

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 3, Issue 4, Article 55, 2002

ON MODULI OF EXPANSION OF THE DUALITY MAPPING OF SMOOTH BANACH SPACES

PAVLE M. MILIČIĆ

FACULTY OF MATHEMATICS UNIVERSITY OF BELGRADE YU-11000, YUGOSLAVIA. pmilicic@hotmail.com

Received 30 March, 2002; accepted 30 April, 2002. Communicated by S.S. Dragomir

ABSTRACT. Let X be a Banach space which is uniformly convex and uniformly smooth. We introduce the lower and upper moduli of expansion of the dual mapping J of the space X. Some estimation of certain well-known moduli (convexity, smoothness and flatness) and two new moduli introduced in [5] are described with this new moduli of expansion.

Key words and phrases: Uniformly convex (smooth) Banach space, Angle of modulus convexity (smoothness), Lower (upper) modulus of expansion.

2000 Mathematics Subject Classification. 46B20, 46C15, 51K05.

Let $(X, \|\cdot\|)$ be a real normed space, X^* its conjugate space, X^{**} the second conjugate of X and S(X) the unit sphere in $X(S(X) = \{x \in X | \|x\| = 1\})$.

Moreover, we shall use the following definitions and notations.

The sign (S) denotes that X is smooth, (R) that X is reflexive, (US) that X is uniformly smooth, (SC) that X is strictly convex, and (UC) that X is uniformly convex.

The map $J: X \to 2^{X^*}$ is called the dual map if J(0) = 0 and for $x \in X$, $x \neq 0$,

$$J\left(x\right) = \left\{f \in X^* | f\left(x\right) = \left\|f\right\| \left\|x\right\|, \left\|f\right\| = \left\|x\right\|\right\}.$$

The dual map of X^* into $2^{X^{**}}$ we denote by J^* . The map τ is canonical linear isometry of X into X^{**} .

It is well known that functional

(1)
$$g(x,y) := \frac{\|x\|}{2} \left(\lim_{t \to -0} \frac{\|x + ty\| - \|x\|}{t} + \lim_{t \to +0} \frac{\|x + ty\| - \|x\|}{t} \right)$$

always exists on X^2 . If X is (S), then (1) reduces to

$$g(x,y) = ||x|| \lim_{t \to 0} \frac{||x + ty|| - ||x||}{t};$$

ISSN (electronic): 1443-5756

© 2002 Victoria University. All rights reserved.

the functional g is linear in the second argument, J(x) is a singleton and $g(x,\cdot) \in J(x)$. In this case we shall write $J(x) = Jx = f_x$. Then [y,x] := g(x,y), defines a so called semi-inner product $[\cdot,\cdot]$ (s.i.p) on X^2 which generates the norm of X, $([x,x] = ||x||^2)$, (see [1]). If X is an inner-product space (i.p. space) then g(x,y) is the usual i.p. of the vector x and the vector y.

By the use of functional g we define the angle between vector x and vector y ($x \neq 0, y \neq 0$) as

(2)
$$\cos(x,y) := \frac{g(x,y) + g(y,x)}{2\|x\| \|y\|}$$

(see [3]). If $(X, (\cdot, \cdot))$ is an i.p. space, then (2) reduces to

$$\cos(x, y) = \frac{(x, y)}{\|x\| \|y\|}.$$

We say that X is a quasi-inner product space (q.i.p space) if the following equality holds

(3)
$$||x+y||^4 - ||x-y||^4 = 8 \left[||x||^2 g(x,y) + ||y||^2 g(y,x) \right], \quad (x,y \in X)^{1}$$

The equality (3) holds in the space l^4 , but does not hold in the space l^1 . A q.i.p. space X is (SC) and (US) (see [6] and [4]).

Alongside the modulus of convexity of X, δ_X , and the modulus of smoothness of X, ρ_X , defined by

$$\delta_{X}(\varepsilon) = \inf \left\{ 1 - \left\| \frac{x+y}{2} \right\| \mid x, y \in S(X); \|x-y\| \ge \varepsilon \right\};$$

$$\rho_{X}(\varepsilon) = \sup \left\{ 1 - \left\| \frac{x+y}{2} \right\| \mid x, y \in S(X); \|x-y\| \le \varepsilon \right\};$$

we have defined in [5] the angle modulus of convexity of X, δ'_X , and the angle modulus of smoothness of X, ρ'_X by:

$$\delta_{X}'\left(\varepsilon\right) = \inf\left\{\frac{1 - \cos\left(x, y\right)}{2} \left| x, y \in S\left(X\right); \|x - y\| \ge \varepsilon\right\};\right.$$

$$\rho_{X}'\left(\varepsilon\right) = \sup\left\{\frac{1 - \cos\left(x, y\right)}{2} \left| x, y \in S\left(X\right); \|x - y\| \le \varepsilon\right\}.$$

We also recall the known definition of modulus of flatness of X, η_X (Day's modulus):

$$\eta_X(\varepsilon) = \sup \left\{ \frac{2 - \|x + y\|}{\|x - y\|} \mid x, y \in S(X); \|x - y\| \le \varepsilon \right\}.$$

We now quote three known results.

