SUFFICIENT CONDITIONS FOR STARLIKENESS AND CONVEXITY IN $|z|<\frac{1}{2}$

MAMORU NUNOKAWA
University of Gunma
798-8 Hoshikuki-machi, Chuo-ku, Chiba-shi
Chiba 260-0808, Japan
EMail: mamoru_nuno@doctor.nifty.jp
\section*{SHIGEYOSHI OWA, YAYOI NAKAMURA AND TOSHIO HAYAMI}
Department of Mathematics, Kinki University
Higashi-Osaka, Osaka 577-8502, Japan
EMail: owa@math.kindai.ac.jp yayoi@math.kindai.ac.jp ha_ya_to112@hotmail.com
Received: $\quad 18$ February, 2008
Accepted: 04 June, 2008
Communicated by:
2000 AMS Sub. Class.:
Key words:
Abstract:
Acknowledgements:
A. Sofo
Primary 30C45.
Analytic, Starlike, Convex.
For analytic functions $f(z)$ with $f(0)=f^{\prime}(0)-1=0$ in the open unit disc \mathbb{E}, T. H. MacGregor has considered some conditions for $f(z)$ to be starlike or convex. The object of the present paper is to discuss some interesting problems for $f(z)$ to be starlike or convex for $|z|<\frac{1}{2}$.
We would like to thank the referee for his very useful suggestions which essentially improved this paper.

Conditions for Starlikeness and Convexity
Mamoru Nunokawa, Shigeyoshi Owa, Yayoi Nakamura and Toshio Hayami
vol. 9, iss. 2, art. 32, 2008

Title Page
Contents

Page 1 of 12
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
 issn: 1443-5756

Contents

1 Introduction 3
2 Starlikeness and Convexity 5

Conditions for Starlikeness and Convexity
Mamoru Nunokawa, Shigeyoshi Owa, Yayoi Nakamura and Toshio Hayami vol. 9, iss. 2, art. 32, 2008

Title Page
Contents

Page 2 of 12
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction

Let \mathcal{A} denote the class of functions $f(z)$ of the form

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

which are analytic in the open unit disc $\mathbb{E}=\{z \in \mathbb{C}:|z|<1\}$. A function $f \in \mathcal{A}$ is said to be starlike with respect to the origin in \mathbb{E} if it satisfies

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0 \quad(z \in \mathbb{E})
$$

Conditions for Starlikeness and Convexity
Mamoru Nunokawa, Shigeyoshi Owa, Yayoi Nakamura and Toshio Hayami
vol. 9, iss. 2, art. 32, 2008

Also, a function $f \in \mathcal{A}$ is called as convex in \mathbb{E} if it satisfies

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0 \quad(z \in \mathbb{E})
$$

MacGregor [2] has shown the following.
Theorem A. If $f \in \mathcal{A}$ satisfies

$$
\left|\frac{f(z)}{z}-1\right|<1 \quad(z \in \mathbb{E})
$$

then

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<1 \quad\left(|z|<\frac{1}{2}\right)
$$

so that

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0 \quad\left(|z|<\frac{1}{2}\right) .
$$

Therefore, $f(z)$ is univalent and starlike for $|z|<\frac{1}{2}$.

Title Page
Contents

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Also, MacGregor [3] had given the following results.
Theorem B. If $f \in \mathcal{A}$ satisfies

$$
\left|f^{\prime}(z)-1\right|<1 \quad(z \in \mathbb{E})
$$

then

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0 \quad \text { for }|z|<\frac{1}{2}
$$

Therefore, $f(z)$ is convex for $|z|<\frac{1}{2}$.
Theorem C. If $f \in \mathcal{A}$ satisfies

$$
\left|f^{\prime}(z)-1\right|<1 \quad(z \in \mathbb{E})
$$

then $f(z)$ maps $|z|<\frac{2 \sqrt{5}}{5}=0.8944 \ldots$ onto a domain which is starlike with respect to the origin,

$$
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|<\frac{\pi}{2} \quad \text { for }|z|<\frac{2 \sqrt{5}}{5}
$$

or

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0 \quad \text { for }|z|<\frac{2 \sqrt{5}}{5}
$$

The condition domains of Theorem A, Theorem B and Theorem C are some circular domains whose center is the point $z=1$.

It is the purpose of the present paper to obtain some sufficient conditions for starlikeness or convexity under the hypotheses whose condition domains are annular domains centered at the origin.

