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ABSTRACT. Let X be a Banach space which is uniformly convex and uniformly smooth. We
introduce the lower and upper moduli of expansion of the dual mapging the spaceX.

Some estimation of certain well-known moduli (convexity, smoothness and flatness) and two
new moduli introduced ir_|5] are described with this new moduli of expansion.
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Let (X, ||-||) be a real normed spac¥;* its conjugate spacex** the second conjugate of
andS (X) the unit sphere iX (S (X) = {x € X|||z]| = 1}).

Moreover, we shall use the following definitions and notations.

The sign(.S) denotes thaiX is smooth,(R) that X is reflexive,(US) that X is uniformly
smooth,(SC) that X is strictly convex, andqU (') that X is uniformly convex.

The mapJ : X — 2% is called the dual map if (0) = 0 and forz € X, z # 0,

J(x) = {f € X7[f (@) = AN Ml (1A= Tl -
The dual map ofX* into 2%~ we denote by/*. The mapr is canonical linear isometry of
into X**.
It is well known that functional
" (o) = 21 (hm e+ tyll —llzll , (Ml iyl - ||a:||)

t——0 t t—-+0 t

always exists oiX 2. If X is (9), then [1) reduces to

=+ tyll =[]l
t Y

g(z,y) = |[z|| lim
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the functionalg is linear in the second argument(x) is a singleton and (z,-) € J (z). In
this case we shall writé (z) = Jz = f,. Then[y, z| := g (z,y) , defines a so called semi-inner
product]-, -] (s.i.p) onX2 which generates the norm &, ([z, 2] = ||z||*) , (see[[]). IfX is an
inner-product space (i.p. space) thefx, y) is the usual i.p. of the vectarand the vectoy.

By the use of functionaj we define the angle between vecioand vector (z # 0, y # 0)
as

9(z,y) +9(y,z)
(2) cos (z,y) =
T P
(seel[3]). If(X, (-,-)) is ani.p. space, thef](2) reduces to
(z,9)
cos(x,y) = .
)= Tl ol
We say thatX is a quasi-inner product space (q.i.p space) if the following equality holds
3) lz +ll* = llz = ylI* =8 [llz1*g (z,9) + |yl g (v,2)] , (2,y € X)"

The equality [(B) holds in the spaée but does not hold in the spaée A g.i.p. spaceX is
(SC) and(US) (seel6] and[4]).

Alongside the modulus of convexity of, dx, and the modulus of smoothness ®f px,
defined by

2
x—i—y‘

dx () :inf{l -

x—i—yH

ry e S(X); oyl 25};

px<e>:sup{1— ryeS(X); |z —yl Se};

we have defined in_[5] the angle modulus of convexityXafd’,, and the angle modulus of
smoothness ok, py by:

0 { Ll

.y €S (X): o -yl Ze};

, 1 —cos(z,y
(e =sup { T2 |y e s 0ol <2
We also recall the known definition of modulus of flathess(of)x (Day’s modulus):
2—||lz+
nx (€) :sup{H z,y e S(X); lz—y ge}.

We now quote three known results.

Lemma 1. (Theorem 6 irf7] and Theorem 6 ifl]). Let X be a real normed space which is
(S), (SC)and(R). Then for allf € X* there exists a unique € X such that

fw =gy, (yeX).

Lemma 2. (Theorem 7 irfl]). Let X be a Banach space which(&S) and(UC) and let]-, -]
be an s.i.p. onX? which generates the norm oxi (see[1]). Then the dual spac&* is (US)
and (UC') and the functional

(Jo,Jy) = [y, 2], (z,y € X),
is an s.i.p on(X*)*.

1) If (-,-) isani.p. onX? theng (x,y) = (x,y) and the equalitﬂB) is the parallelogram equality.
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Lemma 3. (Proposition 3 in[2]). Let X be a real normed space. Then f@r/* and on their
respective domains we have

Jt=7"1J"and J = J .

Remark 4. Under the hypothesis of Lemrpp 2, the mappirigé" andr are bijective mappings.
Then, by Lemma@]3, Lemnja 2 and Lemfja 1, in this case, we have

(Ja, Jy) =g (x,y) = g (fy, fo), (2, € X).

