta\left(\frac{7 \alpha-1}{7 \alpha}, \frac{7 \alpha-2}{7 \alpha}\right) \in E_{\mu_{V_{\delta}}}$ if $0 \leq \theta<1$.
If $w=\left(w_{1}, w_{2}\right) \in U_{\frac{1}{2}, j}$ then $2^{-j-1} \leq\left|w_{2}\right| \leq 2^{-j+1}$. Thus, from Lemmas 2.2, 2.3 and Proposition 2.7, follows the existence of $j_{0} \in N$ and of a positive constant $c=c\left(\left\|\varphi_{1}\right\|_{C^{3}(B)},\left\|\varphi_{2}\right\|_{C^{3}(B)}\right)$ such that if $r_{j}=c 2^{-j \alpha}$, then

$$
\left\|T_{\mu_{B_{r_{j}(w)}}} f\right\|_{3} \leq c^{\prime} 2^{\frac{j \alpha}{3}}\|f\|_{\frac{3}{2}}
$$

for some $c^{\prime}>0$ and all $j \geq j_{0}, w \in U_{\frac{1}{2}, j}, f \in S\left(\mathbb{R}^{4}\right)$. For $0 \leq t \leq 1$ let p_{t}, q_{t} be defined by $\left(\frac{1}{p_{t}}, \frac{1}{q_{t}}\right)=t\left(\frac{2}{3}, \frac{1}{3}\right)+(1-t)(1,1)$. We have also $\left\|T_{\mu_{B_{r_{j}(w)}}} f\right\|_{1} \leq$ $\pi c^{2} 2^{-2 j \alpha}\|f\|_{1}$, thus, the Riesz-Thorin theorem gives

$$
\left\|T_{\mu_{B_{r}(w)}} f\right\|_{q_{t}} \leq c 2^{j\left(\frac{t \alpha}{3}-(1-t) 2 \alpha\right)}\|f\|_{p_{t}} .
$$

Since $U_{\frac{1}{2}, j}$ can be covered with N of such balls $B_{r}(w)$ with $N \simeq 2^{j(2 \alpha-1)}$ we get that

$$
\left\|T_{\mu_{U_{\frac{1}{2}}, j}}\right\|_{p_{t}, q_{t}} \leq c 2^{j\left(\frac{7}{3} \alpha t-1\right)} .
$$

Improvement of An Ostrowski Type Inequality for Monotonic Mappings and Its Application for Some Special Means
E. Ferreyra, T. Godoy and
M. Urciuolo

Title Page
Contents
Go Back
Close
Quit

Let $U=\cup_{j \geq j_{0}} U_{\frac{1}{2}, j}$. We have that $\left\|T_{\mu_{U}}\right\|_{p_{t}, q_{t}} \leq \sum_{j \geq j_{0}}\left\|T_{\mu_{U_{\frac{1}{2}}, j}}\right\|_{p_{t}, q_{t}}<\infty$, for $t<\frac{3}{7 \alpha}$. Since for $t=\frac{3}{7 \alpha}$ we have $\frac{1}{p_{t}}=1-\frac{1}{7 \alpha}$ and $\frac{1}{q_{t}}=1-\frac{2}{7 \alpha}$ and since every point in $V_{\delta} \backslash \stackrel{\circ}{U}$ is an elliptic point (and so, from Theorem 3 in [3], $\left.\left\|T_{\mu_{V_{\delta} \backslash U}}\right\|_{\frac{3}{2}, 3}<\infty\right)$, we get that $(1-\theta)(1,1)+\theta\left(\frac{7 \alpha-1}{7 \alpha}, \frac{7 \alpha-2}{7 \alpha}\right) \in E_{\mu_{V_{\delta}}}$ for $0 \leq \theta<1$. On the other hand, a standard computation shows that the adjoint operator $T_{\mu_{V_{\delta}}}^{*}$ is given by $T_{\mu_{V_{\delta}}}^{*} f=\left(T_{\mu_{V_{\delta}}}\left(f^{\vee}\right)\right)^{\vee}$, where we write, for $g: \mathbb{R}^{4} \rightarrow C, g^{\vee}(x)=g(-x)$. Thus $E_{\mu_{V_{\delta}}}$ is symmetric with respect to the nonprincipal diagonal. Finally, after an application of the Riesz-Thorin interpolation theorem, the proposition follows.

