

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 2, Issue 3, Article 37, 2001

L^p -IMPROVING PROPERTIES FOR MEASURES ON \mathbb{R}^4 SUPPORTED ON HOMOGENEOUS SURFACES IN SOME NON ELLIPTIC CASES

E. FERREYRA, T. GODOY, AND M. URCIUOLO

FACULTAD DE MATEMATICA, ASTRONOMIA Y FISICA-CIEM, UNIVERSIDAD NACIONAL DE CORDOBA, CIUDAD UNIVERSITARIA, 5000 CORDOBA, ARGENTINA

eferrey@mate.uncor.edu

godoy@mate.uncor.edu

urciuolo@mate.uncor.edu

Received 8 January, 2001; accepted 5 June, 2001 Communicated by L. Pick

ABSTRACT. In this paper we study convolution operators T_{μ} with measures μ in \mathbb{R}^4 of the form $\mu(E) = \int_B \chi_E(x, \varphi(x)) \, dx$, where B is the unit ball of \mathbb{R}^2 , and φ is a homogeneous polynomial function. If $\inf_{h \in S^1} \left| \det \left(d_x^2 \varphi(h, .) \right) \right|$ vanishes only on a finite union of lines, we prove, under suitable hypothesis, that T_{μ} is bounded from L^p into L^q if $\left(\frac{1}{p}, \frac{1}{q} \right)$ belongs to a certain explicitly described trapezoidal region.

Key words and phrases: Singular measures, L^p -improving, Convolution Ooperators.

2000 Mathematics Subject Classification. 42B20, 42B10.

1. Introduction

It is well known that a complex measure μ on \mathbb{R}^n acts as a convolution operator on the Lebesgue spaces $L^p(\mathbb{R}^n): \mu*L^p \subset L^p$ for $1 \leq p \leq \infty$. If for some p there exists q > p such that $\mu*L^p \subset L^q$, μ is called L^p —improving. It is known that singular measures supported on smooth submanifolds of \mathbb{R}^n may be L^p —improving. See, for example, [2], [5], [8], [9], [7] and [4].

Let φ_1, φ_2 be two homogeneous polynomial functions on \mathbb{R}^2 of degree $m \geq 2$ and let $\varphi = (\varphi_1, \varphi_2)$. Let μ be the Borel measure on \mathbb{R}^4 given by

(1.1)
$$\mu(E) = \int_{B} \chi_{E}(x, \varphi(x)) dx,$$

ISSN (electronic): 1443-5756

Partially supported by Agencia Cordoba Ciencia, Secyt-UNC and Conicet.

^{© 2001} Victoria University. All rights reserved.

where B denotes the closed unit ball around the origin in \mathbb{R}^2 and dx is the Lebesgue measure on \mathbb{R}^2 . Let T_{μ} be the convolution operator given by $T_{\mu}f = \mu * f$, $f \in S(\mathbb{R}^4)$ and let E_{μ} be the type set corresponding to the measure μ defined by

$$E_{\mu} = \left\{ \left(\frac{1}{p}, \frac{1}{q} \right) : \|T_{\mu}\|_{p,q} < \infty, 1 \le p, q \le \infty \right\},$$

where $\|T_{\mu}\|_{p,q}$ denotes the operator norm of T_{μ} from $L^{p}(\mathbb{R}^{4})$ into $L^{q}(\mathbb{R}^{4})$ and where the L^{p} spaces are taken with respect to the Lebesgue measure on \mathbb{R}^{4} .

For $x,h\in\mathbb{R}^2$, let $\varphi''(x)h$ be the 2×2 matrix whose j-th column is $\varphi''_j(x)h$, where $\varphi''_j(x)$ denotes the Hessian matrix of φ_j at x. Following [3, p. 152], we say that $x\in\mathbb{R}^2$ is an elliptic point for φ if $\det(\varphi''(x)h)\neq 0$ for all $h\in\mathbb{R}^2\setminus\{0\}$. For $A\subset\mathbb{R}^2$, we will say that φ is strongly elliptic on A if $\det(\varphi''_1(x)h,\varphi''_2(y)h)\neq 0$ for all $x,y\in A$ and $h\in\mathbb{R}^2\setminus\{0\}$.

If every point $x\in B\setminus\{0\}$ is elliptic for φ , it is proved in [4] that for $m\geq 3$, E_μ is the closed trapezoidal region Σ_m with vertices (0,0), (1,1), $\left(\frac{m}{m+1},\frac{m-1}{m+1}\right)$ and $\left(\frac{2}{m+1},\frac{1}{m+1}\right)$. Our aim in this paper is to study the case where the set of non elliptic points consists of a finite

Our aim in this paper is to study the case where the set of non elliptic points consists of a finite union of lines through the origin, $L_1,...,L_k$. We assume from now on, that for $x\in R^2-\{0\}$, $\det\left(\varphi''\left(x\right)h\right)$ does not vanish identically, as a function of h. For each l=1,2,...,k, let π_{L_l} and $\pi_{L_l^\perp}$ be the orthogonal projections from \mathbb{R}^2 onto L_l and L_l^\perp respectively. For $\delta>0,\,1\leq l\leq k$, let

$$V_{\delta}^{l} = \left\{ x \in B : 1/2 \le |\pi_{L_{l}}(x)| \le 1 \text{ and } \left| \pi_{L_{l}^{\perp}}(x) \right| \le \delta |\pi_{L_{l}}(x)| \right\}.$$

It is easy to see (see Lemma 2.1 and Remark 3.6) that for δ small enough, there exists $\alpha_l \in \mathbb{N}$ and positive constants c and c' such that

$$c\left|\pi_{L_{l}^{\perp}}\left(x\right)\right|^{\alpha_{l}} \leq \inf_{h \in S^{1}}\left|\det\left(\varphi''\left(x\right)h\right)\right| \leq c'\left|\pi_{L_{l}^{\perp}}\left(x\right)\right|^{\alpha_{l}}$$

for all $x \in V^l_{\delta}$. Following the approach developed in [3], we prove, in Theorem 3.7, that if $\alpha = \max_{1 \le l \le k} \alpha_l$ and if $7\alpha \le m+1$, then the interior of E_{μ} agrees with the interior of Σ_m .

Moreover in Theorem 3.8 we obtain that $\overset{\circ}{E}_{\mu} = \overset{\circ}{\Sigma}_m$ still holds in some cases where $7\alpha > m+1$, if we require a suitable hypothesis on the behavior, near the lines $L_1,...,L_k$, of the map $(x,y) \to \inf_{h \in S^1} |\det \left(\varphi_1''(x) \, h, \varphi_2''(y) \, h \right)|$.

In any case, even though we can not give a complete description of the interior of E_{μ} , we obtain a polygonal region contained in it.

Throughout the paper c will denote a positive constant not necessarily the same at each occurrence.

2. Preliminaries

Let $\varphi_1, \varphi_2 : \mathbb{R}^2 \to \mathbb{R}$ be two homogeneous polynomials functions of degree $m \geq 2$ and let $\varphi = (\varphi_1, \varphi_2)$. For $\delta > 0$ let

(2.1)
$$V_{\delta} = \left\{ (x_1, x_2) \in B : \frac{1}{2} \le |x_1| \le 1 \text{ and } |x_2| \le \delta |x_1| \right\}.$$

We assume in this section that, for some $\delta_0 > 0$, the set of the non elliptic points for φ in V_{δ_0} is contained in the x_1 axis.

