Journal of Inequalities in Pure and Applied Mathematics

Volume 2, Issue 3, Article 37, 2001

L^{p}-IMPROVING PROPERTIES FOR MEASURES ON \mathbb{R}^{4} SUPPORTED ON HOMOGENEOUS SURFACES IN SOME NON ELLIPTIC CASES

E. FERREYRA, T. GODOY, AND M. URCIUOLO

Facultad de Matematica, Astronomia y Fisica-CIEM, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba, Argentina eferrey@mate.uncor.edu
godoy@mate.uncor.edu
urciuolo@mate.uncor.edu

Received 8 January, 2001; accepted 5 June, 2001
Communicated by L. Pick

Abstract

In this paper we study convolution operators T_{μ} with measures μ in \mathbb{R}^{4} of the form $\mu(E)=\int_{B} \chi_{E}(x, \varphi(x)) d x$, where B is the unit ball of \mathbb{R}^{2}, and φ is a homogeneous polynomial function. If $\inf _{h \in S^{1}}\left|\operatorname{det}\left(d_{x}^{2} \varphi(h,).\right)\right|$ vanishes only on a finite union of lines, we prove, under suitable hypothesis, that T_{μ} is bounded from L^{p} into L^{q} if $\left(\frac{1}{p}, \frac{1}{q}\right)$ belongs to a certain explicitly described trapezoidal region.

Key words and phrases: Singular measures, L^{p}-improving, Convolution Ooperators.
2000 Mathematics Subject Classification 42B20, 42B10.

1. Introduction

It is well known that a complex measure μ on \mathbb{R}^{n} acts as a convolution operator on the Lebesgue spaces $L^{p}\left(\mathbb{R}^{n}\right): \mu * L^{p} \subset L^{p}$ for $1 \leq p \leq \infty$. If for some p there exists $q>p$ such that $\mu * L^{p} \subset L^{q}, \mu$ is called L^{p} - improving. It is known that singular measures supported on smooth submanifolds of \mathbb{R}^{n} may be L^{p} - improving. See, for example, [2], [5], [8], [9], [7] and [4].

Let φ_{1}, φ_{2} be two homogeneous polynomial functions on \mathbb{R}^{2} of degree $m \geq 2$ and let $\varphi=$ $\left(\varphi_{1}, \varphi_{2}\right)$. Let μ be the Borel measure on \mathbb{R}^{4} given by

$$
\begin{equation*}
\mu(E)=\int_{B} \chi_{E}(x, \varphi(x)) d x, \tag{1.1}
\end{equation*}
$$

[^0]where B denotes the closed unit ball around the origin in \mathbb{R}^{2} and $d x$ is the Lebesgue measure on \mathbb{R}^{2}. Let T_{μ} be the convolution operator given by $T_{\mu} f=\mu * f, f \in S\left(\mathbb{R}^{4}\right)$ and let E_{μ} be the type set corresponding to the measure μ defined by
$$
E_{\mu}=\left\{\left(\frac{1}{p}, \frac{1}{q}\right):\left\|T_{\mu}\right\|_{p, q}<\infty, 1 \leq p, q \leq \infty\right\}
$$
where $\left\|T_{\mu}\right\|_{p, q}$ denotes the operator norm of T_{μ} from $L^{p}\left(\mathbb{R}^{4}\right)$ into $L^{q}\left(\mathbb{R}^{4}\right)$ and where the L^{p} spaces are taken with respect to the Lebesgue measure on \mathbb{R}^{4}.

For $x, h \in \mathbb{R}^{2}$, let $\varphi^{\prime \prime}(x) h$ be the 2×2 matrix whose $j-t h$ column is $\varphi_{j}^{\prime \prime}(x) h$, where $\varphi_{j}^{\prime \prime}(x)$ denotes the Hessian matrix of φ_{j} at x. Following [3, p. 152], we say that $x \in \mathbb{R}^{2}$ is an elliptic point for φ if $\operatorname{det}\left(\varphi^{\prime \prime}(x) h\right) \neq 0$ for all $h \in \mathbb{R}^{2} \backslash\{0\}$. For $A \subset \mathbb{R}^{2}$, we will say that φ is strongly elliptic on A if $\operatorname{det}\left(\varphi_{1}^{\prime \prime}(x) h, \varphi_{2}^{\prime \prime}(y) h\right) \neq 0$ for all $x, y \in A$ and $h \in \mathbb{R}^{2} \backslash\{0\}$.

If every point $x \in B \backslash\{0\}$ is elliptic for φ, it is proved in [4] that for $m \geq 3, E_{\mu}$ is the closed trapezoidal region Σ_{m} with vertices $(0,0),(1,1),\left(\frac{m}{m+1}, \frac{m-1}{m+1}\right)$ and $\left(\frac{2}{m+1}, \frac{1}{m+1}\right)$.

Our aim in this paper is to study the case where the set of non elliptic points consists of a finite union of lines through the origin, L_{1}, \ldots, L_{k}. We assume from now on, that for $x \in R^{2}-\{0\}$, $\operatorname{det}\left(\varphi^{\prime \prime}(x) h\right)$ does not vanish identically, as a function of h. For each $l=1,2, \ldots, k$, let $\pi_{L_{l}}$ and $\pi_{L_{l}^{\perp}}$ be the orthogonal projections from \mathbb{R}^{2} onto L_{l} and L_{l}^{\perp} respectively. For $\delta>0,1 \leq l \leq k$, let

$$
V_{\delta}^{l}=\left\{x \in B: 1 / 2 \leq\left|\pi_{L_{l}}(x)\right| \leq 1 \text { and }\left|\pi_{L_{l}^{\perp}}(x)\right| \leq \delta\left|\pi_{L_{l}}(x)\right|\right\} .
$$

It is easy to see (see Lemma 2.1 and Remark 3.6) that for δ small enough, there exists $\alpha_{l} \in \mathbb{N}$ and positive constants c and c^{\prime} such that

$$
c\left|\pi_{L_{l}^{\perp}}(x)\right|^{\alpha_{l}} \leq \inf _{h \in S^{1}}\left|\operatorname{det}\left(\varphi^{\prime \prime}(x) h\right)\right| \leq c^{\prime}\left|\pi_{L_{l}^{\perp}}(x)\right|^{\alpha_{l}}
$$

for all $x \in V_{\delta}^{l}$. Following the approach developed in [3], we prove, in Theorem 3.7, that if $\alpha=\max _{1 \leq l \leq k} \alpha_{l}$ and if $7 \alpha \leq m+1$, then the interior of E_{μ} agrees with the interior of Σ_{m}.

Moreover in Theorem 3.8 we obtain that $\stackrel{\circ}{E}_{\mu}=\stackrel{\circ}{\Sigma}_{m}$ still holds in some cases where $7 \alpha>$ $m+1$, if we require a suitable hypothesis on the behavior, near the lines L_{1}, \ldots, L_{k}, of the map $(x, y) \rightarrow \inf _{h \in S^{1}}\left|\operatorname{det}\left(\varphi_{1}^{\prime \prime}(x) h, \varphi_{2}^{\prime \prime}(y) h\right)\right|$.

In any case, even though we can not give a complete description of the interior of E_{μ}, we obtain a polygonal region contained in it.

Throughout the paper c will denote a positive constant not necessarily the same at each occurrence.

2. Preliminaries

Let $\varphi_{1}, \varphi_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be two homogeneous polynomials functions of degree $m \geq 2$ and let $\varphi=\left(\varphi_{1}, \varphi_{2}\right)$. For $\delta>0$ let

$$
\begin{equation*}
V_{\delta}=\left\{\left(x_{1}, x_{2}\right) \in B: \frac{1}{2} \leq\left|x_{1}\right| \leq 1 \text { and }\left|x_{2}\right| \leq \delta\left|x_{1}\right|\right\} . \tag{2.1}
\end{equation*}
$$

We assume in this section that, for some $\delta_{0}>0$, the set of the non elliptic points for φ in $V_{\delta_{0}}$ is contained in the x_{1} axis.