Lemma 1. (Theorem 6 in [7] and Theorem 6 in [1]). Let X be a real normed space which is (S), (SC) and (R). Then for all $f \in X^*$ there exists a unique $x \in X$ such that

$$f(y) = g(x, y), (y \in X).$$

Lemma 2. (Theorem 7 in [1]). Let X be a Banach space which is (US) and (UC) and let $[\cdot, \cdot]$ be an s.i.p. on X^2 which generates the norm on X (see [1]). Then the dual space X^* is (US) and (UC) and the functional

$$\langle Jx, Jy \rangle := [y, x], (x, y \in X),$$

is an s.i.p on $(X^*)^2$.

¹⁾ If (\cdot, \cdot) is an i.p. on X^2 then g(x, y) = (x, y) and the equality (3) is the parallelogram equality.

Lemma 3. (Proposition 3 in [2]). Let X be a real normed space. Then for J, J^* and τ on their respective domains we have

$$J^{-1} = \tau^{-1}J^*$$
 and $J = J^{*-1}\tau$.

Remark 4. Under the hypothesis of Lemma 2, the mappings J, J^* and τ are bijective mappings. Then, by Lemma 3, Lemma 2 and Lemma 1, in this case, we have

$$\langle Jx, Jy \rangle = g(x, y) = g(f_u, f_x), (x, y \in X).$$

Lemma 5. Let X be a real normed space which is (S), (SC) and (R). Then for $x, y \in S(X)$ we have

(4)
$$1 - \left\| \frac{x+y}{2} \right\| \le \frac{1 - \cos(x,y)}{2} \le \frac{\|x-y\| \|f_x - f_y\|}{4}.$$

Proof. Under the hypothesis of Lemma 5, using Lemma 1, we have $f_x = g(x, \cdot)$ $(x \in X)$. Consequently,

$$||f_x - f_y|| = \sup \{|g(x, t) - g(y, t)| \mid t \in S(X)\}$$

 $\geq g(x, t) - g(y, t) \quad (t \in S(X)).$

For $t = \frac{x-y}{\|x-y\|}$, $(x \neq y)$, we obtain

(5)
$$g\left(x, \frac{x-y}{\|x-y\|}\right) - g\left(y, \frac{x-y}{\|x-y\|}\right) \le \|f_x - f_y\|.$$

Since X is (S), the functional g is linear in the second argument. Hence, from (5) we get

(6)
$$1 - g(x,y) - g(y,x) + 1 \le ||x - y|| \, ||f_x - f_y||.$$

Using the inequality

$$1 - \left\| \frac{x+y}{2} \right\| \le \frac{1 - \cos(x,y)}{2} \le \frac{\|x-y\|}{2}$$

(see Lemma 1 in [5]) and the inequality (6) we obtain the inequality (4).

Lemma 6. Let X be a Banach space which is (US) and (UC). Let δ_{X^*} be the modulus of convexity of X^* . Then for each $\varepsilon > 0$ and for all $x, y \in S(X)$ the following implications hold

(7)
$$||x - y|| \le 2\delta_{X^*}(\varepsilon) \Longrightarrow ||f_x - f_y|| \le \varepsilon,$$

(8)
$$||f_x - f_y|| \ge \varepsilon \Longrightarrow ||x - y|| \ge 2\delta_{X^*}(\varepsilon).$$

Proof. By Lemma 2, X^* is a Banach space which is (UC) and (US). Since X^* is (UC), for each $\varepsilon > 0$, we have $\delta_{X^*}(\varepsilon) > 0$ and, for all $x, y \in S(X)$,

(9)
$$||f_x + f_y|| > 2 - 2\delta_{X^*}(\varepsilon) \Longrightarrow ||f_x - f_y|| < \varepsilon.$$