For $x \in \mathbb{R}^2$, let P = P(x) be the symmetric matrix that realizes the quadratic form $h \to \det(\varphi''(x) h)$, so

(2.2)
$$\det \left(\varphi''(x) h \right) = \langle P(x) h, h \rangle.$$

Lemma 2.1. There exist $\delta \in (0, \delta_0)$, $\alpha \in \mathbb{N}$ and a real analytic function $g = g(x_1, x_2)$ on V_{δ} with $g(x_1, 0) \neq 0$ for $x_1 \neq 0$ such that

(2.3)
$$\inf_{|h|=1} \left| \det \left(\varphi''(x) h \right) \right| = \left| x_2 \right|^{\alpha} \left| g(x) \right|$$

for all $x \in V_{\delta}$.

Proof. Since P(x) is real analytic on V_{δ} and $P\left(x\right) \neq 0$ for $x \neq 0$, it follows that, for δ small enough, there exists two real analytic functions $\lambda_1\left(x\right)$ and $\lambda_2\left(x\right)$ wich are the eigenvalues of $P\left(x\right)$. Also, $\inf_{|h|=1} \left| \det \left(\varphi''\left(x\right)h\right) \right| = \min \left\{ \left|\lambda_1\left(x\right)\right|, \left|\lambda_2\left(x\right)\right| \right\}$ for $x \in V_{\delta}$. Since we have assumed that (1,0) is not an elliptic point for φ and that $P\left(x\right) \neq 0$ for $x \neq 0$, diminishing δ if necessary, we can assume that $\lambda_1\left(1,0\right) = 0$ and that $\left|\lambda_1\left(1,x_2\right)\right| \leq \left|\lambda_2\left(1,x_2\right)\right|$ for $\left|x_2\right| \leq \delta$. Since $P\left(x\right)$ is homogeneous in x, we have that $\lambda_1\left(x\right)$ and $\lambda_2\left(x\right)$ are homogeneous in x with the same homogeneity degree d. Thus $\left|\lambda_1\left(x\right)\right| \leq \left|\lambda_2\left(x\right)\right|$ for all $x \in V_{\delta}$. Now, $\lambda_1\left(1,x_2\right) = x_2^{\alpha}G\left(x_2\right)$ for some real analytical function $G = G\left(x_2\right)$ with $G\left(0\right) \neq 0$ and so $\lambda_1\left(x_1,x_2\right) = x_1^{d}\lambda_1\left(1,\frac{x_2}{x_1}\right) = x_1^{d-\alpha}x_2^{\alpha}G\left(\frac{x_2}{x_1}\right)$. Taking $g\left(x_1,x_2\right) = x_1^{d-\alpha}G\left(\frac{x_2}{x_1}\right)$ the lemma follows. \square

Following [3], for $U \subset \mathbb{R}^2$ let $J_U : \mathbb{R}^2 \to \mathbb{R} \cup \{\infty\}$ given by

$$J_{U}(h) = \inf_{x, x+h \in U} \left| \det \left(\varphi'(x+h) - \varphi'(x) \right) \right|,$$

where the infimum of the empty set is understood to be ∞ . We also set, as there, for $0 < \alpha < 1$

$$R_{\alpha}^{U}(f)(x) = \int J_{U}(x-y)^{-1+\alpha} f(y) dy.$$

For r > 0 and $w \in \mathbb{R}^2$, let $B_r(w)$ denotes the open ball centered at w with radius r. We have the following

Lemma 2.2. Let w be an elliptic point for φ . Then there exist positive constants c and c' depending only on $\|\varphi_1\|_{C^3(B)}$ and $\|\varphi_2\|_{C^3(B)}$ such that if $0 < r \le c \inf_{|h|=1} |\det (\varphi''(w) h)|$ then

(1)
$$\left|\det\left(\varphi'\left(x+h\right)-\varphi'\left(x\right)\right)\right| \geq \frac{1}{2}\left|\det\left(\varphi''\left(w\right)h\right)\right| \text{ if } x,x+h \in B_{r}\left(w\right).$$

(2)
$$\left\| R_{\frac{1}{2}}^{B_r(w)}(f) \right\|_{6} \le c' r^{-\frac{1}{2}} \|f\|_{\frac{3}{2}}, f \in S(\mathbb{R}^4).$$

Proof. Let $F(h) = \det (\varphi'(x+h) - \varphi'(x))$ and let $d_x^j F$ denotes the j-th differential of F at x. Applying the Taylor formula to F(h) around h = 0 and taking into account that F(0) = 0, $d_0 F(h) = 0$ and that $d_0^2 F(h,h) \equiv 2 \det (\varphi''(x)h)$ we obtain

$$\det (\varphi'(x+h) - \varphi'(x)) = \det (\varphi''(x)h) + \int_0^1 \frac{(1-t)^2}{2} d_{th}^3 F(h, h, h) dt.$$

Let $H(x) = \det (\varphi''(x) h)$. The above equation gives

$$\det (\varphi'(x+h) - \varphi'(x)) = \det (\varphi''(w)h) + \int_0^1 d_{w+t(x-w)}H(h) dt + \int_0^1 \frac{(1-t)^2}{2} d_{th}^3 F(h,h,h) dt.$$

Then, for $x, x + h \in B_r(w)$ we have

$$|\det (\varphi'(x+h) - \varphi'(x)) - \det (\varphi''(w)h)| \le M |h|^3 \le 2Mr |h|^2$$

with M depending only $\|\varphi_1\|_{C^3(B)}$ and $\|\varphi_2\|_{C^3(B)}$. If we choose $c \leq \frac{1}{4M}$, we get, for $0 < r < c\inf_{|h|=1} |\det \left(\varphi'' \left(w \right) h \right)|$ that

$$\left|\det\left(\varphi'\left(x+h\right)-\varphi'\left(x\right)\right)\right| \geq \frac{1}{2}\left|\det\left(\varphi''\left(w\right)h\right)\right|$$

and that

$$J_{B_r(w)}(h) \ge \frac{1}{2} |\det (\varphi''(w) h)| \ge \frac{1}{2c} r |h|^2$$

Thus $\left\|R_{\frac{1}{2}}^{B_r(w)}(f)\right\|_6 \le c'r^{-\frac{1}{2}} \|I_2(f)\|_6 \le c'r^{-\frac{1}{2}} \|f\|_{\frac{3}{2}}$, where I_α denotes the Riesz potential on \mathbb{R}^4 , defined as in [10, p. 117]. So the lemma follows from the Hardy–Littlewood–Sobolev theorem of fractional integration as stated e.g. in [10, p. 119].

Lemma 2.3. Let w be an elliptic point for φ . Then there exists a positive constant c depending only on $\|\varphi_1\|_{C^3(B)}$ and $\|\varphi_2\|_{C^3(B)}$ such that if $0 < r \le c \inf_{|h|=1} |\det (\varphi''(w)h)|$ then for all $h \ne 0$ the map $x \to \varphi(x+h) - \varphi(x)$ is injective on the domain $\{x \in B : x, x+h \in B_r(w)\}$.

Proof. Suppose that x, y, x + h and y + h belong to $B_r(w)$ and that

$$\varphi(x+h) - \varphi(x) = \varphi(y+h) - \varphi(y)$$
.