For $\delta>0$, let $A_{\delta}=\left\{\left(x_{1}, x_{2}\right) \in B:\left|x_{2}\right| \leq \delta\left|x_{1}\right|\right\}$.
Remark 3.1. For $s>0, x=\left(x_{1}, \ldots, x_{4}\right) \in \mathbb{R}^{4}$ we set $s \bullet x=\left(s x_{1}, s x_{2}, s^{m} x_{3}, s^{m} x_{4}\right)$. If $E \subset \mathbb{R}^{2}, F \subset \mathbb{R}^{4}$ we set $s E=\{s x: x \in E\}$ and $s \bullet F=\{s \bullet x: x \in F\}$. For $f: \mathbb{R}^{4} \rightarrow C, s>0$, let f_{s} denotes the function given by $f_{s}(x)=f(s \bullet x)$. A computation shows that

$$
\begin{equation*}
\left(T_{\mu_{2}-j V_{\delta}} f\right)\left(2^{-j} \bullet x\right)=2^{-2 j}\left(T_{\mu_{\delta}} f_{2^{-j}}\right)(x) \tag{3.1}
\end{equation*}
$$

for all $f \in S\left(\mathbb{R}^{4}\right), x \in \mathbb{R}^{4}$.
From this it follows easily that

$$
\left\|T_{\mu_{2}-j V_{\delta}}\right\|_{p, q}=2^{-j\left(\frac{2(m+1)}{q}-\frac{2(m+1)}{p}+2\right)}\left\|T_{\mu_{V_{\delta}}}\right\|_{p, q}
$$

Improvement of An Ostrowski Type Inequality for Monotonic Mappings and Its Application for Some Special Means
E. Ferreyra, T. Godoy and M. Urciuolo

Title Page
Contents

$\mathbf{4}$	
Go Back	
Close	
Quit	
Page 17 of 27	

This fact implies that

$$
\begin{equation*}
E_{\mu} \subset\left\{\left(\frac{1}{p}, \frac{1}{q}\right): \frac{1}{q} \geq \frac{1}{p}-\frac{1}{m+1}\right\} \tag{3.2}
\end{equation*}
$$

and that if $\frac{1}{q}>\frac{1}{p}-\frac{1}{m+1}$ then $\left(\frac{1}{p}, \frac{1}{q}\right) \in E_{\mu_{A_{\delta}}}$ if and only if $\left(\frac{1}{p}, \frac{1}{q}\right) \in E_{\mu_{V_{\delta}}}$.
Theorem 3.2. Suppose that for some $\delta>0$ the set of the non elliptic points for φ in A_{δ} are those lying on the x_{1} axis and let α be defined by (2.3). Then $E_{\mu_{A_{\delta}}}$ contains the intersection of the two closed trapezoidal regions with vertices $(0,0),(1,1),\left(\frac{m}{m+1}, \frac{m-1}{m+1}\right),\left(\frac{2}{m+1}, \frac{1}{m+1}\right)$ and $(0,0),(1,1),\left(\frac{7 \alpha-1}{7 \alpha}, \frac{7 \alpha-2}{7 \alpha}\right)$, $\left(\frac{2}{7 \alpha}, \frac{1}{7 \alpha}\right)$ respectively, except perhaps the closed edge parallel to the diagonal.

Moreover, if $7 \alpha \leq m+1$ then the interior of $E_{\mu_{A_{\delta}}}$ is the open trapezoidal region with vertices $(0,0),(1,1),\left(\frac{m}{m+1}, \frac{m-1}{m+1}\right)$ and $\left(\frac{2}{m+1}, \frac{1}{m+1}\right)$.

Proof. Taking into account Proposition 3.1, the theorem follows from the facts of Remark 3.1.

For $0<a<1$ and $\delta>0$ we set $V_{a, \delta}=\left\{\left(x_{1}, x_{2}\right) \in B: a \leq\left|x_{1}\right| \leq 1\right.$ and $\left.\left|x_{2}\right| \leq \delta\left|x_{1}\right|\right\}$. We have
Proposition 3.3. Let $0<a<1$. Suppose that for some $0<a<1, j_{0}, \beta \in N$ and some positive constant c we have $\left|\operatorname{det}\left(\varphi_{1}^{\prime \prime}(x) h, \varphi_{1}^{\prime \prime}(y) h\right)\right| \geq c 2^{-j \beta}|h|^{2}$ for all $h \in \mathbb{R}^{2}, x, y \in U_{a, j, i}, j \geq j_{0}$ and $i=1,2,3,4$. Then, for δ positive and small enough, $E_{\mu_{V_{a, \delta}}}$ contains the closed trapezoidal region with vertices $(0,0)$, $(1,1),\left(\frac{\beta+2}{\beta+3}, \frac{\beta+1}{\beta+3}\right),\left(\frac{2}{\beta+3}, \frac{1}{\beta+3}\right)$, except perhaps the closed edge parallel to the principal diagonal.