Conditions for Starlikeness and Convexity
Mamoru Nunokawa, Shigeyoshi Owa, Yayoi Nakamura and Toshio Hayami
J

Title Page
Contents

Page 4 of 12
Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics

2. Starlikeness and Convexity

We start with the following result for starlikeness of functions $f(z)$.
Theorem 2.1. Let $f \in \mathcal{A}$ and suppose that

$$
\begin{align*}
0.10583 \cdots & =\exp \left(-\frac{\pi^{2}}{4 \log 3}\right) \tag{2.1}\\
& <\left|\frac{z f^{\prime}(z)}{f(z)}\right| \\
& <\exp \left(\frac{\pi^{2}}{4 \log 3}\right)=9.44915 \cdots \quad(z \in \mathbb{E})
\end{align*}
$$

Then $f(z)$ is starlike for $|z|<\frac{1}{2}$.
Proof. From the assumption (2.1), we get

$$
f(z) \neq 0 \quad(0<|z|<1)
$$

From the harmonic function theory (cf. Duren [1]), we have

$$
\begin{aligned}
\log \left(\frac{z f^{\prime}(z)}{f(z)}\right) & =\frac{1}{2 \pi} \int_{|\zeta|=R}\left(\log \left|\frac{\zeta f^{\prime}(\zeta)}{f(\zeta)}\right|\right) \frac{\zeta+z}{\zeta-z} d \varphi+i \arg \left(\frac{z f^{\prime}(z)}{f(z)}\right)_{z=0} \\
& =\frac{1}{2 \pi} \int_{|\zeta|=R}\left(\log \left|\frac{z f^{\prime}(\zeta)}{f(\zeta)}\right|\right) \frac{\zeta+z}{\zeta-z} d \varphi
\end{aligned}
$$

where $|z|=r<|\zeta|=R<1, z=r e^{i \theta}$ and $\zeta=R e^{i \varphi}$.

Conditions for Starlikeness and Convexity
Mamoru Nunokawa, Shigeyoshi Owa, Yayoi Nakamura and Toshio Hayami vol. 9, iss. 2, art. 32, 2008

Title Page
Contents

Page 5 of 12

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics

It follows that

$$
\begin{aligned}
\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}\right)\right| & =\left|\frac{1}{2 \pi} \int_{|\zeta|=R}\left(\log \left|\frac{\zeta f^{\prime}(\zeta)}{f(\zeta)}\right|\right)\left(\operatorname{Im} \frac{\zeta+z}{\zeta-z}\right) d \varphi\right| \\
& \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}|\log | \frac{\zeta f^{\prime}(\zeta)}{f(\zeta)}| |\left|\frac{2 R r \sin (\varphi-\theta)}{R^{2}-2 R r \cos (\varphi-\theta)+r^{2}}\right| d \varphi \\
& <\frac{\pi^{2}}{4 \log 3} \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{2 R r|\sin (\varphi-\theta)|}{R^{2}-2 R r \cos (\varphi-\theta)+r^{2}} d \varphi \\
& =\frac{\pi^{2}}{4 \log 3} \frac{2}{\pi} \log \frac{R+r}{R-r} .
\end{aligned}
$$

Letting $R \rightarrow 1$, we have

$$
\begin{aligned}
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right| & <\frac{\pi}{2 \log 3} \log \frac{1+r}{1-r} \\
& <\frac{\pi}{2 \log 3} \log 3 \\
& =\frac{\pi}{2} \quad\left(|z|=r<\frac{1}{2}\right) .
\end{aligned}
$$

This completes the proof of the theorem.
Next we derive the following

Conditions for Starlikeness and Convexity
Mamoru Nunokawa, Shigeyoshi Owa, Yayoi Nakamura and Toshio Hayami
vol. 9, iss. 2, art. 32, 2008

Title Page
Contents

Page 6 of 12
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics

Theorem 2.2. Let $f \in \mathcal{A}$ and suppose that

$$
\begin{align*}
0.472367 \ldots & =\exp \left(-\frac{3}{4}\right) \tag{2.2}\\
& <\left|\frac{f(z)}{z}\right| \\
& <\exp \left(\frac{3}{4}\right)=2.177 \ldots \quad(z \in \mathbb{E}) .
\end{align*}
$$