From this equation we get

$$0 = \int_{0}^{1} (\varphi'(x+th) - \varphi'(y+th)) h dt = \int_{0}^{1} \int_{0}^{1} d_{x+th+s(y-x)}^{2} \varphi(y-x,h) ds dt.$$

Now, for $z \in B_r(w)$,

$$\left| \left(d_z^2 \varphi - d_w^2 \varphi \right) (y - x, h) \right| = \left| \int_0^1 d_{z+u(w-z)}^3 \varphi \left(w - z, y - x, h \right) du \right|$$

$$\leq Mr \left| y - x \right| \left| h \right|$$

then

$$0 = \int_{0}^{1} \int_{0}^{1} d_{x+th+s(y-x)}^{2} \varphi (y-x,h) \, ds dt$$

$$= d_{w}^{2} \varphi (y-x,h) + \int_{0}^{1} \int_{0}^{1} \left[d_{x+th+s(y-x)}^{2} \varphi - d_{w}^{2} \varphi \right] (y-x,h) \, ds dt.$$

So $|d_w^2 \varphi(y-x,h)| \leq Mr |y-x| |h|$ with M depending only on $\|\varphi_1\|_{C^3(B)}$ and $\|\varphi_2\|_{C^3(B)}$. On the other hand, w is an elliptic point for φ and so, for |u|=1, the matrix $A:=\varphi''(w)u$ is invertible. Also $A^{-1}=(\det A)^{-1}Ad(A)$, then

$$\left|A^{-1}x\right| = \left|\det A\right|^{-1} \left|Ad\left(A\right)x\right| \le \frac{\widetilde{M}}{\left|\det A\right|} \left|x\right|,$$

where \widetilde{M} depends only on $\|\varphi_1\|_{C^2(B)}$ and $\|\varphi_2\|_{C^2(B)}$. Then, for |v|=1 and x=Av, we have $|Av|>|\det A|/\widetilde{M}$. Thus

$$\begin{split} \left| d_{w}^{2} \varphi \left(y-x,h \right) \right| & \geq \left| \left| y-x \right| \left| h \right| \inf_{\left| u \right|=1,\left| v \right|=1} \left| d_{w}^{2} \varphi \left(u,v \right) \right| \\ & = \left| \left| y-x \right| \left| h \right| \inf_{\left| u \right|=1,\left| v \right|=1} \left| \left\langle \varphi'' \left(w \right) u,v \right\rangle \right| \\ & \geq \frac{1}{\widetilde{M}} \left| y-x \right| \left| h \right| \inf_{\left| u \right|=1} \left| \det \varphi'' \left(w \right) u \right|. \end{split}$$

If we choose $r < \frac{1}{M\widetilde{M}}\inf_{|u|=1}|\det \varphi''(w)|u|$ the above inequality implies x=y and the lemma is proved.

For any measurable set $A \subset B$, let μ_A be the Borel measure defined by $\mu_A(E) = \int_A \chi_E(x, \varphi(x)) dx$ and let T_{μ_A} be the convolution operator given by $T_{\mu_A} f = \mu_A * f$.

Proposition 2.4. Let w be an elliptic point for φ . Then there exist positive constants c and c' depending only on $\|\varphi_1\|_{C^3(B)}$ and $\|\varphi_2\|_{C^3(B)}$ such that if $0 < r < c\inf_{|h|=1} |\det \varphi''(w)|_h$ then

$$\left\| T_{\mu_{B_r(w)}} f \right\|_3 \le c' r^{-\frac{1}{3}} \left\| f \right\|_{\frac{3}{2}}.$$

Proof. Taking account of Lemma 2.3, we can proceed as in Theorem 0 in [3] to obtain, as there, that

$$\left\| \mu_{B_{r(w)}} * f \right\|_{3}^{3} \le (A_{1}A_{2}A_{3})^{\frac{1}{3}},$$

where

$$A_{j} = \int_{\mathbb{R}^{2}} F_{j}(x) \prod_{1 \le m \le 3, m \ne j} R_{\frac{1}{2}}^{B_{r}(w)} F_{m}(x) dx$$

and $F_j(x) = ||f(x,.)||_{\frac{3}{2}}$

Then the proposition follows from Lemma 2.2 and an application of the triple Hölder inequality. \Box

For 0 < a < 1 and $j \in N$ let

$$U_{a,j} = \{(x_1, x_2) \in B : |x_1| \ge a, \ 2^{-j} |x_1| \le |x_2| \le 2^{-j+1} |x_1| \}$$

and let $U_{a,j,i}$, i = 1, 2, 3, 4 the connected components of $U_{a,j}$. We have

Lemma 2.5. Let 0 < a < 1. Suppose that there exist $\beta \in \mathbb{N}$, $j_0 \in \mathbb{N}$ and a positive constant c such that $|\det(\varphi_1''(x)h, \varphi_2''(y)h)| \ge c2^{-j\beta}|h|^2$ for all $h \in \mathbb{R}^2$, $x, y \in U_{a,j,i}$, $j \ge j_0$ and i = 1, 2, 3, 4. Thus

(1) For all $j \geq j_0$, i = 1, 2, 3, 4 if x and x + h belong to $U_{a,j,i}$ then

$$\left|\det\left(\varphi'\left(x+h\right)-\varphi'\left(x\right)\right)\right| \geq c2^{-j\beta}\left|h\right|^{2}.$$

(2) There exists a positive constant c' such that for all $j \geq j_0$, i = 1, 2, 3, 4

$$\left\| R_{\frac{1}{2}}^{U_{a,j,i}}(f) \right\|_{6} \le c' 2^{\frac{j\beta}{2}} \|f\|_{\frac{3}{2}}.$$

Proof. We fix i and $j \geq j_0$. For $x \in U_{a,j,i}$ we have

$$\det \left(\varphi'\left(x+h\right)-\varphi'\left(x\right)\right) = \det \left(\int_{0}^{1} \varphi''\left(x+sh\right)hds\right).$$

For each $h \in \mathbb{R}^2 \setminus \{0\}$ we have either $\det (\varphi_1''(x) h, \varphi_2''(y) h) > c2^{-j\beta} |h|^2$ for all $x, y \in U_{a,j,i}$ or $\det (\varphi_1''(x) h, \varphi_2''(y) h) < -c2^{-j\beta} |h|^2$ for all $x, y \in U_{a,j,i}$. We consider the first case. Let

$$F\left(t\right) = \det\left(\int_{0}^{t}\varphi''\left(x+sh\right)hds\right). \text{ Then}$$

$$F'\left(t\right) = \det\left(\int_{0}^{t}\varphi''_{1}\left(x+sh\right)hds, \varphi''_{2}\left(x+th\right)h\right)$$

$$+ \det\left(\varphi''_{1}\left(x+th\right)h, \int_{0}^{t}\varphi''_{2}\left(x+sh\right)hds\right)$$

$$= \int_{0}^{t}\det\left(\varphi''_{1}\left(x+sh\right)h, \varphi''_{2}\left(x+th\right)h\right)ds$$

$$+ \int_{0}^{t}\det\left(\varphi''_{1}\left(x+th\right)h, \varphi''_{2}\left(x+sh\right)h\right)ds \geq c2^{-j\beta}\left|h\right|^{2}t.$$

Since F(0) = 0 we get $F(1) = \int_0^1 F'(t) dt \ge c2^{-j\beta} |h|^2$. Thus

$$\det (\varphi'(x+h) - \varphi'(x)) = F(1) \ge c2^{-j\beta} |h|^2.$$

Then $J_{U_{a,j,i}}(h) \ge c2^{-j\beta} |h|^2$, and the lemma follows, as in Lemma 2.2, from the Hardy–Littlewood–Sobolev theorem of fractional integration. The other case is similar.