For $x \in \mathbb{R}^{2}$, let $P=P(x)$ be the symmetric matrix that realizes the quadratic form $h \rightarrow$ $\operatorname{det}\left(\varphi^{\prime \prime}(x) h\right)$, so

$$
\begin{equation*}
\operatorname{det}\left(\varphi^{\prime \prime}(x) h\right)=\langle P(x) h, h\rangle \tag{2.2}
\end{equation*}
$$

Lemma 2.1. There exist $\delta \in\left(0, \delta_{0}\right), \alpha \in \mathbb{N}$ and a real analytic function $g=g\left(x_{1}, x_{2}\right)$ on V_{δ} with $g\left(x_{1}, 0\right) \neq 0$ for $x_{1} \neq 0$ such that

$$
\begin{equation*}
\inf _{|h|=1}\left|\operatorname{det}\left(\varphi^{\prime \prime}(x) h\right)\right|=\left|x_{2}\right|^{\alpha}|g(x)| \tag{2.3}
\end{equation*}
$$

for all $x \in V_{\delta}$.
Proof. Since $P(x)$ is real analytic on V_{δ} and $P(x) \neq 0$ for $x \neq 0$, it follows that, for δ small enough, there exists two real analytic functions $\lambda_{1}(x)$ and $\lambda_{2}(x)$ wich are the eigenvalues of $P(x)$. Also, $\inf _{|h|=1}\left|\operatorname{det}\left(\varphi^{\prime \prime}(x) h\right)\right|=\min \left\{\left|\lambda_{1}(x)\right|,\left|\lambda_{2}(x)\right|\right\}$ for $x \in V_{\delta}$. Since we have assumed that $(1,0)$ is not an elliptic point for φ and that $P(x) \neq 0$ for $x \neq 0$, diminishing δ if necessary, we can assume that $\lambda_{1}(1,0)=0$ and that $\left|\lambda_{1}\left(1, x_{2}\right)\right| \leq\left|\lambda_{2}\left(1, x_{2}\right)\right|$ for $\left|x_{2}\right| \leq \delta$. Since $P(x)$ is homogeneous in x, we have that $\lambda_{1}(x)$ and $\lambda_{2}(x)$ are homogeneous in x with the same homogeneity degree d. Thus $\left|\lambda_{1}(x)\right| \leq\left|\lambda_{2}(x)\right|$ for all $x \in V_{\delta}$. Now, $\lambda_{1}\left(1, x_{2}\right)=$ $x_{2}^{\alpha} G\left(x_{2}\right)$ for some real analytical function $G=G\left(x_{2}\right)$ with $G(0) \neq 0$ and so $\lambda_{1}\left(x_{1}, x_{2}\right)=$ $x_{1}^{d} \lambda_{1}\left(1, \frac{x_{2}}{x_{1}}\right)=x_{1}^{d-\alpha} x_{2}^{\alpha} G\left(\frac{x_{2}}{x_{1}}\right)$. Taking $g\left(x_{1}, x_{2}\right)=x_{1}^{d-\alpha} G\left(\frac{x_{2}}{x_{1}}\right)$ the lemma follows.

Following [3], for $U \subset \mathbb{R}^{2}$ let $J_{U}: \mathbb{R}^{2} \rightarrow \mathbb{R} \cup\{\infty\}$ given by

$$
J_{U}(h)=\inf _{x, x+h \in U}\left|\operatorname{det}\left(\varphi^{\prime}(x+h)-\varphi^{\prime}(x)\right)\right|
$$

where the infimum of the empty set is understood to be ∞. We also set, as there, for $0<\alpha<1$

$$
R_{\alpha}^{U}(f)(x)=\int J_{U}(x-y)^{-1+\alpha} f(y) d y
$$

For $r>0$ and $w \in \mathbb{R}^{2}$, let $B_{r}(w)$ denotes the open ball centered at w with radius r.
We have the following
Lemma 2.2. Let w be an elliptic point for φ. Then there exist positive constants c and $c^{\prime} d e$ pending only on $\left\|\varphi_{1}\right\|_{C^{3}(B)}$ and $\left\|\varphi_{2}\right\|_{C^{3}(B)}$ such that if $0<r \leq c \inf _{|h|=1}\left|\operatorname{det}\left(\varphi^{\prime \prime}(w) h\right)\right|$ then
(1) $\left|\operatorname{det}\left(\varphi^{\prime}(x+h)-\varphi^{\prime}(x)\right)\right| \geq \frac{1}{2}\left|\operatorname{det}\left(\varphi^{\prime \prime}(w) h\right)\right|$ if $x, x+h \in B_{r}(w)$.

$$
\begin{equation*}
\left\|R_{\frac{1}{2}}^{B_{r}(w)}(f)\right\|_{6} \leq c^{\prime} r^{-\frac{1}{2}}\|f\|_{\frac{3}{2}}, f \in S\left(\mathbb{R}^{4}\right) \tag{2}
\end{equation*}
$$

Proof. Let $F(h)=\operatorname{det}\left(\varphi^{\prime}(x+h)-\varphi^{\prime}(x)\right)$ and let $d_{x}^{j} F$ denotes the $j-$ th differential of F at x. Applying the Taylor formula to $F(h)$ around $h=0$ and taking into account that $F(0)=0$, $d_{0} F(h)=0$ and that $d_{0}^{2} F(h, h) \equiv 2 \operatorname{det}\left(\varphi^{\prime \prime}(x) h\right)$ we obtain

$$
\operatorname{det}\left(\varphi^{\prime}(x+h)-\varphi^{\prime}(x)\right)=\operatorname{det}\left(\varphi^{\prime \prime}(x) h\right)+\int_{0}^{1} \frac{(1-t)^{2}}{2} d_{t h}^{3} F(h, h, h) d t
$$

Let $H(x)=\operatorname{det}\left(\varphi^{\prime \prime}(x) h\right)$. The above equation gives

$$
\begin{aligned}
& \operatorname{det}\left(\varphi^{\prime}(x+h)-\varphi^{\prime}(x)\right)=\operatorname{det}\left(\varphi^{\prime \prime}(w) h\right)+\int_{0}^{1} d_{w+t(x-w)} H(h) d t \\
&+\int_{0}^{1} \frac{(1-t)^{2}}{2} d_{t h}^{3} F(h, h, h) d t
\end{aligned}
$$

Then, for $x, x+h \in B_{r}(w)$ we have

$$
\left|\operatorname{det}\left(\varphi^{\prime}(x+h)-\varphi^{\prime}(x)\right)-\operatorname{det}\left(\varphi^{\prime \prime}(w) h\right)\right| \leq M|h|^{3} \leq 2 M r|h|^{2}
$$

with M depending only $\left\|\varphi_{1}\right\|_{C^{3}(B)}$ and $\left\|\varphi_{2}\right\|_{C^{3}(B)}$. If we choose $c \leq \frac{1}{4 M}$, we get, for $0<r<$ $c \inf _{|h|=1}\left|\operatorname{det}\left(\varphi^{\prime \prime}(w) h\right)\right|$ that

$$
\left|\operatorname{det}\left(\varphi^{\prime}(x+h)-\varphi^{\prime}(x)\right)\right| \geq \frac{1}{2}\left|\operatorname{det}\left(\varphi^{\prime \prime}(w) h\right)\right|
$$

and that

$$
J_{B_{r}(w)}(h) \geq \frac{1}{2}\left|\operatorname{det}\left(\varphi^{\prime \prime}(w) h\right)\right| \geq \frac{1}{2 c} r|h|^{2}
$$

Thus $\left\|R_{\frac{1}{2}}^{B_{r}(w)}(f)\right\|_{6} \leq c^{\prime} r^{-\frac{1}{2}}\left\|I_{2}(f)\right\|_{6} \leq c^{\prime} r^{-\frac{1}{2}}\|f\|_{\frac{3}{2}}$, where I_{α} denotes the Riesz potential on \mathbb{R}^{4}, defined as in [10, p. 117]. So the lemma follows from the Hardy-Littlewood-Sobolev theorem of fractional integration as stated e.g. in [10, p. 119].
Lemma 2.3. Let w be an elliptic point for φ. Then there exists a positive constant c depending only on $\left\|\varphi_{1}\right\|_{C^{3}(B)}$ and $\left\|\varphi_{2}\right\|_{C^{3}(B)}$ such that if $0<r \leq c \inf _{|h|=1}\left|\operatorname{det}\left(\varphi^{\prime \prime}(w) h\right)\right|$ then for all $h \neq 0$ the map $x \rightarrow \varphi(x+h)-\varphi(x)$ is injective on the domain $\left\{x \in B: x, x+h \in B_{r}(w)\right\}$.
Proof. Suppose that $x, y, x+h$ and $y+h$ belong to $B_{r}(w)$ and that

$$
\varphi(x+h)-\varphi(x)=\varphi(y+h)-\varphi(y)
$$

From this equation we get

$$
0=\int_{0}^{1}\left(\varphi^{\prime}(x+t h)-\varphi^{\prime}(y+t h)\right) h d t=\int_{0}^{1} \int_{0}^{1} d_{x+t h+s(y-x)}^{2} \varphi(y-x, h) d s d t
$$