Then we have

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<1 \quad\left(|z|<\frac{1}{2}\right)
$$

or $f(z)$ is starlike for $|z|<\frac{1}{2}$.
Proof. From the assumption (2.2), we have

$$
f(z) \neq 0 \quad(0<|z|<1) .
$$

Applying the harmonic function theory (cf. Duren [1]), we have

$$
\log \left(\frac{f(z)}{z}\right)=\frac{1}{2 \pi} \int_{|\zeta|=R}\left(\log \left|\frac{f(\zeta)}{\zeta}\right|\right) \frac{\zeta+z}{\zeta-z} d \varphi
$$

where $|z|=r<|\zeta|=R<1, z=r e^{i \theta}$ and $\zeta=R e^{i \varphi}$.
Then, it follows that

$$
\frac{z f^{\prime}(z)}{f(z)}-1=\frac{1}{2 \pi} \int_{|\zeta|=R}\left(\log \left|\frac{f(\zeta)}{\zeta}\right|\right) \frac{2 \zeta z}{(\zeta-z)^{2}} d \varphi
$$

Conditions for Starlikeness and Convexity
Mamoru Nunokawa, Shigeyoshi Owa, Yayoi Nakamura and Toshio Hayami
vol. 9, iss. 2, art. 32, 2008

Title Page
Contents
\qquad

Page 7 of 12

Go Back

Full Screen

```
Close
```

journal of inequalities in pure and applied mathematics
issn: 1443-575b

This gives us

$$
\begin{aligned}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| & \leq \frac{1}{2 \pi} \int_{|\zeta|=R}|\log | \frac{f(\zeta)}{\zeta}| | \frac{2 R r}{R^{2}-2 R r \cos (\varphi-\theta)+r^{2}} d \varphi \\
& <\frac{3}{4} \frac{1}{2 \pi} \int_{|\zeta|=R} \frac{2 R r}{R^{2}-2 \operatorname{Rr} \cos (\varphi-\theta)+r^{2}} d \varphi \\
& =\frac{3}{4} \frac{2 R r}{R^{2}-r^{2}} .
\end{aligned}
$$

Making $R \rightarrow 1$, we have

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<\frac{3}{4} \frac{2 r}{1-r^{2}}<1 \quad\left(|z|=r<\frac{1}{2}\right)
$$

which completes the proof of the theorem.
For convexity of functions $f(z)$, we show the following corollary without the proof.
Corollary 2.3. Let $f \in \mathcal{A}$ and suppose that
(2.3) $0.472367 \cdots=\exp \left(-\frac{3}{4}\right)<\left|f^{\prime}(z)\right|<\exp \left(\frac{3}{4}\right)=2.117 \ldots \quad(z \in \mathbb{E})$.

Then $f(z)$ is convex for $|z|<\frac{1}{2}$.
Next our result for the convexity of functions $f(z)$ is contained in

Theorem 2.4. Let $f \in \mathcal{A}$ and suppose that

$$
\begin{equation*}
0.778801 \cdots=\exp \left(-\frac{1}{4}\right)<\left|\frac{z f^{\prime}(z)}{f(z)}\right|<\exp \left(\frac{1}{4}\right)=1.28403 \ldots \quad(z \in \mathbb{E}) \tag{2.4}
\end{equation*}
$$

Conditions for Starlikeness and Convexity
Mamoru Nunokawa, Shigeyoshi Owa, Yayoi Nakamura and Toshio Hayami vol. 9, iss. 2, art. 32, 2008

Title Page
Contents

Page 8 of 12
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Then $f(z)$ is convex for $|z|<\frac{1}{2}$.
Proof. From the condition (2.4) of the theorem, we have

$$
\frac{z f^{\prime}(z)}{f(z)} \neq 0 \quad \text { in } \mathbb{E}
$$

Then, it follows that

$$
\begin{equation*}
\log \frac{z f^{\prime}(z)}{f(z)}=\frac{1}{2 \pi} \int_{|\zeta|=R}\left(\log \frac{\zeta f^{\prime}(\zeta)}{f(\zeta)}\right) \frac{\zeta+z}{\zeta-z} d \varphi \tag{2.5}
\end{equation*}
$$

Conditions for Starlikeness and Convexity
Mamoru Nunokawa, Shigeyoshi Owa, Yayoi Nakamura and Toshio Hayami
vol. 9, iss. 2, art. 32, 2008
where $|z|=r<|\zeta|=R<1, z=r e^{i \theta}$ and $\zeta=R e^{i \varphi}$.
Differentiating (2.5) and multiplying by z, we obtain that

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{z f^{\prime}(z)}{f(z)}+\frac{1}{2 \pi} \int_{|\zeta|=R}\left(\log \left|\frac{\zeta f^{\prime}(\zeta)}{f(\zeta)}\right|\right) \frac{2 \zeta z}{(\zeta-z)^{2}} d \varphi
$$