For fixed $x^{(1)}, x^{(2)} \in \mathbb{R}^2$, let

$$B_{a,j,i}^{x^{(1)},x^{(2)}} = \left\{ x \in \mathbb{R}^2 : x - x^{(1)} \in U_{a,j,i} \text{ and } x - x^{(2)} \in U_{a,j,i} \right\}, i = 1, 2, 3, 4.$$

We have

Lemma 2.6. Let 0 < a < 1 and let $x^{(1)}, x^{(2)} \in \mathbb{R}^2$. Suppose that there exist $\beta \in \mathbb{N}, j_0 \in \mathbb{N}$ and a positive constant c such that $|\det(\varphi_1''(x)h, \varphi_2''(y)h)| \ge c2^{-j\beta}|h|^2$ for all $h \in \mathbb{R}^2, x, y \in U_{a,j,i}$, $j \ge j_0$ and i = 1, 2, 3, 4. Then there exists $j_1 \in \mathbb{N}$ independent of $x^{(1)}, x^{(2)}$ such that for all $j \ge j_1, i = 1, 2, 3, 4$ and all nonnegative $f \in S(\mathbb{R}^4)$ it holds that

$$\int_{B_{a,i}^{x^{(1)},x^{(2)}}\times\mathbb{R}^{2}} f\left(y-\varphi\left(x-x^{(1)}\right),y-\varphi\left(x-x^{(2)}\right)\right) dxdy \leq \frac{m^{2}}{J_{U_{a,j,i}}\left(x^{(2)}-x^{(1)}\right)} \int_{\mathbb{R}^{4}} f.$$

Proof. We assert that, if $j \geq j_0$ then for each $(z, w) \in \mathbb{R}^2 \times \mathbb{R}^2$ and i = 1, 2, 3, 4, the set

$$\left\{(x,y)\in B_{a,j,i}^{x^{(1)},x^{(2)}}\times\mathbb{R}^2:z=y-\varphi\left(x-x^{(1)}\right)\text{ and }w=y-\varphi\left(x-x^{(2)}\right)\right\}$$

is a finite set with at most m^2 elements. Indeed, if $z=y-\varphi\left(x-x^{(1)}\right)$ and $w=y-\varphi\left(x-x^{(2)}\right)$ with $x\in B_{a,j,i}^{x^{(1)},x^{(2)}}$, Lemma 2.5 says that, for j large enough,

$$\left| \det \left(\varphi' \left(x - x^{(1)} \right) - \varphi' \left(x - x^{(2)} \right) \right) \right| \ge c 2^{-j\beta} \left| h \right|^2$$
.

Thus the Bezout's Theorem (See e.g.[1, Lemma 11.5.1, p. 281]) implies that for each $(z, w) \in \mathbb{R}^2 \times \mathbb{R}^2$ the set

$$\left\{ x \in B_{a,j,i}^{x^{(1)},x^{(2)}} : \varphi\left(x - x^{(2)}\right) - \varphi\left(x - x^{(1)}\right) = z - w \right\}$$

is a finite set with at most m^2 points. Since x determines y, the assertion follows.

For a fixed $\eta > 0$ and for $k = (k_1, ..., k_4) \in Z^4$, let $Q_k = \prod_{1 \le n \le 4} [k_n \eta, (1 + k_n) \eta]$. Let $\Phi_{k,j,i} : \left(B_{a,j,i}^{x^{(1)},x^{(2)}} \times \mathbb{R}^2\right) \cap Q_k \to \mathbb{R}^2 \times \mathbb{R}^2$ be the function defined by

$$\Phi_{k,j,i}(x,y) = \left(y - \varphi\left(x - x^{(1)}\right), y - \varphi\left(x - x^{(2)}\right)\right)$$

and let $W_{k,j,i}$ its image. Also $\det \left(\Phi'_{k,j,i}\right)(x,y) = \det \left(\varphi'\left(x-x^{(2)}\right)-\varphi'\left(x-x^{(1)}\right)\right)$. Thus (2.4) $\left|\det \left(\Phi'_{k,j,i}\right)(x,y)\right| \geq J_{U_{a,j,i}}\left(x^{(2)}-x^{(1)}\right)$

for
$$(x,y) \in \left(B_{a,j,i}^{x^{(1)},x^{(2)}} \times \mathbb{R}^2\right) \cap Q_k$$
.

Since $\Phi_{k,j,i}(x,y) = \Phi_{k,j,i}(\overline{x},\overline{y})$ implies that $\varphi\left(x-x^{(1)}\right) - \varphi\left(\overline{x}-x^{(1)}\right) = \varphi\left(x-x^{(2)}\right) - \varphi\left(\overline{x}-x^{(2)}\right)$, taking into account Lemma 2.1, from Lemma 2.3 it follows the existence of $\widetilde{j} \in N$ with \widetilde{j} independent of $x^{(1)}, x^{(2)}$ such that for $j \geq \widetilde{j}$ there exists $\widetilde{\eta} = \widetilde{\eta}(j) > 0$ satisfying that for $0 < \eta < \widetilde{\eta}(j)$ the map $\Phi_{k,j,i}$ is injective for all $k \in Z^4$. Let $\Psi_{k,j,i}: W_{k,j,i} \to \left(B_{a,j,i}^{x^{(1)},x^{(2)}} \times \mathbb{R}^2\right) \cap Q_k$ its inverse. Lemma 2.5 says that $\left|\det\left(\Phi'_{k,j,i}\right)\right| \geq c2^{-j\beta} |h|^2$ on $\left(B_{a,j,i}^{x^{(1)},x^{(2)}} \times \mathbb{R}^2\right) \cap Q_k$. We have

$$\int_{B_{a,j,i}^{x^{(1)},x^{(2)}}\times\mathbb{R}^{2}} f\left(y-\varphi\left(x-x^{(1)}\right),y-\varphi\left(x-x^{(2)}\right)\right) dxdy
= \sum_{k\in\mathbb{Z}^{4}} \int_{\left(B_{a,j,i}^{x^{(1)},x^{(2)}}\times\mathbb{R}^{2}\right)\cap Q_{k}} f\left(y-\varphi\left(x-x^{(1)}\right),y-\varphi\left(x-x^{(2)}\right)\right) dxdy
= \sum_{k\in\mathbb{Z}^{4}} \int_{W_{k,j,i}} f\left(z,w\right) \frac{1}{\left|\det\left(\Phi'_{k,j,i}\right)\left(\Psi_{k,j,i}\left(z,w\right)\right)\right|} dzdw
\leq \frac{1}{J_{U_{a,j,i}}\left(x^{(2)}-x^{(1)}\right)} \int_{\mathbb{R}^{4}} \sum_{k\in\mathbb{Z}^{4}} \chi_{W_{k,j,i}}\left(v\right) f\left(v\right) dv
\leq \frac{m^{2}}{J_{U_{a,j,i}}\left(x^{(2)}-x^{(1)}\right)} \int_{\mathbb{R}^{4}} f$$

where we have used (2.4).