Now, for $z \in B_{r}(w)$,

$$
\begin{aligned}
\left|\left(d_{z}^{2} \varphi-d_{w}^{2} \varphi\right)(y-x, h)\right| & =\left|\int_{0}^{1} d_{z+u(w-z)}^{3} \varphi(w-z, y-x, h) d u\right| \\
& \leq M r|y-x||h|
\end{aligned}
$$

then

$$
\begin{aligned}
0 & =\int_{0}^{1} \int_{0}^{1} d_{x+t h+s(y-x)}^{2} \varphi(y-x, h) d s d t \\
& =d_{w}^{2} \varphi(y-x, h)+\int_{0}^{1} \int_{0}^{1}\left[d_{x+t h+s(y-x)}^{2} \varphi-d_{w}^{2} \varphi\right](y-x, h) d s d t
\end{aligned}
$$

So $\left|d_{w}^{2} \varphi(y-x, h)\right| \leq M r|y-x||h|$ with M depending only on $\left\|\varphi_{1}\right\|_{C^{3}(B)}$ and $\left\|\varphi_{2}\right\|_{C^{3}(B)}$.
On the other hand, w is an elliptic point for φ and so, for $|u|=1$, the matrix $A:=\varphi^{\prime \prime}(w) u$ is invertible. Also $A^{-1}=(\operatorname{det} A)^{-1} \operatorname{Ad}(A)$, then

$$
\left|A^{-1} x\right|=|\operatorname{det} A|^{-1}|A d(A) x| \leq \frac{\widetilde{M}}{|\operatorname{det} A|}|x|
$$

where \widetilde{M} depends only on $\left\|\varphi_{1}\right\|_{C^{2}(B)}$ and $\left\|\varphi_{2}\right\|_{C^{2}(B)}$. Then, for $|v|=1$ and $x=A v$, we have $|A v| \geq|\operatorname{det} A| / \widetilde{M}$. Thus

$$
\begin{aligned}
\left|d_{w}^{2} \varphi(y-x, h)\right| & \geq|y-x||h| \inf _{|v|=1,|v|=1}\left|d_{w}^{2} \varphi(u, v)\right| \\
& =|y-x||h| \inf _{|u|=1,|v|=1}\left|\left\langle\varphi^{\prime \prime}(w) u, v\right\rangle\right| \\
& \geq \frac{1}{\widetilde{M}}|y-x||h| \inf _{|u|=1}\left|\operatorname{det} \varphi^{\prime \prime}(w) u\right|
\end{aligned}
$$

If we choose $r<\frac{1}{M \widetilde{M}} \inf _{|u|=1}\left|\operatorname{det} \varphi^{\prime \prime}(w) u\right|$ the above inequality implies $x=y$ and the lemma is proved.

For any measurable set $A \subset B$, let μ_{A} be the Borel measure defined by $\mu_{A}(E)=\int_{A} \chi_{E}(x, \varphi(x)) d x$ and let $T_{\mu_{A}}$ be the convolution operator given by $T_{\mu_{A}} f=\mu_{A} * f$.

Proposition 2.4. Let w be an elliptic point for φ. Then there exist positive constants c and c^{\prime} depending only on $\left\|\varphi_{1}\right\|_{C^{3}(B)}$ and $\left\|\varphi_{2}\right\|_{C^{3}(B)}$ such that if $0<r<c \inf |h|=1\left|\operatorname{det} \varphi^{\prime \prime}(w) h\right|$ then

$$
\left\|T_{\mu_{B_{r}(w)}} f\right\|_{3} \leq c^{\prime} r^{-\frac{1}{3}}\|f\|_{\frac{3}{2}} .
$$

Proof. Taking account of Lemma 2.3, we can proceed as in Theorem 0 in [3] to obtain, as there, that

$$
\left\|\mu_{B_{r}(w)} * f\right\|_{3}^{3} \leq\left(A_{1} A_{2} A_{3}\right)^{\frac{1}{3}}
$$

where

$$
A_{j}=\int_{\mathbb{R}^{2}} F_{j}(x) \prod_{1 \leq m \leq 3, m \neq j} R_{\frac{1}{2}}^{B_{r}(w)} F_{m}(x) d x
$$

and $F_{j}(x)=\|f(x, .)\|_{\frac{3}{2}}$
Then the proposition follows from Lemma 2.2 and an application of the triple Hölder inequality.

For $0<a<1$ and $j \in N$ let

$$
U_{a, j}=\left\{\left(x_{1}, x_{2}\right) \in B:\left|x_{1}\right| \geq a, 2^{-j}\left|x_{1}\right| \leq\left|x_{2}\right| \leq 2^{-j+1}\left|x_{1}\right|\right\}
$$

and let $U_{a, j, i}, i=1,2,3,4$ the connected components of $U_{a, j}$.
We have
Lemma 2.5. Let $0<a<1$. Suppose that there exist $\beta \in \mathbb{N}, j_{0} \in \mathbb{N}$ and a positive constant c such that $\left|\operatorname{det}\left(\varphi_{1}^{\prime \prime}(x) h, \varphi_{2}^{\prime \prime}(y) h\right)\right| \geq c 2^{-j \beta}|h|^{2}$ for all $h \in \mathbb{R}^{2}, x, y \in U_{a, j, i}, j \geq j_{0}$ and $i=1,2,3,4$. Thus
(1) For all $j \geq j_{0}, i=1,2,3,4$ if x and $x+h$ belong to $U_{a, j, i}$ then

$$
\left|\operatorname{det}\left(\varphi^{\prime}(x+h)-\varphi^{\prime}(x)\right)\right| \geq c 2^{-j \beta}|h|^{2} .
$$

(2) There exists a positive constant ${ }^{\prime}$ ' such that for all $j \geq j_{0}, i=1,2,3,4$

$$
\left\|R_{\frac{1}{2}}^{U_{a, j, i}}(f)\right\|_{6} \leq c^{\prime} 2^{\frac{j \beta}{2}}\|f\|_{\frac{3}{2}} .
$$

Proof. We fix i and $j \geq j_{0}$. For $x \in U_{a, j, i}$ we have

$$
\operatorname{det}\left(\varphi^{\prime}(x+h)-\varphi^{\prime}(x)\right)=\operatorname{det}\left(\int_{0}^{1} \varphi^{\prime \prime}(x+s h) h d s\right)
$$

For each $h \in \mathbb{R}^{2} \backslash\{0\}$ we have either $\operatorname{det}\left(\varphi_{1}^{\prime \prime}(x) h, \varphi_{2}^{\prime \prime}(y) h\right)>c 2^{-j \beta}|h|^{2}$ for all $x, y \in U_{a, j, i}$ or $\operatorname{det}\left(\varphi_{1}^{\prime \prime}(x) h, \varphi_{2}^{\prime \prime}(y) h\right)<-c 2^{-j \beta}|h|^{2}$ for all $x, y \in U_{a, j, i}$. We consider the first case. Let
$F(t)=\operatorname{det}\left(\int_{0}^{t} \varphi^{\prime \prime}(x+s h) h d s\right)$. Then

$$
\begin{aligned}
F^{\prime}(t)= & \operatorname{det}\left(\int_{0}^{t} \varphi_{1}^{\prime \prime}(x+s h) h d s, \varphi_{2}^{\prime \prime}(x+t h) h\right) \\
& +\operatorname{det}\left(\varphi_{1}^{\prime \prime}(x+t h) h, \int_{0}^{t} \varphi_{2}^{\prime \prime}(x+s h) h d s\right) \\
= & \int_{0}^{t} \operatorname{det}\left(\varphi_{1}^{\prime \prime}(x+s h) h, \varphi_{2}^{\prime \prime}(x+t h) h\right) d s \\
& +\int_{0}^{t} \operatorname{det}\left(\varphi_{1}^{\prime \prime}(x+t h) h, \varphi_{2}^{\prime \prime}(x+s h) h\right) d s \geq c 2^{-j \beta}|h|^{2} t .
\end{aligned}
$$

Since $F(0)=0$ we get $F(1)=\int_{0}^{1} F^{\prime}(t) d t \geq c 2^{-j \beta}|h|^{2}$. Thus

$$
\operatorname{det}\left(\varphi^{\prime}(x+h)-\varphi^{\prime}(x)\right)=F(1) \geq c 2^{-j \beta}|h|^{2} .
$$

Then $J_{U_{a, j, i},}(h) \geq c 2^{-j \beta}|h|^{2}$, and the lemma follows, as in Lemma 2.2, from the Hardy-Littlewood-Sobolev theorem of fractional integration. The other case is similar.