Improvement of An Ostrowski Type Inequality for Monotonic Mappings and Its Application for Some Special Means
E. Ferreyra, T. Godoy and
M. Urciuolo

Title Page
Go Back
Close
Quit
Page 18 of 27

Proof. Proposition 2.7 says that there exist $j_{1} \in N$ and a positive constant c such that for $j \geq j_{1}$ and $f \in S\left(\mathbb{R}^{4}\right)$

$$
\left\|T_{\mu_{U_{a, j, i}}} f\right\|_{3} \leq c 2^{\frac{i 8}{3}}\|f\|_{\frac{3}{2}} .
$$

Also, for some $c>0$ and all $f \in S\left(\mathbb{R}^{4}\right)$ we have $\left\|T_{\mu_{U_{a, j, i}}} f\right\|_{1} \leq c 2^{-j}\|f\|_{1}$. Then $\left\|T_{\mu_{U_{a, j, i}}} f\right\|_{q_{t}} \leq c 2^{j\left(t \frac{\beta}{3}-(1-t)\right)}\|f\|_{p_{t}}$ where p_{t}, q_{t} are defined as in the proof of Proposition 3.1. Let $U=\cup_{j \geq j_{1}} U_{a, j}$. Then $\left\|T_{\mu_{U}} f\right\|_{p_{t}, q_{t}}<\infty$ if $t<\frac{3}{\beta+3}$. Now, the proof follows as in Proposition 3.1.

Theorem 3.4. Suppose that for some $0<a<1, j_{0}, \beta \in N$ and for some positive constant c we have $\left|\operatorname{det}\left(\varphi_{1}^{\prime \prime}(x) h, \varphi_{1}^{\prime \prime}(y) h\right)\right| \geq c 2^{-j \beta}|h|^{2}$ for all $x, y \in$ $U_{a, j, i}, j \geq j_{0}$ and $i=1,2,3,4$. Then for δ positive and small enough, $E_{\mu_{A_{\delta}}}$ contains the intersection of the two closed trapezoidal regions with vertices $(0,0)$, $(1,1),\left(\frac{m}{m+1}, \frac{m-1}{m+1}\right),\left(\frac{2}{m+1}, \frac{1}{m+1}\right)$ and $(0,0),(1,1),\left(\frac{\beta+2}{\beta+3}, \frac{\beta+1}{\beta+3}\right),\left(\frac{2}{\beta+3}, \frac{1}{\beta+3}\right)$, respectively, except perhaps the closed edge parallel to the diagonal.

Moreover, if $\beta \leq m-2$ then the interior of E_{μ} is the open trapezoidal region with vertices $(0,0),(1,1),\left(\frac{m}{m+1}, \frac{m-1}{m+1}\right)$ and $\left(\frac{2}{m+1}, \frac{1}{m+1}\right)$.
Proof. Follows as in Theorem 3.2 using now Proposition 3.3 instead of Proposition 3.1.

Remark 3.2. We now turn out to the case when φ is a homogeneous polynomial function whose set of non elliptic points is a finite union of lines through the origin, L_{1}, \ldots, L_{k}.
E. Ferreyra, T. Godoy and
M. Urciuolo

Title Page
Contents
Go Back
Close
Quit

For each $l, 1 \leq l \leq k$, let $A_{\delta}^{l}=\left\{x \in \mathbb{R}^{2}:\left|\pi_{L_{l}}^{\perp} x\right| \leq \delta\left|\pi_{L_{l}} x\right|\right\}$ where $\pi_{L_{l}}$ and $\pi_{L_{l}}^{\perp}$ denote the orthogonal projections from \mathbb{R}^{2} into L_{l} and L_{l}^{\perp} respectively. Thus each A_{δ}^{l} is a closed conical sector around L_{l}. We choose δ small enough such that $A_{\delta}^{l} \cap A_{\delta}^{i}=\emptyset$ for $l \neq i$.