Proposition 2.7. Let 0 < a < 1. Suppose that there exist $\beta \in \mathbb{N}$, $j_0 \in \mathbb{N}$ and a positive constant c such that $|\det(\varphi_1''(x)h,\varphi_2''(y)h)| \ge c2^{-j\beta}|h|^2$ for all $h \in \mathbb{R}^2$, $x,y \in U_{a,j,i}$, $j \ge j_0$, i = 1, 2, 3, 4. Then, there exist $j_1 \in N$, c' > 0 such that for all $j \ge j_1$, $f \in S(\mathbb{R}^4)$

$$\left\| T_{\mu_{U_{a,j}}} f \right\|_{3} \le c' 2^{\frac{j\beta}{3}} \|f\|_{\frac{3}{2}}.$$

Proof. For i = 1, 2, 3, 4, let

$$K_{a,j,i} = \left\{ \left(x, y, x^{(1)}, x^{(2)}, x^{(3)} \right) \in \mathbb{R}^2 \times \mathbb{R}^2 \times \mathbb{R}^2 \times \mathbb{R}^2 \times \mathbb{R}^2 : x - x^{(s)} \in U_{a,j,i}, \ s = 1, 2, 3 \right\}.$$

We can proceed as in Theorem 0 in [3] to obtain, as there, that

$$\|\mu_{U_{a,j,i}} * f\|_{3}^{3} = \int_{K_{a,j,i}} \prod_{1 < j < 3} f(x_{j}, y - \varphi(x - x_{j})) dx dy dx^{(1)} dx^{(2)} dx^{(3)}$$

taking into account of Lemma 2.6 and reasoning, with the obvious changes, as in [3], Theorem 0, we obtain that

$$\|\mu_{U_{a,j,i}} * f\|_3^3 \le m^2 (A_1 A_2 A_3)^{\frac{1}{3}}$$

with

$$A_{j} = \int_{\mathbb{R}^{2}} F_{j}(x) \prod_{1 \leq m \leq 3, m \neq j} R_{\frac{1}{2}}^{U_{a,j,i}} F_{m}(x) dx$$

and $F_{j}\left(x\right)=\|f\left(x,.\right)\|_{\frac{3}{2}}$. Now the proof follows as in Proposition 2.4.

3. ABOUT THE TYPE SET

Proposition 3.1. For $\delta > 0$ let V_{δ} be defined by (2.1). Suppose that the set of the non elliptic points for φ in V_{δ} are those lying in the x_1 axis and let α be defined by (2.3). Then $E_{\mu_{V_{\delta}}}$ contains the closed trapezoidal region with vertices (0,0), (1,1), $\left(\frac{7\alpha-1}{7\alpha},\frac{7\alpha-2}{7\alpha}\right)$, $\left(\frac{2}{7\alpha},\frac{1}{7\alpha}\right)$, except perhaps the closed edge parallel to the principal diagonal.

$$\left\| T_{\mu_{B_{r_{j}(w)}}} f \right\|_{3} \le c' 2^{\frac{j\alpha}{3}} \left\| f \right\|_{\frac{3}{2}}$$

for some c'>0 and all $j\geq j_0, w\in U_{\frac{1}{2},j}, f\in S\left(\mathbb{R}^4\right)$. For $0\leq t\leq 1$ let p_t,q_t be defined by $\left(\frac{1}{p_t},\frac{1}{q_t}\right)=t\left(\frac{2}{3},\frac{1}{3}\right)+(1-t)\left(1,1\right)$. We have also $\left\|T_{\mu_{B_{r_j(w)}}}f\right\|_1\leq \pi c^2 2^{-2j\alpha}\left\|f\right\|_1$, thus, the Riesz-Thorin theorem gives

$$\left\| T_{\mu_{B_r(w)}} f \right\|_{q_t} \le c 2^{j\left(\frac{t\alpha}{3} - (1-t)2\alpha\right)} \left\| f \right\|_{p_t}.$$

Since $U_{\frac{1}{2},j}$ can be covered with N of such balls $B_{r}\left(w\right)$ with $N\simeq2^{j\left(2\alpha-1\right)}$ we get that

$$\left\| T_{\mu_{U_{\frac{1}{2},j}}} \right\|_{p_{t},q_{t}} \le c2^{j\left(\frac{7}{3}\alpha t - 1\right)}.$$

Let $U=\cup_{j\geq j_0}U_{\frac{1}{2},j}$. We have that $\|T_{\mu_U}\|_{p_t,q_t}\leq \sum_{j\geq j_0} \|T_{\mu_{U_{\frac{1}{2},j}}}\|_{p_t,q_t}<\infty$, for $t<\frac{3}{7\alpha}$. Since for $t=\frac{3}{7\alpha}$ we have $\frac{1}{p_t}=1-\frac{1}{7\alpha}$ and $\frac{1}{q_t}=1-\frac{2}{7\alpha}$ and since every point in $V_\delta\backslash U$ is an elliptic point (and so, from Theorem 3 in [3], $\|T_{\mu_{V_\delta\backslash U}}\|_{\frac{3}{2},3}<\infty$), we get that $(1-\theta)(1,1)+\theta\left(\frac{7\alpha-1}{7\alpha},\frac{7\alpha-2}{7\alpha}\right)\in E_{\mu_{V_\delta}}$ for $0\leq \theta<1$. On the other hand, a standard computation shows that the adjoint operator $T_{\mu_{V_\delta}}^*$ is given by $T_{\mu_{V_\delta}}^*f=\left(T_{\mu_{V_\delta}}(f^\vee)\right)^\vee$, where we write, for $g:\mathbb{R}^4\to C,g^\vee(x)=g(-x)$. Thus $E_{\mu_{V_\delta}}$ is symmetric with respect to the nonprincipal diagonal. Finally, after an application of the Riesz-Thorin interpolation theorem, the proposition follows.

For
$$\delta > 0$$
, let $A_{\delta} = \{(x_1, x_2) \in B : |x_2| \le \delta |x_1| \}$.

Remark 3.2. For $s>0,\ x=(x_1,...,x_4)\in\mathbb{R}^4$ we set $s\bullet x=(sx_1,sx_2,s^mx_3,s^mx_4)$. If $E\subset\mathbb{R}^2,\ F\subset\mathbb{R}^4$ we set $sE=\{sx:x\in E\}$ and $s\bullet F=\{s\bullet x:x\in F\}$. For $f:\mathbb{R}^4\to C,\ s>0$, let f_s denotes the function given by $f_s(x)=f(s\bullet x)$. A computation shows that

(3.1)
$$\left(T_{\mu_{2-j}V_{\delta}} f \right) \left(2^{-j} \bullet x \right) = 2^{-2j} \left(T_{\mu_{V_{\delta}}} f_{2^{-j}} \right) (x)$$

for all $f \in S(\mathbb{R}^4)$, $x \in \mathbb{R}^4$.

From this it follows easily that

$$\left\| T_{\mu_{2^{-j}V_{\delta}}} \right\|_{p,q} = 2^{-j\left(\frac{2(m+1)}{q} - \frac{2(m+1)}{p} + 2\right)} \left\| T_{\mu_{V_{\delta}}} \right\|_{p,q}.$$

This fact implies that

(3.2)
$$E_{\mu} \subset \left\{ \left(\frac{1}{p}, \frac{1}{q} \right) : \frac{1}{q} \ge \frac{1}{p} - \frac{1}{m+1} \right\}$$

and that if $\frac{1}{q} > \frac{1}{p} - \frac{1}{m+1}$ then $\left(\frac{1}{p}, \frac{1}{q}\right) \in E_{\mu_{A_{\delta}}}$ if and only if $\left(\frac{1}{p}, \frac{1}{q}\right) \in E_{\mu_{V_{\delta}}}$.