For fixed $x^{(1)}, x^{(2)} \in \mathbb{R}^{2}$, let

$$
B_{a, j, i}^{x^{(1)}, i^{(2)}}=\left\{x \in \mathbb{R}^{2}: x-x^{(1)} \in U_{a, j, i} \text { and } x-x^{(2)} \in U_{a, j, i}\right\}, i=1,2,3,4
$$

We have
Lemma 2.6. Let $0<a<1$ and let $x^{(1)}, x^{(2)} \in \mathbb{R}^{2}$. Suppose that there exist $\beta \in \mathbb{N}, j_{0} \in \mathbb{N}$ and a positive constant c such that $\left|\operatorname{det}\left(\varphi_{1}^{\prime \prime}(x) h, \varphi_{2}^{\prime \prime}(y) h\right)\right| \geq c 2^{-j \beta}|h|^{2}$ for all $h \in \mathbb{R}^{2}, x, y \in U_{a, j, i}$, $j \geq j_{0}$ and $i=1,2,3,4$. Then there exists $j_{1} \in \mathbb{N}$ independent of $x^{(1)}, x^{(2)}$ such that for all $j \geq j_{1}, i=1,2,3,4$ and all nonnegative $f \in S\left(\mathbb{R}^{4}\right)$ it holds that

$$
\int_{B_{a, j, i}^{x^{(1)}, x^{(2)}} \times \mathbb{R}^{2}} f\left(y-\varphi\left(x-x^{(1)}\right), y-\varphi\left(x-x^{(2)}\right)\right) d x d y \leq \frac{m^{2}}{J_{U_{a, j, i}}\left(x^{(2)}-x^{(1)}\right)} \int_{\mathbb{R}^{4}} f .
$$

Proof. We assert that, if $j \geq j_{0}$ then for each $(z, w) \in \mathbb{R}^{2} \times \mathbb{R}^{2}$ and $i=1,2,3,4$, the set

$$
\left\{(x, y) \in B_{a, j, i}^{x^{(1)}, x^{(2)}} \times \mathbb{R}^{2}: z=y-\varphi\left(x-x^{(1)}\right) \text { and } w=y-\varphi\left(x-x^{(2)}\right)\right\}
$$

is a finite set with at most m^{2} elements. Indeed, if $z=y-\varphi\left(x-x^{(1)}\right)$ and $w=y-\varphi\left(x-x^{(2)}\right)$ with $x \in B_{a, j, i}^{x^{(1)}, x^{(2)}}$, Lemma 2.5 says that, for j large enough,

$$
\left|\operatorname{det}\left(\varphi^{\prime}\left(x-x^{(1)}\right)-\varphi^{\prime}\left(x-x^{(2)}\right)\right)\right| \geq c 2^{-j \beta}|h|^{2}
$$

Thus the Bezout's Theorem (See e.g.[1] Lemma 11.5.1, p. 281]) implies that for each $(z, w) \in$ $\mathbb{R}^{2} \times \mathbb{R}^{2}$ the set

$$
\left\{x \in B_{a, j, i}^{x^{(1)}, x^{(2)}}: \varphi\left(x-x^{(2)}\right)-\varphi\left(x-x^{(1)}\right)=z-w\right\}
$$

is a finite set with at most m^{2} points. Since x determines y, the assertion follows.
For a fixed $\eta>0$ and for $k=\left(k_{1}, \ldots, k_{4}\right) \in Z^{4}$, let $Q_{k}=\prod_{1 \leq n \leq 4}\left[k_{n} \eta,\left(1+k_{n}\right) \eta\right]$. Let $\Phi_{k, j, i}:\left(B_{a, j, i}^{x^{(1)}, x^{(2)}} \times \mathbb{R}^{2}\right) \cap Q_{k} \rightarrow \mathbb{R}^{2} \times \mathbb{R}^{2}$ be the function defined by

$$
\Phi_{k, j, i}(x, y)=\left(y-\varphi\left(x-x^{(1)}\right), y-\varphi\left(x-x^{(2)}\right)\right)
$$

and let $W_{k, j, i}$ its image. Also $\operatorname{det}\left(\Phi_{k, j, i}^{\prime}\right)(x, y)=\operatorname{det}\left(\varphi^{\prime}\left(x-x^{(2)}\right)-\varphi^{\prime}\left(x-x^{(1)}\right)\right)$. Thus

$$
\begin{equation*}
\left|\operatorname{det}\left(\Phi_{k, j, i}^{\prime}\right)(x, y)\right| \geq J_{U_{a, j, i}}\left(x^{(2)}-x^{(1)}\right) \tag{2.4}
\end{equation*}
$$

for $(x, y) \in\left(B_{a, j, i}^{x^{(1)}, x^{(2)}} \times \mathbb{R}^{2}\right) \cap Q_{k}$.
Since $\Phi_{k, j, i}(x, y)=\Phi_{k, j, i}(\bar{x}, \bar{y})$ implies that $\varphi\left(x-x^{(1)}\right)-\varphi\left(\bar{x}-x^{(1)}\right)=\varphi\left(x-x^{(2)}\right)-$ $\varphi\left(\bar{x}-x^{(2)}\right)$, taking into account Lemma 2.1, from Lemma 2.3 it follows the existence of $\widetilde{j} \in N$ with \widetilde{j} independent of $x^{(1)}, x^{(2)}$ such that for $j \geq \widetilde{j}$ there exists $\widetilde{\eta}=\widetilde{\eta}(j)>0$ satisfying that for $0<\eta<\widetilde{\eta}(j)$ the map $\Phi_{k, j, i}$ is injective for all $k \in Z^{4}$. Let $\Psi_{k, j, i}$: $W_{k, j, i} \rightarrow\left(B_{a, j, i}^{x^{(1)}, x^{(2)}} \times \mathbb{R}^{2}\right) \cap Q_{k}$ its inverse. Lemma 2.5 says that $\left|\operatorname{det}\left(\Phi_{k, j, i}^{\prime}\right)\right| \geq c 2^{-j \beta}|h|^{2}$ on $\left(B_{a, j, i}^{x^{(1)}, x^{(2)}} \times \mathbb{R}^{2}\right) \cap Q_{k}$. We have

$$
\begin{array}{rl}
\int_{B_{a, j, i}^{x}}{ }^{(1), x^{(2)} \times \mathbb{R}^{2}} f & f\left(y-\varphi\left(x-x^{(1)}\right), y-\varphi\left(x-x^{(2)}\right)\right) d x d y \\
& =\sum_{k \in Z^{4}} \int_{\left(B_{a, j, i, i}^{x(1)} \times \mathbb{R}^{2}\right) \cap Q_{k}} f\left(y-\varphi\left(x-x^{(1)}\right), y-\varphi\left(x-x^{(2)}\right)\right) d x d y \\
& =\sum_{k \in Z^{4}} \int_{W_{k, j, i}} f(z, w) \frac{1}{\left|\operatorname{det}\left(\Phi_{k, j, i}^{\prime}\right)\left(\Psi_{k, j, i}(z, w)\right)\right|} d z d w \\
& \leq \frac{1}{J_{U_{a, j, i, i}}\left(x^{(2)}-x^{(1)}\right)} \int_{\mathbb{R}^{4}} \sum_{k \in Z^{4}} \chi_{W_{k, j, i}}(v) f(v) d v \\
& \leq \frac{m^{2}}{J_{U_{a, j, i}}\left(x^{(2)}-x^{(1)}\right)} \int_{\mathbb{R}^{4}} f
\end{array}
$$

where we have used (2.4).
Proposition 2.7. Let $0<a<1$. Suppose that there exist $\beta \in \mathbb{N}, j_{0} \in \mathbb{N}$ and a positive constant c such that $\left|\operatorname{det}\left(\varphi_{1}^{\prime \prime}(x) h, \varphi_{2}^{\prime \prime}(y) h\right)\right| \geq c 2^{-j \beta}|h|^{2}$ for all $h \in \mathbb{R}^{2}, x, y \in U_{a, j, i}, j \geq j_{0}$, $i=1,2,3,4$. Then, there exist $j_{1} \in N, c^{\prime}>0$ such that for all $j \geq j_{1}, f \in S\left(\mathbb{R}^{4}\right)$

$$
\left\|T_{\mu_{U_{a, j}}} f\right\|_{3} \leq c^{\prime} 2^{\frac{j \beta}{3}}\|f\|_{\frac{3}{2}} .
$$