Under the hypothesis of Lemma 6, by Remark 4, we have $g\left(x,y\right)=g\left(f_{y},f_{x}\right)$. Hence, by inequality

$$1 - ||x - y|| < q(x, y) < ||x + y|| - 1$$

(see Lemma 1 in [6]), we obtain

(10)
$$1 - ||x - y|| \le g(x, y) = g(f_y, f_x) \le ||f_x + f_y|| - 1,$$

so that we have

(11)
$$||x - y|| + ||f_x + f_y|| \ge 2.$$

Now, let $x, y \in S(X)$ and $||x - y|| < 2\delta_{X^*}(\varepsilon)$. Then, by (11) we obtain

$$||f_x + f_y|| > 2 - 2\delta_{X^*}(\varepsilon).$$

Thus, by (9), we conclude that

(12)
$$||x - y|| < 2\delta_{X^*}(\varepsilon) \Longrightarrow ||f_x - f_y|| < \varepsilon.$$

On the other hand if $||x-y||=2\delta_{X^*}\left(\varepsilon\right)$ and $||f_x-f_y||>\varepsilon$, by (9), it follows

$$||x - y|| + ||f_x + f_y|| \le 2.$$

So, by (11), we get

$$||x - y|| + ||f_x + f_y|| = 2.$$

Hence, using (10), we conclude that $g(x,y) = 1 - \|x - y\|$, i.e., $g(x,x-y) = \|x\| \|x - y\|$. Thus, since X is (SC), using Lemma 5 in [1], we get x = x - y, which is impossible. So, the implication (7) is correct. The implication (8) follows from the implication (12).

We now introduce a new definition.

According to the inequality (4), to make further progress in the estimates of the moduli $\delta_X, \delta_X', \rho_X, \rho_X'$, it is convenient to introduce

Definition 1. Let X be (S) and $x, y \in S(X)$. The function $e_J: [0,2] \to [0,2]$, defined by

$$e_J(\varepsilon) := \inf \{ ||f_x - f_y|| \mid ||x - y|| \ge \varepsilon \}$$

will be called the lower modulus of expansion of the dual mapping J.

The function $\overline{e_J}: [0,2] \to [0,2]$, defined as

$$\overline{e_J}(\varepsilon) := \sup \{ \|f_x - f_y\| \mid \|x - y\| \le \varepsilon \}$$

is the upper modulus of expansion of the dual mapping J.

Now, we quote our new results. Firstly, we note some elementary properties of the moduli $\underline{e_J}$ and $\overline{e_J}$.

Theorem 7. Let X be (S). Then the following assertions are valid.

- a) The function e_J is nondecreasing on [0,2].
- b) The function $\overline{e_J}$ is nondecreasing on [0,2].
- c) $e_J(\varepsilon) \leq \overline{e_J}(\varepsilon) \ (\varepsilon \in [0,2])$.
- d) If X is a Hilbert space, then $e_J(\varepsilon) = \overline{e_J}(\varepsilon)$.

Proof. The assertions a) and b) follow from the implications

$$\varepsilon_1 < \varepsilon_2 \Longrightarrow \{(x,y) \mid ||x-y|| \ge \varepsilon_1\} \supset \{(x,y) \mid ||x-y|| \ge \varepsilon_2\} \quad (x,y \in S(X)),$$

$$\varepsilon_1 < \varepsilon_2 \Longrightarrow \{(x,y) \mid ||x-y|| \le \varepsilon_1\} \subset \{(x,y) \mid ||x-y|| \le \varepsilon_2\} \quad (x,y \in S(X)).$$

c) Assume, to the contrary, i.e., that there is an $\varepsilon \in [0,2]$ such that $e_J(\varepsilon) > \overline{e_J}(\varepsilon)$. Then

$$\inf \{ ||f_x - f_y|| \mid ||x - y|| = \varepsilon \} \ge \inf \{ ||f_x - f_y|| \mid ||x - y|| \ge \varepsilon \}$$

$$> \sup \{ ||f_x - f_y|| \mid ||x - y|| \le \varepsilon \}$$

$$\ge \sup \{ ||f_x - f_y|| \mid ||x - y|| = \varepsilon \} ,$$

which is not possible.

d) In a Hilbert space, we have

$$||f_x - f_y|| = \sup\{|(x, t) - (y, t)| \mid t \in S(X)\} \le ||x - y||.$$

On the other hand, the functional $f_{x}-f_{y}$ attains its maximum in $t=\frac{x-y}{\|x-y\|}\in S\left(X\right)$.

Hence
$$||x-y|| = ||f_x - f_y||$$
. Because of that, we have $e_J(\varepsilon) = \overline{e_J}(\varepsilon) = \varepsilon$.

In the next theorems some relation between moduli δ'_X , ρ'_X , e_J , $\overline{e_J}$ are given.