Theorem 3.3. Suppose that for some $\delta > 0$ the set of the non elliptic points for φ in A_{δ} are those lying on the x_1 axis and let α be defined by (2.3). Then $E_{\mu_{A_{\delta}}}$ contains the intersection of the two closed trapezoidal regions with vertices (0,0), (1,1), $\left(\frac{m}{m+1},\frac{m-1}{m+1}\right)$, $\left(\frac{2}{m+1},\frac{1}{m+1}\right)$ and (0,0), (1,1), $\left(\frac{7\alpha-1}{7\alpha},\frac{7\alpha-2}{7\alpha}\right)$, $\left(\frac{2}{7\alpha},\frac{1}{7\alpha}\right)$ respectively, except perhaps the closed edge parallel to the diagonal.

Moreover, if $7\alpha \leq m+1$ then the interior of $E_{\mu_{A_{\delta}}}$ is the open trapezoidal region with vertices (0,0), (1,1), $\left(\frac{m}{m+1},\frac{m-1}{m+1}\right)$ and $\left(\frac{2}{m+1},\frac{1}{m+1}\right)$.

Proof. Taking into account Proposition 3.1, the theorem follows from the facts of Remark 3.2.

For 0 < a < 1 and $\delta > 0$ we set $V_{a,\delta} = \{(x_1, x_2) \in B : a \le |x_1| \le 1 \text{ and } |x_2| \le \delta |x_1| \}$. We have

Proposition 3.4. Let 0 < a < 1. Suppose that for some 0 < a < 1, $j_0, \beta \in N$ and some positive constant c we have $|\det(\varphi_1''(x)h,\varphi_1''(y)h)| \ge c2^{-j\beta}|h|^2$ for all $h \in \mathbb{R}^2$, $x,y \in U_{a,j,i}$, $j \ge j_0$ and i=1,2,3,4. Then, for δ positive and small enough, $E_{\mu_{V_a,\delta}}$ contains the closed trapezoidal region with vertices (0,0), (1,1), $\left(\frac{\beta+2}{\beta+3},\frac{\beta+1}{\beta+3}\right)$, $\left(\frac{2}{\beta+3},\frac{1}{\beta+3}\right)$, except perhaps the closed edge parallel to the principal diagonal.

Proof. Proposition 2.7 says that there exist $j_1 \in N$ and a positive constant c such that for $j \geq j_1$ and $f \in S(\mathbb{R}^4)$

$$\left\| T_{\mu_{U_{a,j,i}}} f \right\|_{3} \le c 2^{\frac{j\beta}{3}} \|f\|_{\frac{3}{2}}.$$

Also, for some c>0 and all $f\in S\left(\mathbb{R}^4\right)$ we have $\left\|T_{\mu_{U_{a,j,i}}}f\right\|_1\leq c2^{-j}\left\|f\right\|_1$. Then $\left\|T_{\mu_{U_{a,j,i}}}f\right\|_{q_t}\leq c2^{j\left(t\frac{\beta}{3}-(1-t)\right)}\left\|f\right\|_{p_t}$ where p_t,q_t are defined as in the proof of Proposition 3.1. Let $U=\cup_{j\geq j_1}U_{a,j}$. Then $\left\|T_{\mu_U}f\right\|_{p_t,q_t}<\infty$ if $t<\frac{3}{\beta+3}$. Now, the proof follows as in Proposition 3.1. \square

Theorem 3.5. Suppose that for some 0 < a < 1, $j_0, \beta \in N$ and for some positive constant c we have $|\det\left(\varphi_1''\left(x\right)h,\varphi_1''\left(y\right)h\right)| \geq c2^{-j\beta}\left|h\right|^2$ for all $x,y\in U_{a,j,i}, j\geq j_0$ and i=1,2,3,4. Then for δ positive and small enough, $E_{\mu_{A_{\delta}}}$ contains the intersection of the two closed trapezoidal regions with vertices (0,0), (1,1), $\left(\frac{m}{m+1},\frac{m-1}{m+1}\right)$, $\left(\frac{2}{m+1},\frac{1}{m+1}\right)$ and (0,0), (1,1), $\left(\frac{\beta+2}{\beta+3},\frac{\beta+1}{\beta+3}\right)$, $\left(\frac{2}{\beta+3},\frac{1}{\beta+3}\right)$, respectively, except perhaps the closed edge parallel to the diagonal.

Moreover, if $\beta \leq m-2$ then the interior of E_{μ} is the open trapezoidal region with vertices (0,0), (1,1), $\left(\frac{m}{m+1},\frac{m-1}{m+1}\right)$ and $\left(\frac{2}{m+1},\frac{1}{m+1}\right)$.

Proof. Follows as in Theorem 3.3 using now Proposition 3.4 instead of Proposition 3.1. \Box

Remark 3.6. We now turn out to the case when φ is a homogeneous polynomial function whose set of non elliptic points is a finite union of lines through the origin, $L_1,...,L_k$.

For each $l, 1 \leq l \leq k$, let $A^l_{\delta} = \left\{ x \in \mathbb{R}^2 : \left| \pi^{\perp}_{L_l} x \right| \leq \delta \left| \pi_{L_l} x \right| \right\}$ where π_{L_l} and $\pi^{\perp}_{L_l}$ denote the orthogonal projections from \mathbb{R}^2 into L_l and L^{\perp}_l respectively. Thus each A^l_{δ} is a closed conical sector around L_l . We choose δ small enough such that $A^l_{\delta} \cap A^i_{\delta} = \emptyset$ for $l \neq i$.

It is easy to see that there exists (a unique) $\alpha_l \in N$ and positive constants c'_l, c''_l such that

$$(3.3) c_l' \left| \pi_{L_l}^{\perp} w \right|^{\alpha_l} \leq \inf_{|h|=1} \left| \det \left(\varphi''(w) h \right) \right| \leq c_l'' \left| \pi_{L_l}^{\perp} x \right|^{\alpha_l}$$

for all $w \in A^l_{\delta}$. Indeed, after a rotation the situation reduces to that considered in Remark 3.2.

Theorem 3.7. Suppose that the set of non elliptic points is a finite union of lines through the origin, $L_1,...,L_k$. For l=1,2,...,k, let α_l be defined by (3.3), and let $\alpha=\max_{1\leq l\leq k}\alpha_l$. Then E_μ contains the intersection of the two closed trapezoidal regions with vertices (0,0), (1,1), $\left(\frac{m}{m+1},\frac{m-1}{m+1}\right)$, $\left(\frac{2}{m+1},\frac{1}{m+1}\right)$ and (0,0), (1,1), $\left(\frac{7\alpha-1}{7\alpha},\frac{7\alpha-2}{7\alpha}\right)$, $\left(\frac{2}{7\alpha},\frac{1}{7\alpha}\right)$, respectively, except perhaps the closed edge parallel to the diagonal.

Moreover, if $7\alpha \leq m+1$ then the interior of E_{μ} is the interior of the trapezoidal regions with vertices (0,0), (1,1), $\left(\frac{m}{m+1},\frac{m-1}{m+1}\right)$, $\left(\frac{2}{m+1},\frac{1}{m+1}\right)$.

Proof. For l=1,2,...,k, let A^l_δ be as above. From Theorem 3.3, we obtain that $E_{\mu_{A^l_\delta}}$ contains the intersection of the two closed trapezoidal regions with vertices (0,0), (1,1), $\left(\frac{m}{m+1},\frac{m-1}{m+1}\right)$, $\left(\frac{2}{m+1},\frac{1}{m+1}\right)$ and (0,0), (1,1), $\left(\frac{7\alpha_l-1}{7\alpha_l},\frac{7\alpha_l-2}{7\alpha_l}\right)$, $\left(\frac{2}{7\alpha_l},\frac{1}{7\alpha_l}\right)$ respectively, except perhaps the closed edge parallel to the diagonal.