Lemma 5. Let X be a real normed space which(iS), (SC) and(R) . Then forz,y € S (X)
we have

(4) 1-

z+y|l o 1—cos(ay) _ z—ylllfe = fill
2 - 2 - 4

Proof. Under the hypothesis of Lemma 5, using Lenma 1, we have- g (z,-) (z € X).

Consequently,

1fze = full = sup{lg (z,2) =g (y, 1) |t € S(X)}
>g(z.t)—g(y.t) (teS(X)).
Fort = ==L (z # y), we obtain

lz—yll
Tr — Tr —
©) e R (e S ]
|z =y |z —yll
SinceX is (5), the functionaly is linear in the second argument. Hence, frpi (5) we get
(6) L—g(z,y) =gy z)+ 1< lz—yllllfe = full-

Using the inequality

L ||[Ety|| o Locos(zy) _ flz—y
2 - 2 - 2
(see Lemma 1 iri[5]) and the inequalify (6) we obtain the inequallty (4). O

Lemma 6. Let X be a Banach space which {#/S) and (UC) . Let §x- be the modulus of
convexity ofX*. Then for eaclr > 0 and for allz,y € S (X) the following implications hold
(7) [z =yl <20x- (e) = [Ifa = full <,

(8) 1o = fyll 2 e = llz —yll = 20x- (¢).

Proof. By Lemma 2,X* is a Banach space which (§C) and(US) . SinceX* is (UC), for
eachs > 0, we havedyx- (¢) > 0 and, for allz,y € S (X),

9) [fa + fyll > 2= 20x- (e) = [l fa = fill <e.

Under the hypothesis of Lemma 6, by Remifk 4, we hate y) = ¢(f,, f). Hence, by
inequality

l—|lz—yl <g(zy) <lz+yl|-1
(see Lemma 1 iri [6]), we obtain

(10) L—lz—yll <g(xy)=g(fy fo) < fe+ Syl =1,
so that we have
(11) |z =yl +Ife + fyll > 2.

Now, letz,y € S (X) and|jz — y|| < 2dx- () . Then, by [11) we obtain
1o+ fyll > 2 —20x- (¢).-
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Thus, by [(9), we conclude that
(12) 2 =yl < 20x- (e) = |Ife = fyll <&
On the other hand ifz — y|| = 26x- (¢) and||f, — f,| > , by (9), it follows
lz =yl + [1fo + fyll < 2.
So, by [11), we get
lz =yl + [ fo + fyll = 2.

Hence, using (10), we conclude thetz, y) =1 — ||z — ¢, i.e.,g (z,2 — y) = ||z|| |z — y]|.
Thus, sinceX is (SC), using Lemma 5 in[1], we get = = — y, which is impossible. So, the
implication ) is correct. The implication](8) follows from the implicatipn](12). O

We now introduce a new definition.
According to the inequality[ {4), to make further progress in the estimates of the moduli
dx, 0%, px, Py, itis convenient to introduce

Definition 1. Let X be(S) andz,y € S (X) . The functione,: [0,2] — [0, 2], defined by

ey (€) =it {|[fo = Syl | = -yl > ¢}
will be called the lower modulus of expansion of the dual mapping
The functioney : [0, 2] — [0, 2], defined as
ey (@) =sup{llfe = fyll | llz—yll <&}
is the upper modulus of expansion of the dual mapping
Now, we quote our new results. Firstly, we note some elementary properties of the moduli
ande;.
Theorem 7. Let X be(S). Then the following assertions are valid.

a) The functiore; is nondecreasing oft), 2] .
b) The functiore; is nondecreasing oft), 2] .
0) esle) < e (e) (= € [0,2).

d) If X is a Hilbert space, then,(¢) = €5 (¢) .