Proof. For $i=1,2,3,4$, let

$$
K_{a, j, i}=\left\{\left(x, y, x^{(1)}, x^{(2)}, x^{(3)}\right) \in \mathbb{R}^{2} \times \mathbb{R}^{2} \times \mathbb{R}^{2} \times \mathbb{R}^{2} \times \mathbb{R}^{2}: x-x^{(s)} \in U_{a, j, i}, s=1,2,3\right\} .
$$

We can proceed as in Theorem 0 in [3] to obtain, as there, that

$$
\left\|\mu_{U_{a, j, i}} * f\right\|_{3}^{3}=\int_{K_{a, j, i}} \prod_{1 \leq j \leq 3} f\left(x_{j}, y-\varphi\left(x-x_{j}\right)\right) d x d y d x^{(1)} d x^{(2)} d x^{(3)}
$$

taking into account of Lemma 2.6 and reasoning, with the obvious changes, as in [3], Theorem 0 , we obtain that

$$
\left\|\mu_{U_{a, j, i}} * f\right\|_{3}^{3} \leq m^{2}\left(A_{1} A_{2} A_{3}\right)^{\frac{1}{3}}
$$

with

$$
A_{j}=\int_{\mathbb{R}^{2}} F_{j}(x) \prod_{1 \leq m \leq 3, m \neq j} R_{\frac{1}{2}}^{U_{a, j, i}} F_{m}(x) d x
$$

and $F_{j}(x)=\|f(x, .)\|_{\frac{3}{2}}$. Now the proof follows as in Proposition 2.4 .

3. About the Type Set

Proposition 3.1. For $\delta>0$ let V_{δ} be defined by (2.1). Suppose that the set of the non elliptic points for φ in V_{δ} are those lying in the x_{1} axis and let α be defined by (2.3).Then $E_{\mu_{V_{\delta}}}$ contains the closed trapezoidal region with vertices $(0,0),(1,1),\left(\frac{7 \alpha-1}{7 \alpha}, \frac{7 \alpha-2}{7 \alpha}\right),\left(\frac{2}{7 \alpha}, \frac{1}{7 \alpha}\right)$, except perhaps the closed edge parallel to the principal diagonal.
Proof. We first show that $(1-\theta)(1,1)+\theta\left(\frac{7 \alpha-1}{7 \alpha}, \frac{7 \alpha-2}{7 \alpha}\right) \in E_{\mu_{V_{\delta}}}$ if $0 \leq \theta<1$.
If $w=\left(w_{1}, w_{2}\right) \in U_{\frac{1}{2}, j}$ then $2^{-j-1} \leq\left|w_{2}\right| \leq 2^{-j+1}$. Thus, from Lemmas 2.2, 2.3 and Proposition 2.7. follows the existence of $j_{0} \in N$ and of a positive constant $c=c\left(\left\|\varphi_{1}\right\|_{C^{3}(B)},\left\|\varphi_{2}\right\|_{C^{3}(B)}\right)$ such that if $r_{j}=c 2^{-j \alpha}$, then

$$
\left\|T_{\mu_{B_{r_{j}}(w)}} f\right\|_{3} \leq c^{\prime} 2^{\frac{j \alpha}{3}}\|f\|_{\frac{3}{2}}
$$

for some $c^{\prime}>0$ and all $j \geq j_{0}, w \in U_{\frac{1}{2}, j}, f \in S\left(\mathbb{R}^{4}\right)$. For $0 \leq t \leq 1$ let p_{t}, q_{t} be defined by $\left(\frac{1}{p_{t}}, \frac{1}{q_{t}}\right)=t\left(\frac{2}{3}, \frac{1}{3}\right)+(1-t)(1,1)$. We have also $\left\|T_{\mu_{B_{r_{j}(w)}}} f\right\|_{1} \leq \pi c^{2} 2^{-2 j \alpha}\|f\|_{1}$, thus, the Riesz-Thorin theorem gives

$$
\left\|T_{\mu_{B_{r}(w)}} f\right\|_{q_{t}} \leq c 2^{j\left(\frac{t \alpha}{3}-(1-t) 2 \alpha\right)}\|f\|_{p_{t}} .
$$

Since $U_{\frac{1}{2}, j}$ can be covered with N of such balls $B_{r}(w)$ with $N \simeq 2^{j(2 \alpha-1)}$ we get that

$$
\left\|T_{\mu_{\frac{1}{2}, j}}\right\|_{p_{t}, q_{t}} \leq c 2^{j\left(\frac{7}{3} \alpha t-1\right)} .
$$

Let $U=\cup_{j \geq j_{0}} U_{\frac{1}{2}, j}$. We have that $\left\|T_{\mu_{U}}\right\|_{p_{t}, q_{t}} \leq \sum_{j \geq j_{0}}\left\|T_{\mu_{U_{\frac{1}{2}}, j}}\right\|_{p_{t}, q_{t}}<\infty$, for $t<\frac{3}{7 \alpha}$. Since for $t=\frac{3}{7 \alpha}$ we have $\frac{1}{p_{t}}=1-\frac{1}{7 \alpha}$ and $\frac{1}{q_{t}}=1-\frac{2}{7 \alpha}$ and since every point in $V_{\delta} \backslash \stackrel{\circ}{U}$ is an elliptic point (and so, from Theorem 3 in [3], $\left\|T_{\mu_{V_{\delta} \backslash U}}\right\|_{\frac{3}{2}, 3}<\infty$), we get that $(1-\theta)(1,1)+\theta\left(\frac{7 \alpha-1}{7 \alpha}, \frac{7 \alpha-2}{7 \alpha}\right) \in$ $E_{\mu_{V_{\delta}}}$ for $0 \leq \theta<1$. On the other hand, a standard computation shows that the adjoint operator $T_{\mu_{V_{\delta}}}^{*}$ is given by $T_{\mu_{V_{\delta}}}^{*} f=\left(T_{\mu_{V_{\delta}}}\left(f^{\vee}\right)\right)^{\vee}$, where we write, for $g: \mathbb{R}^{4} \rightarrow C, g^{\vee}(x)=g(-x)$. Thus $E_{\mu_{V_{\delta}}}$ is symmetric with respect to the nonprincipal diagonal. Finally, after an application of the Riesz-Thorin interpolation theorem, the proposition follows.

For $\delta>0$, let $A_{\delta}=\left\{\left(x_{1}, x_{2}\right) \in B:\left|x_{2}\right| \leq \delta\left|x_{1}\right|\right\}$.
Remark 3.2. For $s>0, x=\left(x_{1}, \ldots, x_{4}\right) \in \mathbb{R}^{4}$ we set $s \bullet x=\left(s x_{1}, s x_{2}, s^{m} x_{3}, s^{m} x_{4}\right)$. If $E \subset \mathbb{R}^{2}, F \subset \mathbb{R}^{4}$ we set $s E=\{s x: x \in E\}$ and $s \bullet F=\{s \bullet x: x \in F\}$. For $f: \mathbb{R}^{4} \rightarrow C$, $s>0$, let f_{s} denotes the function given by $f_{s}(x)=f(s \bullet x)$. A computation shows that

$$
\begin{equation*}
\left(T_{\mu_{2}-j V_{\delta}} f\right)\left(2^{-j} \bullet x\right)=2^{-2 j}\left(T_{\mu_{\delta}} f_{2^{-j}}\right)(x) \tag{3.1}
\end{equation*}
$$

for all $f \in S\left(\mathbb{R}^{4}\right), x \in \mathbb{R}^{4}$.
From this it follows easily that

$$
\left\|T_{\mu_{2}-j V_{\delta}}\right\|_{p, q}=2^{-j\left(\frac{2(m+1)}{q}-\frac{2(m+1)}{p}+2\right)}\left\|T_{\mu_{\delta}}\right\|_{p, q} .
$$

This fact implies that

$$
\begin{equation*}
E_{\mu} \subset\left\{\left(\frac{1}{p}, \frac{1}{q}\right): \frac{1}{q} \geq \frac{1}{p}-\frac{1}{m+1}\right\} \tag{3.2}
\end{equation*}
$$

and that if $\frac{1}{q}>\frac{1}{p}-\frac{1}{m+1}$ then $\left(\frac{1}{p}, \frac{1}{q}\right) \in E_{\mu_{A_{\delta}}}$ if and only if $\left(\frac{1}{p}, \frac{1}{q}\right) \in E_{\mu_{V_{\delta}}}$.
Theorem 3.3. Suppose that for some $\delta>0$ the set of the non elliptic points for φ in A_{δ} are those lying on the x_{1} axis and let α be defined by (2.3). Then $E_{\mu_{A_{\delta}}}$ contains the intersection of the two closed trapezoidal regions with vertices $(0,0),(1,1),\left(\frac{m}{m+1}, \frac{m-1}{m+1}\right),\left(\frac{2}{m+1}, \frac{1}{m+1}\right)$ and $(0,0),(1,1),\left(\frac{7 \alpha-1}{7 \alpha}, \frac{7 \alpha-2}{7 \alpha}\right),\left(\frac{2}{7 \alpha}, \frac{1}{7 \alpha}\right)$ respectively, except perhaps the closed edge parallel to the diagonal.