It is easy to see that there exists (a unique) $\alpha_{l} \in N$ and positive constants c_{l}^{\prime}, $c_{l}^{\prime \prime}$ such that

$$
\begin{equation*}
c_{l}^{\prime}\left|\pi_{L_{l}}^{\perp} w\right|^{\alpha_{l}} \leq \inf _{|h|=1}\left|\operatorname{det}\left(\varphi^{\prime \prime}(w) h\right)\right| \leq c_{l}^{\prime \prime}\left|\pi_{L_{l}}^{\perp} x\right|^{\alpha_{l}} \tag{3.3}
\end{equation*}
$$

for all $w \in A_{\delta}^{l}$. Indeed, after a rotation the situation reduces to that considered in Remark 3.1.

Theorem 3.5. Suppose that the set of non elliptic points is a finite union of lines through the origin, L_{1}, \ldots, L_{k}. For $l=1,2, \ldots, k$, let α_{l} be defined by (3.3), and let $\alpha=\max _{1 \leq l \leq k} \alpha_{l}$. Then E_{μ} contains the intersection of the two closed trapezoidal regions with vertices $(0,0),(1,1),\left(\frac{m}{m+1}, \frac{m-1}{m+1}\right),\left(\frac{2}{m+1}, \frac{1}{m+1}\right)$ and $(0,0),(1,1),\left(\frac{7 \alpha-1}{7 \alpha}, \frac{7 \alpha-2}{7 \alpha}\right),\left(\frac{2}{7 \alpha}, \frac{1}{7 \alpha}\right)$, respectively, except perhaps the closed edge parallel to the diagonal.

Moreover, if $7 \alpha \leq m+1$ then the interior of E_{μ} is the interior of the trapezoidal regions with vertices $(0,0),(1,1),\left(\frac{m}{m+1}, \frac{m-1}{m+1}\right),\left(\frac{2}{m+1}, \frac{1}{m+1}\right)$.

Proof. For $l=1,2, \ldots, k$, let A_{δ}^{l} be as above. From Theorem 3.2, we obtain that $E_{\mu_{A_{\delta}^{l}}}$ contains the intersection of the two closed trapezoidal regions with vertices $(0,0),(1,1),\left(\frac{m}{m+1}, \frac{m-1}{m+1}\right),\left(\frac{2}{m+1}, \frac{1}{m+1}\right)$ and $(0,0),(1,1),\left(\frac{7 \alpha_{l}-1}{7 \alpha_{l}}, \frac{7 \alpha_{l}-2}{7 \alpha_{l}}\right)$, $\left(\frac{2}{7 \alpha_{l}}, \frac{1}{7 \alpha_{l}}\right)$ respectively, except perhaps the closed edge parallel to the diagonal.
E. Ferreyra, T. Godoy and
M. Urciuolo

Title Page
Contents

| Go Back |
| :---: | :---: |
| Close |
| Quit |

Page 20 of 27

Since every $x \in B \backslash \cup_{l} A_{\delta}^{l}$ is an elliptic point for φ, Theorem 0 in [3] and a compactness argument give that $\left\|T_{\mu_{D}}\right\|_{\frac{3}{2}, 3}<\infty$ where $D=$ $\left\{x \in B \backslash \cup_{l} A_{\delta}^{l}: \frac{1}{2} \leq|x|\right\}$. Then (using the symmetry of $E_{\mu_{D}}$, the fact of that μ_{D} is a finite measure and the Riesz-Thorin theorem) $E_{\mu_{D}}$ is the closed triangle with vertices $(0,0),(1,1),\left(\frac{2}{3}, \frac{1}{3}\right)$. Now, proceeding as in the proof of Theorem 3.2 we get that $\left\|T_{\mu_{B \backslash \cup \mathcal{L}} A_{\delta}^{l}}\right\|_{p, q}<\infty$ if $\frac{1}{q}>\frac{1}{p}-\frac{1}{m+1}$. Then the first assertion of the theorem is true. The second one follows also using the facts of Remark 3.1.