Since every $x \in B \setminus \bigcup_l A^l_\delta$ is an elliptic point for φ , Theorem 0 in [3] and a compactness argument give that $\|T_{\mu_D}\|_{\frac{3}{2},3} < \infty$ where $D = \left\{x \in B \setminus \bigcup_l A^l_\delta : \frac{1}{2} \leq |x|\right\}$. Then (using the symmetry of E_{μ_D} , the fact of that μ_D is a finite measure and the Riesz-Thorin theorem) E_{μ_D} is the closed triangle with vertices (0,0), (1,1), $(\frac{2}{3},\frac{1}{3})$. Now, proceeding as in the proof of Theorem 3.3 we get that $\|T_{\mu_{B \setminus \bigcup_l A^l_\delta}}\|_{p,q} < \infty$ if $\frac{1}{q} > \frac{1}{p} - \frac{1}{m+1}$. Then the first assertion of the theorem is true. The second one follows also using the facts of Remark 3.2.

For 0 < a < 1, we set

$$U_{a,j}^{l}=\left\{x\in\mathbb{R}^{2}:a\leq\left|\pi_{L^{l}}\left(x\right)\right|\leq1\text{ and }2^{-j}\left|\pi_{L^{l}}\left(x\right)\right|\leq\left|\pi_{L^{l}}^{\perp}\left(x\right)\right|\leq2^{-j+1}\left|\pi_{L^{l}}\left(x\right)\right|\right\}$$

let $U_{a,j,i}^l$, i = 1, 2, 3, 4 be the connected components of $U_{a,j}^l$.

Theorem 3.8. Suppose that the set of non elliptic points for φ is a finite union of lines through the origin, $L_1,...,L_k$. Let 0 < a < 1 and let $j_0 \in N$ such that

For l=1,2,...,k, there exists $\beta_l \in N$ satisfying $|\det\left(\varphi_1''\left(x\right)h,\varphi_1''\left(y\right)h\right)| \geq c2^{-j\beta_j}|h|^2$ for all $x,y \in U_{a,j,i}^l$, $j \geq j_0$ and i=1,2,3,4. Let $\beta = \max_{1 \leq j \leq k} \beta_j$. Then E_μ contains the intersection of the two closed trapezoidal regions with vertices (0,0), (1,1), $\left(\frac{m}{m+1},\frac{m-1}{m+1}\right)$, $\left(\frac{2}{m+1},\frac{1}{m+1}\right)$ and (0,0), (1,1), $\left(\frac{\beta+2}{\beta+3},\frac{\beta+1}{\beta+3}\right)$, $\left(\frac{2}{\beta+3},\frac{1}{\beta+3}\right)$, respectively, except perhaps the closed edge parallel to the diagonal.

Moreover, if $\beta \leq m-2$ then the interior of E_{μ} is the interior of the trapezoidal region with vertices (0,0), (1,1), $\left(\frac{m}{m+1},\frac{m-1}{m+1}\right)$, $\left(\frac{2}{m+1},\frac{1}{m+1}\right)$.

Proof. Follows as in Theorem 3.7, using now Theorem 3.5 instead of Theorem 3.3. \Box

Example 3.1.
$$\varphi(x_1, x_2) = (x_1^2 x_2 - x_1 x_2^2, x_1^2 x_2 + x_1 x_2^2)$$

It is easy to check that the set of non elliptic points is the union of the coordinate axes. Indeed, for $h=(h_1,h_2)$ we have $\det \varphi''(x_1,x_2)\,h=8x_2^2h_1^2+8x_1x_2h_1h_2+8x_1^2h_2^2$ and this quadratic form in (h_1,h_2) has non trivial zeros only if $x_1=0$ or $x_2=0$. The associated symmetric matrix to the quadratic form is

$$\begin{bmatrix} 8x_2^2 & 4x_1x_2 \\ 4x_1x_2 & 8x_1^2 \end{bmatrix}$$

and for $x_1 \neq 0$ and $|x_2| \leq \delta \, |x_1|$ with δ small enough, its eigenvalue of lower absolute value is $\lambda_1 \, (x_1, x_2) = 4x_1^2 + 4x_2^2 - 4\sqrt{(x_2^4 - x_1^2 x_2^2 + x_1^4)}$. Thus $\lambda_1 \, (x_1, x_2) \simeq 6x_2^2$ for such (x_1, x_2) . Similarly, for $x_2 \neq 0$ and $|x_1| \leq \delta \, |x_2|$ with δ small enough, the eigenvalue of lower absolute value is comparable with $6x_1^2$. Then, in the notation of Theorem 3.7, we obtain $\alpha = 2$ and so E_μ contains the closed trapezoidal region with vertices (0,0), (1,1), $\left(\frac{13}{14},\frac{6}{7}\right)$ and $\left(\frac{1}{7},\frac{1}{14}\right)$ except

perhaps the closed edge parallel to the principal diagonal. Observe that, in this case, Theorem 3.8 does not apply. In fact, for $x = (x_1, x_2)$, $\tilde{x} = (\tilde{x}_1, \tilde{x}_2)$ and $h = (h_1, h_2)$ we have

$$\det (\varphi_1''(x) h, \varphi_2''(\widetilde{x}) h)$$

$$= 4h_1^2 (x_2 \widetilde{x}_1 - \widetilde{x}_2 x_1 + 2x_2 \widetilde{x}_2) + 4h_1 h_2 (x_1 \widetilde{x}_2 + \widetilde{x}_1 x_2) + 4h_2^2 (x_1 \widetilde{x}_2 - x_2 \widetilde{x}_1 + 2x_2 \widetilde{x}_1).$$

Take $x_1=\widetilde{x}_1=1$ and let $A=A\left(x_2,\widetilde{x}_2\right)$ the matrix of the above quadratic form in (h_1,h_2) . For $x_2=2^{-j},\,\widetilde{x}_2=2^{-j+1}$ we have $\det A<0$ for j large enough but if we take $x_2=2^{-j+1}$ and $\widetilde{x}_2=2^{-j}$, we get $\det A>0$ for j large enough, so, for all j large enough, $\det A=0$ for some $2^{-j}\leq x_2,\,\widetilde{x}_2\leq 2^{-j+1}$. Thus, for such $x_2,\,\widetilde{x}_2$,

$$\inf_{|(h_1,h_2)|=1} \det \left(\varphi_1'' \left(1, x_2 \right) \left(h_1, h_2 \right), \varphi_2'' \left(1, \widetilde{x}_2 \right) \left(h_1, h_2 \right) \right) = 0.$$

Example 3.2. Let us show an example where Theorem 3.8 characterizes $\overset{\circ}{E}_{\mu}$. Let

$$\varphi(x_1, x_2) = \left(x_1^3 x_2 - 3x_1 x_2^3, 3x_1^2 x_2^2 - x_2^4\right).$$

In this case the set of non elliptic points for φ is the x_1 axis. Indeed,

$$\det \left(\varphi''\left(x_{1}, x_{2}\right)\left(h_{1}, h_{2}\right)\right) = 18\left(x_{1}^{2} + x_{2}^{2}\right)\left(\left(h_{2}x_{1} + x_{2}h_{1}\right)^{2} + 2x_{2}^{2}h_{1}^{2} + 6h_{2}^{2}x_{2}^{2}\right).$$