Moreover, if $7 \alpha \leq m+1$ then the interior of $E_{\mu_{A_{\delta}}}$ is the open trapezoidal region with vertices $(0,0),(1,1),\left(\frac{m}{m+1}, \frac{m-1}{m+1}\right)$ and $\left(\frac{2}{m+1}, \frac{1}{m+1}\right)$.
Proof. Taking into account Proposition 3.1, the theorem follows from the facts of Remark 3.2 .

For $0<a<1$ and $\delta>0$ we set $V_{a, \delta}=\left\{\left(x_{1}, x_{2}\right) \in B: a \leq\left|x_{1}\right| \leq 1\right.$ and $\left.\left|x_{2}\right| \leq \delta\left|x_{1}\right|\right\}$. We have
Proposition 3.4. Let $0<a<1$. Suppose that for some $0<a<1, j_{0}, \beta \in N$ and some positive constant c we have $\left|\operatorname{det}\left(\varphi_{1}^{\prime \prime}(x) h, \varphi_{1}^{\prime \prime}(y) h\right)\right| \geq c 2^{-j \beta}|h|^{2}$ for all $h \in \mathbb{R}^{2}, x, y \in U_{a, j, i}, j \geq j_{0}$ and $i=1,2,3,4$. Then, for δ positive and small enough, $E_{\mu_{V_{a, \delta}}}$ contains the closed trapezoidal region with vertices $(0,0),(1,1),\left(\frac{\beta+2}{\beta+3}, \frac{\beta+1}{\beta+3}\right),\left(\frac{2}{\beta+3}, \frac{1}{\beta+3}\right)$, except perhaps the closed edge parallel to the principal diagonal.

Proof. Proposition 2.7 says that there exist $j_{1} \in N$ and a positive constant c such that for $j \geq j_{1}$ and $f \in S\left(\mathbb{R}^{4}\right)$

$$
\left\|T_{\mu_{U_{a, j, i}}} f\right\|_{3} \leq c 2^{\frac{j \beta}{3}}\|f\|_{\frac{3}{2}} .
$$

Also, for some $c>0$ and all $f \in S\left(\mathbb{R}^{4}\right)$ we have $\left\|T_{\mu_{U_{a, j, i}}} f\right\|_{1} \leq c 2^{-j}\|f\|_{1}$. Then $\left\|T_{\mu_{U_{a, j, i}}} f\right\|_{q_{t}} \leq$ $c 2^{j\left(t \frac{\beta}{3}-(1-t)\right)}\|f\|_{p_{t}}$ where p_{t}, q_{t} are defined as in the proof of Proposition 3.1. Let $U=\cup_{j \geq j_{1}} U_{a, j}$. Then $\left\|T_{\mu_{U}} f\right\|_{p_{t}, q_{t}}<\infty$ if $t<\frac{3}{\beta+3}$. Now, the proof follows as in Proposition 3.1

Theorem 3.5. Suppose that for some $0<a<1, j_{0}, \beta \in N$ and for some positive constant c we have $\left|\operatorname{det}\left(\varphi_{1}^{\prime \prime}(x) h, \varphi_{1}^{\prime \prime}(y) h\right)\right| \geq c 2^{-j \beta}|h|^{2}$ for all $x, y \in U_{a, j, i}, j \geq j_{0}$ and $i=1,2,3$, 4. Then for δ positive and small enough, $E_{\mu_{A_{\delta}}}$ contains the intersection of the two closed trapezoidal regions with vertices $(0,0),(1,1),\left(\frac{m}{m+1}, \frac{m-1}{m+1}\right),\left(\frac{2}{m+1}, \frac{1}{m+1}\right)$ and $(0,0),(1,1),\left(\frac{\beta+2}{\beta+3}, \frac{\beta+1}{\beta+3}\right)$, $\left(\frac{2}{\beta+3}, \frac{1}{\beta+3}\right)$, respectively, except perhaps the closed edge parallel to the diagonal.

Moreover, if $\beta \leq m-2$ then the interior of E_{μ} is the open trapezoidal region with vertices $(0,0),(1,1),\left(\frac{m}{m+1}, \frac{m-1}{m+1}\right)$ and $\left(\frac{2}{m+1}, \frac{1}{m+1}\right)$.
Proof. Follows as in Theorem 3.3 using now Proposition 3.4 instead of Proposition 3.1.
Remark 3.6. We now turn out to the case when φ is a homogeneous polynomial function whose set of non elliptic points is a finite union of lines through the origin, L_{1}, \ldots, L_{k}.

For each $l, 1 \leq l \leq k$, let $A_{\delta}^{l}=\left\{x \in \mathbb{R}^{2}:\left|\pi_{L_{l}}^{\perp} x\right| \leq \delta\left|\pi_{L_{l}} x\right|\right\}$ where $\pi_{L_{l}}$ and $\pi_{L_{l}}^{\perp}$ denote the orthogonal projections from \mathbb{R}^{2} into L_{l} and L_{l}^{\perp} respectively. Thus each A_{δ}^{l} is a closed conical sector around L_{l}. We choose δ small enough such that $A_{\delta}^{l} \cap A_{\delta}^{i}=\emptyset$ for $l \neq i$.

It is easy to see that there exists (a unique) $\alpha_{l} \in N$ and positive constants $c_{l}^{\prime}, c_{l}^{\prime \prime}$ such that

$$
\begin{equation*}
c_{l}^{\prime}\left|\pi_{L_{l}}^{\perp} w\right|^{\alpha_{l}} \leq \inf _{|h|=1}\left|\operatorname{det}\left(\varphi^{\prime \prime}(w) h\right)\right| \leq c_{l}^{\prime \prime}\left|\pi_{L_{l}}^{\perp} x\right|^{\alpha_{l}} \tag{3.3}
\end{equation*}
$$

for all $w \in A_{\delta}^{l}$. Indeed, after a rotation the situation reduces to that considered in Remark

Theorem 3.7. Suppose that the set of non elliptic points is a finite union of lines through the origin, L_{1}, \ldots, L_{k}. For $l=1,2, \ldots, k$, let α_{l} be defined by (3.3), and let $\alpha=\max _{1 \leq l \leq k} \alpha_{l}$. Then E_{μ} contains the intersection of the two closed trapezoidal regions with vertices $(0,0),(1,1)$, $\left(\frac{m}{m+1}, \frac{m-1}{m+1}\right),\left(\frac{2}{m+1}, \frac{1}{m+1}\right)$ and $(0,0),(1,1),\left(\frac{7 \alpha-1}{7 \alpha}, \frac{7 \alpha-2}{7 \alpha}\right),\left(\frac{2}{7 \alpha}, \frac{1}{7 \alpha}\right)$, respectively, except perhaps the closed edge parallel to the diagonal.

Moreover, if $7 \alpha \leq m+1$ then the interior of E_{μ} is the interior of the trapezoidal regions with vertices $(0,0),(1,1),\left(\frac{m}{m+1}, \frac{m-1}{m+1}\right),\left(\frac{2}{m+1}, \frac{1}{m+1}\right)$.
Proof. For $l=1,2, \ldots, k$, let A_{δ}^{l} be as above. From Theorem 3.3, we obtain that $E_{\mu_{A_{\delta}^{l}}}$ contains the intersection of the two closed trapezoidal regions with vertices $(0,0),(1,1),\left(\frac{m}{m+1}, \frac{m-1}{m+1}\right)$, $\left(\frac{2}{m+1}, \frac{1}{m+1}\right)$ and $(0,0),(1,1),\left(\frac{7 \alpha_{l}-1}{7 \alpha_{l}}, \frac{7 \alpha_{l}-2}{7 \alpha_{l}}\right),\left(\frac{2}{7 \alpha_{l}}, \frac{1}{7 \alpha_{l}}\right)$ respectively, except perhaps the closed edge parallel to the diagonal.