For $0<a<1$, we set

$$
\begin{aligned}
& U_{a, j}^{l}=\left\{x \in \mathbb{R}^{2}: a \leq\left|\pi_{L^{l}}(x)\right| \leq 1\right. \\
& \left.\quad \text { and } 2^{-j}\left|\pi_{L^{l}}(x)\right| \leq\left|\pi_{L^{l}}^{\perp}(x)\right| \leq 2^{-j+1}\left|\pi_{L^{l}}(x)\right|\right\}
\end{aligned}
$$

let $U_{a, j, i}^{l}, i=1,2,3,4$ be the connected components of $U_{a, j}^{l}$.
Theorem 3.6. Suppose that the set of non elliptic points for φ is a finite union of lines through the origin, L_{1}, \ldots, L_{k}. Let $0<a<1$ and let $j_{0} \in N$ such that

For $l=1,2, \ldots, k$, there exists $\beta_{l} \in N$ satisfying $\left|\operatorname{det}\left(\varphi_{1}^{\prime \prime}(x) h, \varphi_{1}^{\prime \prime}(y) h\right)\right| \geq$ $c 2^{-j \beta_{j}}|h|^{2}$ for all $x, y \in U_{a, j, i}^{l}, j \geq j_{0}$ and $i=1,2,3,4$. Let $\beta=\max _{1 \leq j \leq k} \beta_{j}$. Then E_{μ} contains the intersection of the two closed trapezoidal regions with vertices $(0,0),(1,1),\left(\frac{m}{m+1}, \frac{m-1}{m+1}\right),\left(\frac{2}{m+1}, \frac{1}{m+1}\right)$ and $(0,0),(1,1),\left(\frac{\beta+2}{\beta+3}, \frac{\beta+1}{\beta+3}\right)$, $\left(\frac{2}{\beta+3}, \frac{1}{\beta+3}\right)$, respectively, except perhaps the closed edge parallel to the diagonal.

Moreover, if $\beta \leq m-2$ then the interior of E_{μ} is the interior of the trapezoidal region with vertices $(0,0),(1,1),\left(\frac{m}{m+1}, \frac{m-1}{m+1}\right),\left(\frac{2}{m+1}, \frac{1}{m+1}\right)$.
E. Ferreyra, T. Godoy and M. Urciuolo

Title Page
Contents

$\boldsymbol{4}$	
Go Back	
Close	
Quit	

Page 21 of 27

Proof. Follows as in Theorem 3.5, using now Theorem 3.4 instead of Theorem 3.2.

Example 3.1. $\varphi\left(x_{1}, x_{2}\right)=\left(x_{1}^{2} x_{2}-x_{1} x_{2}^{2}, x_{1}^{2} x_{2}+x_{1} x_{2}^{2}\right)$
It is easy to check that the set of non elliptic points is the union of the coordinate axes. Indeed, for $h=\left(h_{1}, h_{2}\right)$ we have $\operatorname{det} \varphi^{\prime \prime}\left(x_{1}, x_{2}\right) h=8 x_{2}^{2} h_{1}^{2}+$ $8 x_{1} x_{2} h_{1} h_{2}+8 x_{1}^{2} h_{2}^{2}$ and this quadratic form in (h_{1}, h_{2}) has non trivial zeros only if $x_{1}=0$ or $x_{2}=0$. The associated symmetric matrix to the quadratic form is

$$
\left[\begin{array}{cc}
8 x_{2}^{2} & 4 x_{1} x_{2} \\
4 x_{1} x_{2} & 8 x_{1}^{2}
\end{array}\right]
$$

and for $x_{1} \neq 0$ and $\left|x_{2}\right| \leq \delta\left|x_{1}\right|$ with δ small enough, its eigenvalue of lower absolute value is $\lambda_{1}\left(x_{1}, x_{2}\right)=4 x_{1}^{2}+4 x_{2}^{2}-4 \sqrt{\left(x_{2}^{4}-x_{1}^{2} x_{2}^{2}+x_{1}^{4}\right)}$. Thus $\lambda_{1}\left(x_{1}, x_{2}\right) \simeq 6 x_{2}^{2}$ for such $\left(x_{1}, x_{2}\right)$. Similarly, for $x_{2} \neq 0$ and $\left|x_{1}\right| \leq \delta\left|x_{2}\right|$ with δ small enough, the eigenvalue of lower absolute value is comparable with $6 x_{1}^{2}$. Then, in the notation of Theorem 3.5, we obtain $\alpha=2$ and so E_{μ} contains the closed trapezoidal region with vertices $(0,0),(1,1),\left(\frac{13}{14}, \frac{6}{7}\right)$ and $\left(\frac{1}{7}, \frac{1}{14}\right)$ except perhaps the closed edge parallel to the principal diagonal. Observe that, in this case, Theorem 3.6 does not apply. In fact, for $x=\left(x_{1}, x_{2}\right), \widetilde{x}=\left(\widetilde{x}_{1}, \widetilde{x}_{2}\right)$ and $h=\left(h_{1}, h_{2}\right)$ we have