In view of Theorem 2.1, $f(z)$ is starlike for $|z|<\frac{1}{2}$ and therefore, we have

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)} \geq \frac{1-r}{1+r} \quad\left(|z|=r<\frac{1}{2}\right)
$$

Page 9 of 12
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Letting $R \rightarrow 1$, we see that

$$
\begin{aligned}
1+\operatorname{Re} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} & >\frac{1-r}{1+r}-\frac{1}{4} \frac{2 r}{1-r^{2}} \\
& =\frac{1}{3}-\frac{1}{4} \cdot \frac{4}{3} \\
& =0 \quad\left(|z|=r<\frac{1}{2}\right)
\end{aligned}
$$

which completes the proof of our theorem.
Finally, we prove
Theorem 2.5. Let $f \in \mathcal{A}$ and suppose that

$$
\begin{aligned}
0.10583 \ldots & =\exp \left(-\frac{\pi^{2}}{4 \log 3}\right) \\
& <\left|\frac{z f^{\prime}(z)}{f(z)}\right|<\exp \left(\frac{\pi^{2}}{4 \log 3}\right)=9.44915 \ldots \quad(z \in \mathbb{E}) .
\end{aligned}
$$

Then $f(z)$ is convex in $|z|<r_{0}$ where r_{0} is the root of the equation

$$
\begin{gathered}
(4 \log 3) r^{2}-2\left(4 \log 3+\pi^{2}\right) r+4 \log 3=0, \\
r_{0}=\frac{\pi^{2}-4 \log 3-\pi \sqrt{\pi^{2}+8 \log 3}}{4 \log 3}=0.15787 \ldots
\end{gathered}
$$

Page 10 of 12

```
Go Back
```

Full Screen

```
Close
```

journal of inequalities in pure and applied mathematics
where $|z|=r<|\zeta|=R<1, z=r e^{i \theta}$ and $\zeta=R e^{i \varphi}$.
Putting $R \rightarrow 1$, we have

$$
\begin{aligned}
1+\operatorname{Re} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} & >\frac{1-r}{1+r}-\frac{\pi^{2}}{4 \log 3} \frac{2 r}{1-r^{2}} \\
& =\frac{1}{\left(1-r^{2}\right) 4 \log 3}\left\{(4 \log 3) r^{2}-2\left(4 \log 3+\pi^{2}\right) r+4 \log 3\right\} \\
& >0 \quad\left(|z|<r_{0}\right) .
\end{aligned}
$$

Conditions for Starlikeness and Convexity
Mamoru Nunokawa, Shigeyoshi Owa, Yayoi Nakamura and Toshio Hayami
vol. 9, iss. 2, art. 32, 2008
Remark 1. The condition in Theorem A by MacGregor [2] implies that

$$
0<\operatorname{Re}\left(\frac{f(z)}{z}\right)<2 \quad(z \in \mathbb{E})
$$

However, the condition in Theorem 2.2 implies that

$$
-2.117 \cdots<\operatorname{Re}\left(\frac{f(z)}{z}\right)<2.117 \ldots \quad(z \in \mathbb{E})
$$

Furthermore, the condition in Theorem B by MacGregor [3] implies that

$$
0<\operatorname{Re} f^{\prime}(z)<2 \quad(z \in \mathbb{E})
$$

However, the condition in Corollary 2.3 implies that

$$
-2.117 \cdots<\operatorname{Re} f^{\prime}(z)<2.117 \ldots \quad(z \in \mathbb{E})
$$

\qquad
Title Page
Contents

Page 11 of 12

```
Go Back
```

Full Screen
Close
journal of inequalities in pure and applied mathematics

References

[1] P. DUREN, Harmonic mappings in the plane, Cambridge Tracts in Mathematics 156, Cambridge Univ. Press, 2004.
[2] T.H. MacGREGOR, The radius of univalence of certain analytic functions. II, Proc. Amer. Math. Soc., 14(3) (1963), 521-524.
[3] T.H. MacGREGOR, A class of univalent functions, Proc. Amer. Math. Soc., 15 (1964), 311-317.

Conditions for Starlikeness and Convexity
Mamoru Nunokawa, Shigeyoshi Owa, Yayoi Nakamura and Toshio Hayami
vol. 9, iss. 2, art. 32, 2008

Title Page
Contents

$\mathbf{4}$	
$\boldsymbol{4}$	
Page 12 of 12	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