Since every $x \in B \backslash \cup_{l} A_{\delta}^{l}$ is an elliptic point for φ, Theorem 0 in [3] and a compactness argument give that $\left\|T_{\mu_{D}}\right\|_{\frac{3}{2}, 3}<\infty$ where $D=\left\{x \in B \backslash \cup_{l} A_{\delta}^{l}: \frac{1}{2} \leq|x|\right\}$. Then (using the symmetry of $E_{\mu_{D}}$, the fact of that μ_{D} is a finite measure and the Riesz-Thorin theorem) $E_{\mu_{D}}$ is the closed triangle with vertices $(0,0),(1,1),\left(\frac{2}{3}, \frac{1}{3}\right)$. Now, proceeding as in the proof of Theorem 3.3 we get that $\| T_{\mu_{B \backslash \cup A_{\delta}^{l}}^{l} \|_{p, q}}<\infty$ if $\frac{1}{q}>\frac{1}{p}-\frac{1}{m+1}$. Then the first assertion of the theorem is true. The second one follows also using the facts of Remark 3.2.

For $0<a<1$, we set

$$
U_{a, j}^{l}=\left\{x \in \mathbb{R}^{2}: a \leq\left|\pi_{L^{l}}(x)\right| \leq 1 \text { and } 2^{-j}\left|\pi_{L^{l}}(x)\right| \leq\left|\pi_{L^{l}}^{\perp}(x)\right| \leq 2^{-j+1}\left|\pi_{L^{l}}(x)\right|\right\}
$$

let $U_{a, j, i}^{l}, i=1,2,3,4$ be the connected components of $U_{a, j}^{l}$.
Theorem 3.8. Suppose that the set of non elliptic points for φ is a finite union of lines through the origin, L_{1}, \ldots, L_{k}. Let $0<a<1$ and let $j_{0} \in N$ such that

For $l=1,2, \ldots, k$, there exists $\beta_{l} \in N$ satisfying $\left|\operatorname{det}\left(\varphi_{1}^{\prime \prime}(x) h, \varphi_{1}^{\prime \prime}(y) h\right)\right| \geq c 2^{-j \beta_{j}}|h|^{2}$ for all $x, y \in U_{a, j, i}^{l}, j \geq j_{0}$ and $i=1,2,3,4$. Let $\beta=\max _{1 \leq j \leq k} \beta_{j}$. Then E_{μ} contains the intersection of the two closed trapezoidal regions with vertices $(0,0),(1,1),\left(\frac{m}{m+1}, \frac{m-1}{m+1}\right),\left(\frac{2}{m+1}, \frac{1}{m+1}\right)$ and $(0,0),(1,1),\left(\frac{\beta+2}{\beta+3}, \frac{\beta+1}{\beta+3}\right),\left(\frac{2}{\beta+3}, \frac{1}{\beta+3}\right)$, respectively, except perhaps the closed edge parallel to the diagonal.

Moreover, if $\beta \leq m-2$ then the interior of E_{μ} is the interior of the trapezoidal region with vertices $(0,0),(1,1),\left(\frac{m}{m+1}, \frac{m-1}{m+1}\right),\left(\frac{2}{m+1}, \frac{1}{m+1}\right)$.
Proof. Follows as in Theorem 3.7, using now Theorem 3.5 instead of Theorem 3.3.
Example 3.1. $\varphi\left(x_{1}, x_{2}\right)=\left(x_{1}^{2} x_{2}-x_{1} x_{2}^{2}, x_{1}^{2} x_{2}+x_{1} x_{2}^{2}\right)$
It is easy to check that the set of non elliptic points is the union of the coordinate axes. Indeed, for $h=\left(h_{1}, h_{2}\right)$ we have $\operatorname{det} \varphi^{\prime \prime}\left(x_{1}, x_{2}\right) h=8 x_{2}^{2} h_{1}^{2}+8 x_{1} x_{2} h_{1} h_{2}+8 x_{1}^{2} h_{2}^{2}$ and this quadratic form in (h_{1}, h_{2}) has non trivial zeros only if $x_{1}=0$ or $x_{2}=0$. The associated symmetric matrix to the quadratic form is

$$
\left[\begin{array}{cc}
8 x_{2}^{2} & 4 x_{1} x_{2} \\
4 x_{1} x_{2} & 8 x_{1}^{2}
\end{array}\right]
$$

and for $x_{1} \neq 0$ and $\left|x_{2}\right| \leq \delta\left|x_{1}\right|$ with δ small enough, its eigenvalue of lower absolute value is $\lambda_{1}\left(x_{1}, x_{2}\right)=4 x_{1}^{2}+4 x_{2}^{2}-4 \sqrt{\left(x_{2}^{4}-x_{1}^{2} x_{2}^{2}+x_{1}^{4}\right)}$. Thus $\lambda_{1}\left(x_{1}, x_{2}\right) \simeq 6 x_{2}^{2}$ for such $\left(x_{1}, x_{2}\right)$. Similarly, for $x_{2} \neq 0$ and $\left|x_{1}\right| \leq \delta\left|x_{2}\right|$ with δ small enough, the eigenvalue of lower absolute value is comparable with $6 x_{1}^{2}$. Then, in the notation of Theorem 3.7, we obtain $\alpha=2$ and so E_{μ} contains the closed trapezoidal region with vertices $(0,0),(1,1),\left(\frac{13}{14}, \frac{6}{7}\right)$ and $\left(\frac{1}{7}, \frac{1}{14}\right)$ except
perhaps the closed edge parallel to the principal diagonal. Observe that, in this case, Theorem 3.8 does not apply. In fact, for $x=\left(x_{1}, x_{2}\right), \widetilde{x}=\left(\widetilde{x}_{1}, \widetilde{x}_{2}\right)$ and $h=\left(h_{1}, h_{2}\right)$ we have

$$
\begin{aligned}
& \operatorname{det}\left(\varphi_{1}^{\prime \prime}(x) h,, \varphi_{2}^{\prime \prime}(\widetilde{x}) h\right) \\
& \quad=4 h_{1}^{2}\left(x_{2} \widetilde{x}_{1}-\widetilde{x}_{2} x_{1}+2 x_{2} \widetilde{x}_{2}\right)+4 h_{1} h_{2}\left(x_{1} \widetilde{x}_{2}+\widetilde{x}_{1} x_{2}\right)+4 h_{2}^{2}\left(x_{1} \widetilde{x}_{2}-x_{2} \widetilde{x}_{1}+2 x_{2} \widetilde{x}_{1}\right) .
\end{aligned}
$$

Take $x_{1}=\widetilde{x}_{1}=1$ and let $A=A\left(x_{2}, \widetilde{x}_{2}\right)$ the matrix of the above quadratic form in $\left(h_{1}, h_{2}\right)$. For $x_{2}=2^{-j}, \widetilde{x}_{2}=2^{-j+1}$ we have $\operatorname{det} A<0$ for j large enough but if we take $x_{2}=2^{-j+1}$ and $\widetilde{x}_{2}=2^{-j}$, we get $\operatorname{det} A>0$ for j large enough, so, for all j large enough, $\operatorname{det} A=0$ for some $2^{-j} \leq x_{2}, \widetilde{x}_{2} \leq 2^{-j+1}$. Thus, for such x_{2}, \widetilde{x}_{2},

$$
\inf _{\left|\left(h_{1}, h_{2}\right)\right|=1} \operatorname{det}\left(\varphi_{1}^{\prime \prime}\left(1, x_{2}\right)\left(h_{1}, h_{2}\right), \varphi_{2}^{\prime \prime}\left(1, \widetilde{x}_{2}\right)\left(h_{1}, h_{2}\right)\right)=0 .
$$

Example 3.2. Let us show an example where Theorem 3.8 characterizes $\stackrel{\circ}{E}_{\mu}$. Let

$$
\varphi\left(x_{1}, x_{2}\right)=\left(x_{1}^{3} x_{2}-3 x_{1} x_{2}^{3}, 3 x_{1}^{2} x_{2}^{2}-x_{2}^{4}\right) .
$$

In this case the set of non elliptic points for φ is the x_{1} axis. Indeed,

$$
\operatorname{det}\left(\varphi^{\prime \prime}\left(x_{1}, x_{2}\right)\left(h_{1}, h_{2}\right)\right)=18\left(x_{1}^{2}+x_{2}^{2}\right)\left(\left(h_{2} x_{1}+x_{2} h_{1}\right)^{2}+2 x_{2}^{2} h_{1}^{2}+6 h_{2}^{2} x_{2}^{2}\right) .
$$

In order to apply Theorem 3.8, we consider the quadratic form in $h=\left(h_{1}, h_{2}\right)$

$$
\operatorname{det}\left(\varphi_{1}^{\prime \prime}\left(x_{1}, x_{2}\right) h, \varphi_{2}^{\prime \prime}\left(\widetilde{x}_{1}, \widetilde{x}_{2}\right) h\right) .
$$