$$
\begin{aligned}
& \operatorname{det}\left(\varphi_{1}^{\prime \prime}(x) h, \varphi_{2}^{\prime \prime}(\widetilde{x}) h\right)=4 h_{1}^{2}\left(x_{2} \widetilde{x}_{1}-\widetilde{x}_{2} x_{1}+2 x_{2} \widetilde{x}_{2}\right) \\
&+4 h_{1} h_{2}\left(x_{1} \widetilde{x}_{2}+\widetilde{x}_{1} x_{2}\right)+4 h_{2}^{2}\left(x_{1} \widetilde{x}_{2}-x_{2} \widetilde{x}_{1}+2 x_{2} \widetilde{x}_{1}\right)
\end{aligned}
$$

Take $x_{1}=\widetilde{x}_{1}=1$ and let $A=A\left(x_{2}, \widetilde{x}_{2}\right)$ the matrix of the above quadratic form in $\left(h_{1}, h_{2}\right)$. For $x_{2}=2^{-j}, \widetilde{x}_{2}=2^{-j+1}$ we have $\operatorname{det} A<0$ for j large

Improvement of An Ostrowski Type Inequality for Monotonic Mappings and Its Application for Some Special Means
E. Ferreyra, T. Godoy and M. Urciuolo

Title Page
Contents
Go Back
Close
Quit

enough but if we take $x_{2}=2^{-j+1}$ and $\widetilde{x}_{2}=2^{-j}$, we get $\operatorname{det} A>0$ for j large enough, so, for all j large enough, $\operatorname{det} A=0$ for some $2^{-j} \leq x_{2}, \widetilde{x}_{2} \leq 2^{-j+1}$. Thus, for such x_{2}, \widetilde{x}_{2},

$$
\inf _{\left|\left(h_{1}, h_{2}\right)\right|=1} \operatorname{det}\left(\varphi_{1}^{\prime \prime}\left(1, x_{2}\right)\left(h_{1}, h_{2}\right), \varphi_{2}^{\prime \prime}\left(1, \widetilde{x}_{2}\right)\left(h_{1}, h_{2}\right)\right)=0
$$

Example 3.2. Let us show an example where Theorem 3.6 characterizes $\stackrel{\circ}{E}_{\mu}$. Let

$$
\varphi\left(x_{1}, x_{2}\right)=\left(x_{1}^{3} x_{2}-3 x_{1} x_{2}^{3}, 3 x_{1}^{2} x_{2}^{2}-x_{2}^{4}\right)
$$

In this case the set of non elliptic points for φ is the x_{1} axis. Indeed,

$$
\operatorname{det}\left(\varphi^{\prime \prime}\left(x_{1}, x_{2}\right)\left(h_{1}, h_{2}\right)\right)=18\left(x_{1}^{2}+x_{2}^{2}\right)\left(\left(h_{2} x_{1}+x_{2} h_{1}\right)^{2}+2 x_{2}^{2} h_{1}^{2}+6 h_{2}^{2} x_{2}^{2}\right)
$$

In order to apply Theorem 3.6, we consider the quadratic form in $h=\left(h_{1}, h_{2}\right)$

$$
\operatorname{det}\left(\varphi_{1}^{\prime \prime}\left(x_{1}, x_{2}\right) h, \varphi_{2}^{\prime \prime}\left(\widetilde{x}_{1}, \widetilde{x}_{2}\right) h\right)
$$

If $x=\left(x_{1}, x_{2}\right)$ and $\widetilde{x}=\left(\widetilde{x}_{1}, \widetilde{x}_{2}\right)$, let $A=A(x, \widetilde{x})$ its associated symmetric matrix. An explicit computation of A shows that, for a given $0<a<1$ and for all j large enough and $i=1,2,3,4$, if x and \widetilde{x} belong to $U_{a, j, i}$, then

$$
a^{2} \leq \operatorname{tr}(A) \leq 20
$$

thus, if $\lambda_{1}(x, \widetilde{x})$ denotes the eigenvalue of lower absolute value of $A(x, \widetilde{x})$, we have, for $x, \widetilde{x} \in W_{a}$ that