Proof. The assertions a) and b) follow from the implications
a<ea={@y) | lz-ylzea}>{Ey | lz-yl 2} (z,yeS5(X)),
a<ea={@y) | lz-yl <a} i@y | llz—yl<e} (zyeIX)).
c) Assume, to the contrary, i.e., that there isan [0, 2] such thak;(¢) > €5 (¢) . Then

inf {1 fe = foll [ lz =yl = e} = imf{|[fo = Il | Iz =yl =€}
>sup {[|fo = fyll | [le =yl < e}
Zsup{[[fo = fyll | [z =yl =<},

which is not possible.
d) In a Hilbert space, we have

Ifo = fyll = sup{|(z,t) = (g, 1) [t € S(X)} < lz -yl

On the other hand, the functiongl — f, attains its maximum in = ﬁ € S(X).

Hence||z — y|| = || f= — f,|| - Because of that, we havg(c) = €5 (¢) = ¢. O

In the next theorems some relation between modli)’y e, €5 are given.
Theorem 8. Let X be(S), (SC) and(R) . Then, fore € (0, 2] we have
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Proof. The proof of the assertions a) and b) follows immediately using the definitions of the
functionsd’y andp’y and the inequalityf (4).
c) Letz,y € S(X), z #y. By Lemmd 5, we have

2—flz+yl _ 2 (1_ ||33+y||)
|z =yl |z =y 2
1 — cos(z,y)
|z =y
< |z =yl I fz = full
2|z —yll
Ry
5 .

So
2—flz+yl _ llfe = fill

e -yl — 2
Using the definition of)x ande;, we obtain

On the other hand

1 1 2 5
O<|z-—yl|<e) = > - 2 leryll 2zl
|z -y € €

Because of that we have )

1 () 2 Zpx ().

Remark 9. The last inequality is true for an arbitrary spake
Corollary 10. For a q.i.p. space, it holds that

€ 4
(13) ey (c) > (5) (c€[0,2]).
Proof. By a) of TheorenﬂB and the inequali@% < 0% (e) (see Corollary 2 in[[5]), we get

(13). O

Corollary 11. If X is (S), (SC) and(R) then

) 0. (£) < gesle)
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Proof. It is well-known that if X is (S), (SC) and(R) thenX* is (S), (SC) and(R) . Hence
Theoreni 8 is valid forX ™. O

Theorem 12. Let X be a Banach space which(§C') and(US) . Then, for alle > 0, we have
the following estimations:

) pi (2. (2)) < D5
edx ()
2 )

b) px- (20x (¢)) <
C) eg+(e) > 20x- (),
d) €5 (20x- (e)) <&, (e (20x(g)) <¢).
Proof. a) Using, in succession, the definition of the functigp, the inequality [(#) in
Lemmd 2 and the implicatiof(7), we obtain:
1 —cos(x,y

s 20 6) =sup { 125D o -y < 250 2}

1
< gsupdllz = yllllfe = full [ llz =yl < 20x- ()}

1
S 1265)(* (5)

_ edx- (¢g)
==
b) If, in a), we setX* instead ofX (X** instead ofX*), we get
, e0x+x (€
(14) Pin (205 (£)) < X2 )

Let F,G € S (X**). Under the hypothesis of Theor¢m| 12, we have

Sy () = inf{l - M IF—G| > g}
= inf{l — HTx——szyH |tz — 1y| > 5}
—int {1 IPEED oy 2 e}
:inf{l— M’Hx—y!\ Ze}

:5)((6).

Consequently the inequality (14) is equivalent to the inequality b).
¢) Using, in succession, the definitionof, Lemmd B, and the implicatiof](8), we get

e (&) =inf{|J°fo = TSyl | 1o = fyll = €}
= inf{{lrz —7yll | /e = fyll = €}
> 20x+ (€).
d) Using the definition of; and the implication (7), we get
€7 (20x- () = sup{|[fo = fyll | llz —yll < 20x- (e)} <e.
Replacing, hereX™ with X** and.J with J*, we get the second inequality.
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Since in a Banach space we have

5X(6)§1—\/1—§ and dx (¢) < d% (¢)

(see Theorem 1 in [5]), using b) and a) of Theoferh 12, we obtain
Corollary 13. Under the hypothesis of Theorénj 12, we have

) 2ol (26x (6)) < dx () < 20k ().

. £ g
b) py (20x+ (g)) < 3 (1 —1/1— Z) :
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