If $x=\left(x_{1}, x_{2}\right)$ and $\widetilde{x}=\left(\widetilde{x}_{1}, \widetilde{x}_{2}\right)$, let $A=A(x, \widetilde{x})$ its associated symmetric matrix. An explicit computation of A shows that, for a given $0<a<1$ and for all j large enough and $i=1,2,3,4$, if x and \widetilde{x} belong to $U_{a, j, i}$, then

$$
a^{2} \leq \operatorname{tr}(A) \leq 20
$$

thus, if $\lambda_{1}(x, \widetilde{x})$ denotes the eigenvalue of lower absolute value of $A(x, \widetilde{x})$, we have, for $x, \widetilde{x} \in$ W_{a} that

$$
c_{1}|\operatorname{det} A| \leq\left|\lambda_{1}(x, \widetilde{x})\right| \leq c_{2}|\operatorname{det} A|
$$

where c_{1}, c_{2} are positive constants independent of j. Now, a computation gives

$$
\begin{aligned}
\operatorname{det} A=324\left(-x_{1}^{2} \widetilde{x}_{1}^{2}-9 x_{2}^{2} \widetilde{x}_{2}^{2}-12 x_{1} x_{2} \widetilde{x}_{1} \widetilde{x}_{2}+\right. & \left.2 x_{1}^{2} \widetilde{x}_{2}^{2}\right) \\
& \times\left(x_{2}^{2} \widetilde{x}_{1}^{2}-2 x_{2}^{2} \widetilde{x}_{2}^{2}-4 x_{1} x_{2} \widetilde{x}_{1} \widetilde{x}_{2}+x_{1}^{2} \widetilde{x}_{2}^{2}\right) .
\end{aligned}
$$

Now we write $\widetilde{x}_{2}=t x_{2}$, with $\frac{1}{2} \leq t \leq 2$. Then

$$
\operatorname{det} A=324 x_{2}^{2}\left[-x_{1}^{2} \widetilde{x}_{1}^{2}-9 t^{2} x_{2}^{4}-12 t x_{1} x_{2}^{2} \widetilde{x}_{1}+2 t^{2} x_{2}^{2} x_{1}^{2}\right]\left[\widetilde{x}_{1}^{2}-2 t^{2} x_{2}^{2}-4 t x_{1} \widetilde{x}_{1}+t^{2} x_{1}^{2}\right] .
$$

Note that the the first bracket is negative for $x, \widetilde{x} \in W_{a}$ if j is large enough. To study the sign of the second one, we consider the function $F\left(t, x_{1}, \widetilde{x}_{1}\right)=\widetilde{x}_{1}^{2}-4 t x_{1} \widetilde{x}_{1}+t^{2} x_{1}^{2}$. Since F has a negative maximum on $\{1\} \times\{1\} \times\left[\frac{1}{2}, 2\right]$, it follows easily that we can choose a such that for $x, \widetilde{x} \in W_{a}$ and j large enough, the same assertion holds for the second bracket. So $\operatorname{det} A$ is comparable with $2^{-2 j}$, thus the hypothesis of the Theorem 3.8 are satisfied with $\beta=2$ and such a. Moreover, we have $\beta=m-2$, then we conclude that the interior of E_{μ} is the open trapezoidal region with vertices $(0,0),(1,1),\left(\frac{3}{5}, \frac{4}{5}\right),\left(\frac{2}{5}, \frac{1}{5}\right)$.

On the other hand, in a similar way than in Example 3.1 we can see that $\alpha=2$ (in fact $\left.\operatorname{det} A(x, x)=648\left(x_{1}^{2}+9 x_{2}^{2}\right)\left(x_{1}^{2}+x_{2}^{2}\right)^{2} x_{2}^{2}\right)$, so in this case Theorem 3.8 gives a better result (a precise description of ${ }^{\circ} E_{\mu}$) than that given by Theorem 3.7, that asserts only that ${ }^{\circ}{ }_{\mu}$ contains the trapezoidal region with vertices $(0,0),(1,1),\left(\frac{13}{14}, \frac{6}{7}\right)$ and $\left(\frac{1}{7}, \frac{1}{14}\right)$.

Example 3.3. The following is an example where Theorem 3.7 characterizes $\stackrel{\circ}{E}_{\mu}$. Let

$$
\varphi\left(x_{1}, x_{2}\right)=\left(x_{2} \operatorname{Re}\left(x_{1}+i x_{2}\right)^{12}, x_{2} \operatorname{Im}\left(x_{1}+i x_{2}\right)^{12}\right)
$$

A computation gives that for $x=\left(x_{1}, x_{2}\right)$ and $h=\left(h_{1}, h_{2}\right)$

$$
\operatorname{det}\left(\varphi^{\prime \prime}(x) h\right)=288\left(x_{1}^{2}+x_{2}^{2}\right)^{10}\left(66 x_{2}^{2} h_{1}^{2}+11 x_{1} x_{2} h_{1} h_{2}+\left(x_{1}^{2}+78 x_{2}^{2}\right) h_{2}^{2}\right)
$$

and this quadratic form in $\left(h_{1}, h_{2}\right)$ does not vanish for $h \neq 0$ unless $x_{2}=0$. So the set of non elliptic points for φ is the x_{1} axis. Moreover, its associate symmetric matrix

$$
A=A(x)=288\left(x_{1}^{2}+x_{2}^{2}\right)^{10}\left[\begin{array}{cc}
66 x_{2}^{2} & \frac{11}{2} x_{1} x_{2} \\
\frac{11}{2} x_{1} x_{2} & x_{1}^{2}+78 x_{2}^{2}
\end{array}\right]
$$

satisfies $c_{1} \leq \operatorname{tr} A(x) \leq c_{2}$ for $x \in B, \frac{1}{2} \leq\left|x_{1}\right|$, and $\left|x_{2}\right| \leq \delta\left|x_{1}\right|, \delta>0$ small enough.
Thus if $\lambda_{1}=\lambda_{1}(x)$ denotes the eigenvalue of lower absolute value of $A(x)$, we have, for x in this region, that

$$
k_{1}|\operatorname{det} A| \leq\left|\lambda_{1}\right| \leq k_{2}|\operatorname{det} A|
$$

where k_{1} and k_{2} are positive constants.
Since $\operatorname{det} A\left(1, x_{2}\right)=(288)^{2}\left(1+x_{2}^{2}\right)^{20}\left(\frac{143}{4} x_{2}^{2}+5148 x_{2}^{4}\right)$, we have that $\alpha=2$. So $7 \alpha=$ $m+1$ and, from Theorem 3.7, we conclude that the interior of E_{μ} is the open trapezoidal region with vertices $(0,0),(1,1),\left(\frac{13}{14}, \frac{6}{7}\right),\left(\frac{1}{7}, \frac{1}{14}\right)$.

References

[1] J. BOCHNAK, M. COSTE AND M. F. ROY, Real Algebraic Geometry, Springer, 1998.
[2] M. CHRIST. Endpoint bounds for singular fractional integral operators, UCLA Preprint, (1988).
[3] S. W. DRURY and K. GUO, Convolution estimates related to surfaces of half the ambient dimension. Math. Proc. Camb. Phil. Soc., 110 (1991), 151-159.
[4] E. FERREYRA, T. GODOY and M. URICUOLO. The type set for some measures on $\mathbb{R}^{2 n}$ with n dimensional support, Czech. Math. J., (to appear).
[5] A. IOSEVICH and E. SAWYER, Sharp $L^{p}-L^{q}$ estimates for a class of averaging operators, Ann Inst. Fourier, 46(5) (1996), 359-1384.
[6] T. KATO, Perturbation Theory for Linear Operators, Second edition. Springer Verlag, Berlin Heidelberg- New York, 1976.
[7] D. OBERLIN, Convolution estimates for some measures on curves, Proc. Amer. Math. Soc., 99(1) (1987), 56-60.
[8] F. RICCI, Limitatezza $L^{p}-L^{q}$ per operatori di convoluzione definiti da misure singolari in \mathbb{R}^{n}, Bollettino U.M.I., (7) 11-A (1997), 237-252.
[9] F. RICCI and E. M. STEIN, Harmonic analysis on nilpotent groups and singular integrals III, fractional integration along manifolds, J. Funct. Anal., 86 (1989), 360-389.
[10] E. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, New Jersey, 1970.

[^0]: ISSN (electronic): 1443-5756
 (c) 2001 Victoria University. All rights reserved.

 Partially supported by Agencia Cordoba Ciencia, Secyt-UNC and Conicet.
 052-00