$$
c_{1}|\operatorname{det} A| \leq\left|\lambda_{1}(x, \widetilde{x})\right| \leq c_{2}|\operatorname{det} A|
$$

for Some Special Means
E. Ferreyra, T. Godoy and
M. Urciuolo

Title Page
Contents

Go Back
Close
Quit
Cl\|

Page 23 of 27
where c_{1}, c_{2} are positive constants independent of j. Now, a computation gives

$$
\begin{aligned}
\operatorname{det} A=324\left(-x_{1}^{2} \widetilde{x}_{1}^{2}-9 x_{2}^{2} \widetilde{x}_{2}^{2}-\right. & \left.12 x_{1} x_{2} \widetilde{x}_{1} \widetilde{x}_{2}+2 x_{1}^{2} \widetilde{x}_{2}^{2}\right) \\
& \times\left(x_{2}^{2} \widetilde{x}_{1}^{2}-2 x_{2}^{2} \widetilde{x}_{2}^{2}-4 x_{1} x_{2} \widetilde{x}_{1} \widetilde{x}_{2}+x_{1}^{2} \widetilde{x}_{2}^{2}\right)
\end{aligned}
$$

Now we write $\widetilde{x}_{2}=t x_{2}$, with $\frac{1}{2} \leq t \leq 2$. Then

$$
\begin{aligned}
\operatorname{det} A=324 x_{2}^{2}\left[-x_{1}^{2} \widetilde{x}_{1}^{2}-9 t^{2} x_{2}^{4}-12 t x_{1}\right. & \left.x_{2}^{2} \widetilde{x}_{1}+2 t^{2} x_{2}^{2} x_{1}^{2}\right] \\
& \times\left[\widetilde{x}_{1}^{2}-2 t^{2} x_{2}^{2}-4 t x_{1} \widetilde{x}_{1}+t^{2} x_{1}^{2}\right]
\end{aligned}
$$

Note that the the first bracket is negative for $x, \widetilde{x} \in W_{a}$ if j is large enough. To study the sign of the second one, we consider the function $F\left(t, x_{1}, \widetilde{x}_{1}\right)=$ $\widetilde{x}_{1}^{2}-4 t x_{1} \widetilde{x}_{1}+t^{2} x_{1}^{2}$. Since F has a negative maximum on $\{1\} \times\{1\} \times\left[\frac{1}{2}, 2\right]$, it follows easily that we can choose a such that for $x, \widetilde{x} \in W_{a}$ and j large enough, the same assertion holds for the second bracket. So $\operatorname{det} A$ is comparable with $2^{-2 j}$, thus the hypothesis of the Theorem 3.6 are satisfied with $\beta=2$ and such a. Moreover, we have $\beta=m-2$, then we conclude that the interior of E_{μ} is the open trapezoidal region with vertices $(0,0),(1,1),\left(\frac{3}{5}, \frac{4}{5}\right),\left(\frac{2}{5}, \frac{1}{5}\right)$.

On the other hand, in a similar way than in Example 3.1 we can see that $\alpha=2$ (in fact $\operatorname{det} A(x, x)=648\left(x_{1}^{2}+9 x_{2}^{2}\right)\left(x_{1}^{2}+x_{2}^{2}\right)^{2} x_{2}^{2}$), so in this case Theorem 3.6 gives a better result (a precise description of $\stackrel{\circ}{E}_{\mu}$) than that given by Theorem 3.5 , that asserts only that $\stackrel{\circ}{E}_{\mu}$ contains the trapezoidal region with vertices $(0,0),(1,1),\left(\frac{13}{14}, \frac{6}{7}\right)$ and $\left(\frac{1}{7}, \frac{1}{14}\right)$.
Example 3.3. The following is an example where Theorem 3.5 characterizes $\stackrel{\circ}{E}_{\mu}$. Let

$$
\varphi\left(x_{1}, x_{2}\right)=\left(x_{2} \operatorname{Re}\left(x_{1}+i x_{2}\right)^{12}, x_{2} \operatorname{Im}\left(x_{1}+i x_{2}\right)^{12}\right)
$$