In order to apply Theorem 3.8, we consider the quadratic form in $h = (h_1, h_2)$

$$\det \left(\varphi_1'' \left(x_1, x_2 \right) h, \varphi_2'' \left(\widetilde{x}_1, \widetilde{x}_2 \right) h \right).$$

If $x = (x_1, x_2)$ and $\widetilde{x} = (\widetilde{x}_1, \widetilde{x}_2)$, let $A = A(x, \widetilde{x})$ its associated symmetric matrix. An explicit computation of A shows that, for a given 0 < a < 1 and for all j large enough and i = 1, 2, 3, 4, if x and \widetilde{x} belong to $U_{a,j,i}$, then

$$a^2 \le tr(A) \le 20$$

thus, if $\lambda_1\left(x,\widetilde{x}\right)$ denotes the eigenvalue of lower absolute value of $A\left(x,\widetilde{x}\right)$, we have, for $x,\widetilde{x}\in W_a$ that

$$c_1 \left| \det A \right| \le \left| \lambda_1 \left(x, \widetilde{x} \right) \right| \le c_2 \left| \det A \right|$$

where c_1, c_2 are positive constants independent of j. Now, a computation gives

$$\det A = 324 \left(-x_1^2 \widetilde{x}_1^2 - 9x_2^2 \widetilde{x}_2^2 - 12x_1 x_2 \widetilde{x}_1 \widetilde{x}_2 + 2x_1^2 \widetilde{x}_2^2 \right) \times \left(x_2^2 \widetilde{x}_1^2 - 2x_2^2 \widetilde{x}_2^2 - 4x_1 x_2 \widetilde{x}_1 \widetilde{x}_2 + x_1^2 \widetilde{x}_2^2 \right).$$

Now we write $\widetilde{x}_2 = tx_2$, with $\frac{1}{2} \le t \le 2$. Then

$$\det A = 324x_2^2 \left[-x_1^2 \widetilde{x}_1^2 - 9t^2 x_2^4 - 12t x_1 x_2^2 \widetilde{x}_1 + 2t^2 x_2^2 x_1^2 \right] \left[\widetilde{x}_1^2 - 2t^2 x_2^2 - 4t x_1 \widetilde{x}_1 + t^2 x_1^2 \right].$$

Note that the first bracket is negative for $x,\widetilde{x}\in W_a$ if j is large enough. To study the sign of the second one, we consider the function $F\left(t,x_1,\widetilde{x}_1\right)=\widetilde{x}_1^2-4tx_1\widetilde{x}_1+t^2x_1^2$. Since F has a negative maximum on $\{1\}\times\{1\}\times\left[\frac{1}{2},2\right]$, it follows easily that we can choose a such that for $x,\widetilde{x}\in W_a$ and j large enough, the same assertion holds for the second bracket. So $\det A$ is comparable with 2^{-2j} , thus the hypothesis of the Theorem 3.8 are satisfied with $\beta=2$ and such a. Moreover, we have $\beta=m-2$, then we conclude that the interior of E_μ is the open trapezoidal region with vertices (0,0), (1,1), $\left(\frac{3}{5},\frac{4}{5}\right)$, $\left(\frac{2}{5},\frac{1}{5}\right)$. On the other hand, in a similar way than in Example 3.1 we can see that $\alpha=2$ (in fact

On the other hand, in a similar way than in Example 3.1 we can see that $\alpha=2$ (in fact $\det A(x,x)=648$ ($x_1^2+9x_2^2$) ($x_1^2+x_2^2$) 2 x_2^2), so in this case Theorem 3.8 gives a better result (a precise description of \mathring{E}_{μ}) than that given by Theorem 3.7, that asserts only that \mathring{E}_{μ} contains the trapezoidal region with vertices (0,0), (1,1), $\left(\frac{13}{14},\frac{6}{7}\right)$ and $\left(\frac{1}{7},\frac{1}{14}\right)$.

Example 3.3. The following is an example where Theorem 3.7 characterizes $\stackrel{\circ}{E}_{\mu}$. Let

$$\varphi(x_1, x_2) = (x_2 \operatorname{Re}(x_1 + ix_2)^{12}, x_2 \operatorname{Im}(x_1 + ix_2)^{12}).$$

A computation gives that for $x = (x_1, x_2)$ and $h = (h_1, h_2)$

$$\det\left(\varphi''\left(x\right)h\right) = 288\left(x_1^2 + x_2^2\right)^{10}\left(66x_2^2h_1^2 + 11x_1x_2h_1h_2 + \left(x_1^2 + 78x_2^2\right)h_2^2\right)$$

and this quadratic form in (h_1, h_2) does not vanish for $h \neq 0$ unless $x_2 = 0$. So the set of non elliptic points for φ is the x_1 axis. Moreover, its associate symmetric matrix

$$A = A(x) = 288 \left(x_1^2 + x_2^2\right)^{10} \begin{bmatrix} 66x_2^2 & \frac{11}{2}x_1x_2\\ \frac{11}{2}x_1x_2 & x_1^2 + 78x_2^2 \end{bmatrix}$$

satisfies $c_1 \leq trA(x) \leq c_2$ for $x \in B$, $\frac{1}{2} \leq |x_1|$, and $|x_2| \leq \delta |x_1|$, $\delta > 0$ small enough.

Thus if $\lambda_1 = \lambda_1(x)$ denotes the eigenvalue of lower absolute value of A(x), we have, for x in this region, that

$$k_1 |\det A| \le |\lambda_1| \le k_2 |\det A|$$
,

where k_1 and k_2 are positive constants.

Since det $A(1, x_2) = (288)^2 (1 + x_2^2)^{20} \left(\frac{143}{4}x_2^2 + 5148x_2^4\right)$, we have that $\alpha = 2$. So $7\alpha = m+1$ and, from Theorem 3.7, we conclude that the interior of E_{μ} is the open trapezoidal region with vertices (0,0), (1,1), $\left(\frac{13}{14},\frac{6}{7}\right)$, $\left(\frac{1}{7},\frac{1}{14}\right)$.

REFERENCES

- [1] J. BOCHNAK, M. COSTE AND M. F. ROY, Real Algebraic Geometry, Springer, 1998.
- [2] M. CHRIST. Endpoint bounds for singular fractional integral operators, UCLA Preprint, (1988).
- [3] S. W. DRURY AND K. GUO, Convolution estimates related to surfaces of half the ambient dimension. *Math. Proc. Camb. Phil. Soc.*, **110** (1991), 151–159.
- [4] E. FERREYRA, T. GODOY AND M. URICUOLO. The type set for some measures on \mathbb{R}^{2n} with n dimensional support, *Czech. Math. J.*, (to appear).
- [5] A. IOSEVICH AND E. SAWYER, Sharp $L^p L^q$ estimates for a class of averaging operators, *Ann Inst. Fourier*, **46**(5) (1996), 359–1384.
- [6] T. KATO, *Perturbation Theory for Linear Operators*, Second edition. Springer Verlag, Berlin Heidelberg- New York, 1976.
- [7] D. OBERLIN, Convolution estimates for some measures on curves, *Proc. Amer. Math. Soc.*, **99**(1) (1987), 56–60.
- [8] F. RICCI, Limitatezza $L^p L^q$ per operatori di convoluzione definiti da misure singolari in \mathbb{R}^n , Bollettino U.M.I., (7) 11-A (1997), 237–252.
- [9] F. RICCI AND E. M. STEIN, Harmonic analysis on nilpotent groups and singular integrals III, fractional integration along manifolds, *J. Funct. Anal.*, **86** (1989), 360–389.
- [10] E. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, New Jersey, 1970.