Theorem 8. Let X be (S), (SC) and (R). Then, for $\varepsilon \in (0,2]$ we have

a)
$$\delta_X'(\varepsilon) \leq \frac{1}{2} \underline{e_J}(\varepsilon)$$

b)
$$\rho_{X}'\left(\varepsilon\right) \leq \frac{\varepsilon}{4}\overline{e_{J}}\left(\varepsilon\right)$$
,

c)
$$\frac{2}{\varepsilon}\rho_{X}\left(\varepsilon\right)\leq\eta_{X}\left(\varepsilon\right)\leq\frac{1}{2}\overline{e_{J}}\left(\varepsilon\right)$$
.

Proof. The proof of the assertions a) and b) follows immediately using the definitions of the functions δ'_X and ρ'_X and the inequality (4).

c) Let $x, y \in S(X)$, $x \neq y$. By Lemma 5, we have

$$\frac{2 - \|x + y\|}{\|x - y\|} = \frac{2}{\|x - y\|} \left(1 - \frac{\|x + y\|}{2} \right)$$

$$\leq \frac{1 - \cos(x, y)}{\|x - y\|}$$

$$\leq \frac{\|x - y\| \|f_x - f_y\|}{2 \|x - y\|}$$

$$= \frac{\|f_x - f_y\|}{2}.$$

So

$$\frac{2 - \|x + y\|}{\|x - y\|} \le \frac{\|f_x - f_y\|}{2}.$$

Using the definition of η_X and $\overline{e_J}$, we obtain

$$\eta_X\left(\varepsilon\right) \leq \frac{1}{2}\overline{e_J}\left(\varepsilon\right).$$

On the other hand

$$(0 < \|x - y\| \le \varepsilon) \Longrightarrow \left(\frac{1}{\|x - y\|} \ge \frac{1}{\varepsilon}\right) \Longrightarrow \frac{2 - \|x + y\|}{\|x - y\|} \ge \frac{2}{\varepsilon} \left(1 - \frac{\|x + y\|}{2}\right).$$

Because of that we have

$$\eta_X\left(\varepsilon\right) \geq \frac{2}{\varepsilon}\rho_X\left(\varepsilon\right).$$

Remark 9. The last inequality is true for an arbitrary space X.

Corollary 10. For a q.i.p. space, it holds that

(13)
$$\underline{e_J}(\varepsilon) \ge \left(\frac{\varepsilon}{2}\right)^4 \quad (\varepsilon \in [0,2]).$$

Proof. By a) of Theorem 8 and the inequality $\frac{\varepsilon^4}{32} \leq \delta_X'(\varepsilon)$ (see Corollary 2 in [5]), we get (13).

Corollary 11. If X is (S), (SC) and (R) then

a)
$$\delta'_{X^*}(\varepsilon) \leq \frac{1}{2} \underline{e_J}(\varepsilon)$$
,

b)
$$\rho'_{X^*} \leq \frac{1}{2} \overline{e_{J^*}}(\varepsilon)$$
,

c)
$$\frac{2}{3}\rho_{X^*}(\varepsilon) \le \eta_{X^*}(\varepsilon) \le \frac{1}{2}\overline{e_{J^*}}(\varepsilon)$$
.

Proof. It is well-known that if X is (S), (SC) and (R) then X^* is (S), (SC) and (R). Hence Theorem 8 is valid for X^* .

Theorem 12. Let X be a Banach space which is (UC) and (US). Then, for all $\varepsilon > 0$, we have the following estimations:

a)
$$\rho_X'\left(2\delta_{X^*}\left(\varepsilon\right)\right) \leq \frac{\varepsilon\delta_{X^*}\left(\varepsilon\right)}{2}$$
,

b)
$$\rho'_{X^*}\left(2\delta_X\left(\varepsilon\right)\right) \leq \frac{\varepsilon\delta_X\left(\varepsilon\right)}{2}$$
,

c)
$$e_{J^*}(\varepsilon) \geq 2\delta_{X^*}(\varepsilon)$$
,

d)
$$\overline{e_J}(2\delta_{X^*}(\varepsilon)) \leq \varepsilon$$
, $(\overline{e_{J^*}}(2\delta_X(\varepsilon)) \leq \varepsilon)$.