E. Ferreyra, T. Godoy and
M. Urciuolo

Title Page
Contents

$\mathbf{4}$
Go Back
Close
Quit

Page 24 of 27

A computation gives that for $x=\left(x_{1}, x_{2}\right)$ and $h=\left(h_{1}, h_{2}\right)$

$$
\operatorname{det}\left(\varphi^{\prime \prime}(x) h\right)=288\left(x_{1}^{2}+x_{2}^{2}\right)^{10}\left(66 x_{2}^{2} h_{1}^{2}+11 x_{1} x_{2} h_{1} h_{2}+\left(x_{1}^{2}+78 x_{2}^{2}\right) h_{2}^{2}\right)
$$

and this quadratic form in $\left(h_{1}, h_{2}\right)$ does not vanish for $h \neq 0$ unless $x_{2}=0$. So the set of non elliptic points for φ is the x_{1} axis. Moreover, its associate symmetric matrix

$$
A=A(x)=288\left(x_{1}^{2}+x_{2}^{2}\right)^{10}\left[\begin{array}{cc}
66 x_{2}^{2} & \frac{11}{2} x_{1} x_{2} \\
\frac{11}{2} x_{1} x_{2} & x_{1}^{2}+78 x_{2}^{2}
\end{array}\right]
$$

satisfies $c_{1} \leq \operatorname{tr} A(x) \leq c_{2}$ for $x \in B, \frac{1}{2} \leq\left|x_{1}\right|$, and $\left|x_{2}\right| \leq \delta\left|x_{1}\right|, \delta>0$ small enough.

Thus if $\lambda_{1}=\lambda_{1}(x)$ denotes the eigenvalue of lower absolute value of $A(x)$, we have, for x in this region, that

$$
k_{1}|\operatorname{det} A| \leq\left|\lambda_{1}\right| \leq k_{2}|\operatorname{det} A|
$$

where k_{1} and k_{2} are positive constants.
Since $\operatorname{det} A\left(1, x_{2}\right)=(288)^{2}\left(1+x_{2}^{2}\right)^{20}\left(\frac{143}{4} x_{2}^{2}+5148 x_{2}^{4}\right)$, we have that $\alpha=2$. So $7 \alpha=m+1$ and, from Theorem 3.5, we conclude that the interior of E_{μ} is the open trapezoidal region with vertices $(0,0),(1,1),\left(\frac{13}{14}, \frac{6}{7}\right),\left(\frac{1}{7}, \frac{1}{14}\right)$.

Improvement of An Ostrowski Type Inequality for Monotonic Mappings and Its Application for Some Special Means
E. Ferreyra, T. Godoy and
M. Urciuolo

Title Page
Contents
Go Back
Close
Quit

References

[1] J. BOCHNAK, M. COSTE AND M. F. ROY, Real Algebraic Geometry, Springer, 1998.
[2] M. CHRIST. Endpoint bounds for singular fractional integral operators, UCLA Preprint, (1988).
[3] S. W. DRURY and K. GUO, Convolution estimates related to surfaces of half the ambient dimension. Math. Proc. Camb. Phil. Soc., 110 (1991), 151-159.
[4] E. FERREYRA, T. GODOY and M. URICUOLO. The type set for some measures on $\mathbb{R}^{2 n}$ with n dimensional support, Czech. Math. J., (to appear).
[5] A. IOSEVICH And E. SAWYER, Sharp $L^{p}-L^{q}$ estimates for a class of averaging operators, Ann Inst. Fourier, 46(5) (1996), 359-1384.
[6] T. KATO, Perturbation Theory for Linear Operators, Second edition. Springer Verlag, Berlin Heidelberg- New York, 1976.
[7] D. OBERLIN, Convolution estimates for some measures on curves, Proc. Amer. Math. Soc., 99(1) (1987), 56-60.
[8] F. RICCI, Limitatezza $L^{p}-L^{q}$ per operatori di convoluzione definiti da misure singolari in \mathbb{R}^{n}, Bollettino U.M.I., (7) 11-A (1997), 237-252.
[9] F. RICCI AND E. M. STEIN, Harmonic analysis on nilpotent groups and singular integrals III, fractional integration along manifolds, J. Funct. Anal., 86 (1989), 360-389.
E. Ferreyra, T. Godoy and
M. Urciuolo

Title Page
Contents

44	\rightarrow
4	\checkmark
Go Back	
Close	
Quit	

Page 26 of 27
[10] E. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, New Jersey, 1970.

Improvement of An Ostrowski Type Inequality for Monotonic Mappings and Its Application for Some Special Means
E. Ferreyra, T. Godoy and
M. Urciuolo

Title Page
Contents
Go Back
Close
Quit

J. Ineq. Pure and Appl. Math. 2(3) Art. 37, 2001
http://jipam.vu.edu.au