Proof. a) Using, in succession, the definition of the function ρ'_X , the inequality (4) in Lemma 2 and the implication (7), we obtain:

$$\rho_{X}'(2\delta_{X^{*}}(\varepsilon)) = \sup \left\{ \frac{1 - \cos(x, y)}{2} \middle| \|x - y\| \le 2\delta_{X^{*}}(\varepsilon) \right\}$$

$$\le \frac{1}{4} \sup \left\{ \|x - y\| \|f_{x} - f_{y}\| \mid \|x - y\| \le 2\delta_{X^{*}}(\varepsilon) \right\}$$

$$\le \frac{1}{4} 2\varepsilon \delta_{X^{*}}(\varepsilon)$$

$$= \frac{\varepsilon \delta_{X^{*}}(\varepsilon)}{2}.$$

b) If, in a), we set X^* instead of X (X^{**} instead of X^*), we get

(14)
$$\rho_{X^*}'(2\delta_{X^{**}}(\varepsilon)) \leq \frac{\varepsilon \delta_{X^{**}}(\varepsilon)}{2}.$$

Let $F, G \in S(X^{**})$. Under the hypothesis of Theorem 12, we have

$$\delta_{X^{**}}(\varepsilon) = \inf \left\{ 1 - \frac{\|F + G\|}{2} \middle| \|F - G\| \ge \varepsilon \right\}$$

$$= \inf \left\{ 1 - \frac{\|\tau x + \tau y\|}{2} \middle| \|\tau x - \tau y\| \ge \varepsilon \right\}$$

$$= \inf \left\{ 1 - \frac{\|\tau (x + y)\|}{2} \middle| \|\tau (x - y)\| \ge \varepsilon \right\}$$

$$= \inf \left\{ 1 - \frac{\|x + y\|}{2} \middle| \|x - y\| \ge \varepsilon \right\}$$

$$= \delta_X(\varepsilon).$$

Consequently the inequality (14) is equivalent to the inequality b).

c) Using, in succession, the definition of e_J , Lemma 3, and the implication (8), we get

$$\underline{e_{J^*}}(\varepsilon) = \inf \{ \|J^* f_x - J^* f_y\| \mid \|f_x - f_y\| \ge \varepsilon \}$$
$$= \inf \{ \|\tau x - \tau y\| \mid \|f_x - f_y\| \ge \varepsilon \}$$
$$\ge 2\delta_{X^*}(\varepsilon).$$

d) Using the definition of $\overline{e_J}$ and the implication (7), we get

$$\overline{e_J}(2\delta_{X^*}(\varepsilon)) = \sup \{ \|f_x - f_y\| \mid \|x - y\| \le 2\delta_{X^*}(\varepsilon) \} \le \varepsilon.$$

Replacing, here, X^* with X^{**} and J with J^* , we get the second inequality.

Since in a Banach space X we have

$$\delta_{X}\left(\varepsilon\right)\leq1-\sqrt{1-\frac{\varepsilon^{2}}{4}}\ \ \mathrm{and}\ \ \delta_{X}\left(\varepsilon\right)\leq\delta_{X}^{\prime}\left(\varepsilon\right)$$

(see Theorem 1 in [5]), using b) and a) of Theorem 12, we obtain

Corollary 13. *Under the hypothesis of Theorem 12, we have*

a)
$$\frac{2}{\varepsilon}\rho_{X^{*}}'\left(2\delta_{X}\left(\varepsilon\right)\right) \leq \delta_{X}\left(\varepsilon\right) \leq \frac{2}{\varepsilon}\delta_{X}'\left(\varepsilon\right)$$

b)
$$\rho_X'\left(2\delta_{X^*}\left(\varepsilon\right)\right) \leq \frac{\varepsilon}{2}\left(1-\sqrt{1-\frac{\varepsilon^2}{4}}\right)$$
.

REFERENCES

- [1] J.R. GILES, Classes of semi-inner product spaces, Trans. Amer. Math. Soc., 129 (1967), 436–446.
- [2] C.R. De PRIMA AND W.V. PETRYSHYN, Remarks on strict monotonicity and surjectivity properties of duality mapping defined on real normed linear spaces, *Math. Z.*, **123** (1971), 49–55.
- [3] P.M. MILIČIĆ, Sur le *g*-angle dans un espace normé, *Mat. Vesnik*, **45** (1993), 43–48.
- [4] P.M. MILIČIĆ, A generalization of the parallelogram equality in normed spaces, *J. Math. of Kyoto Univ.*, **38**(1) (1998), 71–75.
- [5] P.M. MILIČIĆ, The angle modulus of the deformation of a normed space, *Riv. Mat. Univ. Parma*, (6) 3(2002), 101–111.
- [6] P.M. MILIČIĆ, On the quasi inner product spaces, *Mat. Bilten*, (Skopje), **22(XLVIII)** (1998), 19–30.
- [7] P.M. MILIČIĆ, Sur la géometrie d'un espace normé avec la proprieté (G), *Proceedings of the International Workshop in Analysis and its Applications*, Institut za Matematiku, Univ. Novi Sad (1991), 163–170.