Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 3, Issue 4, Article 55, 2002

ON MODULI OF EXPANSION OF THE DUALITY MAPPING OF SMOOTH BANACH SPACES

PAVLE M. MILIČIĆ

Faculty of Mathematics
University of Belgrade YU-11000, Yugoslavia. pmilicic@hotmail.com

Received 30 March, 2002; accepted 30 April, 2002.
Communicated by S.S. Dragomir

Abstract

Let X be a Banach space which is uniformly convex and uniformly smooth. We introduce the lower and upper moduli of expansion of the dual mapping J of the space X. Some estimation of certain well-known moduli (convexity, smoothness and flatness) and two new moduli introduced in [5] are described with this new moduli of expansion.

Key words and phrases: Uniformly convex (smooth) Banach space, Angle of modulus convexity (smoothness), Lower (upper) modulus of expansion.
2000 Mathematics Subject Classification 46B20, 46C15, 51K05.
Let $(X,\|\cdot\|)$ be a real normed space, X^{*} its conjugate space, $X^{* *}$ the second conjugate of X and $S(X)$ the unit sphere in $X(S(X)=\{x \in X \mid\|x\|=1\})$.

Moreover, we shall use the following definitions and notations.
The sign (S) denotes that X is smooth, (R) that X is reflexive, $(U S)$ that X is uniformly smooth, (SC) that X is strictly convex, and $(U C)$ that X is uniformly convex.

The map $J: X \rightarrow 2^{X^{*}}$ is called the dual map if $J(0)=0$ and for $x \in X, x \neq 0$,

$$
J(x)=\left\{f \in X^{*} \mid f(x)=\|f\|\|x\|,\|f\|=\|x\|\right\} .
$$

The dual map of X^{*} into $2^{X^{* *}}$ we denote by J^{*}. The map τ is canonical linear isometry of X into $X^{* *}$.

It is well known that functional

$$
\begin{equation*}
g(x, y):=\frac{\|x\|}{2}\left(\lim _{t \rightarrow-0} \frac{\|x+t y\|-\|x\|}{t}+\lim _{t \rightarrow+0} \frac{\|x+t y\|-\|x\|}{t}\right) \tag{1}
\end{equation*}
$$

always exists on X^{2}. If X is (S), then (1) reduces to

$$
g(x, y)=\|x\| \lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t} ;
$$

ISSN (electronic): 1443-5756

(c) 2002 Victoria University. All rights reserved.

050-02
the functional g is linear in the second argument, $J(x)$ is a singleton and $g(x, \cdot) \in J(x)$. In this case we shall write $J(x)=J x=f_{x}$. Then $[y, x]:=g(x, y)$, defines a so called semi-inner product $[\cdot, \cdot]$ (s.i.p) on X^{2} which generates the norm of $X,\left([x, x]=\|x\|^{2}\right)$, (see [1]). If X is an inner-product space (i.p. space) then $g(x, y)$ is the usual i.p. of the vector x and the vector y.

By the use of functional g we define the angle between vector x and vector $y(x \neq 0, y \neq 0)$ as

$$
\begin{equation*}
\cos (x, y):=\frac{g(x, y)+g(y, x)}{2\|x\|\|y\|} \tag{2}
\end{equation*}
$$

(see [3]). If $(X,(\cdot, \cdot))$ is an i.p. space, then (2) reduces to

$$
\cos (x, y)=\frac{(x, y)}{\|x\|\|y\|}
$$

We say that X is a quasi-inner product space (q.i.p space) if the following equality holds

$$
\begin{equation*}
\|x+y\|^{4}-\|x-y\|^{4}=8\left[\|x\|^{2} g(x, y)+\|y\|^{2} g(y, x)\right], \quad(x, y \in X)^{1)} \tag{3}
\end{equation*}
$$

The equality (3) holds in the space l^{4}, but does not hold in the space l^{1}. A q.i.p. space X is $(S C)$ and $(U S)$ (see [6] and [4]).
Alongside the modulus of convexity of X, δ_{X}, and the modulus of smoothness of X, ρ_{X}, defined by

$$
\begin{aligned}
& \delta_{X}(\varepsilon)=\inf \left\{\left.1-\left\|\frac{x+y}{2}\right\| \right\rvert\, x, y \in S(X) ;\|x-y\| \geq \varepsilon\right\} \\
& \rho_{X}(\varepsilon)=\sup \left\{\left.1-\left\|\frac{x+y}{2}\right\| \right\rvert\, x, y \in S(X) ;\|x-y\| \leq \varepsilon\right\}
\end{aligned}
$$

we have defined in [5] the angle modulus of convexity of X, δ_{X}^{\prime}, and the angle modulus of smoothness of X, ρ_{X}^{\prime} by:

$$
\begin{aligned}
& \delta_{X}^{\prime}(\varepsilon)=\inf \left\{\left.\frac{1-\cos (x, y)}{2} \right\rvert\, x, y \in S(X) ;\|x-y\| \geq \varepsilon\right\} \\
& \rho_{X}^{\prime}(\varepsilon)=\sup \left\{\left.\frac{1-\cos (x, y)}{2} \right\rvert\, x, y \in S(X) ;\|x-y\| \leq \varepsilon\right\}
\end{aligned}
$$

We also recall the known definition of modulus of flatness of X, η_{X} (Day's modulus):

$$
\eta_{X}(\varepsilon)=\sup \left\{\left.\frac{2-\|x+y\|}{\|x-y\|} \right\rvert\, x, y \in S(X) ;\|x-y\| \leq \varepsilon\right\} .
$$

We now quote three known results.
Lemma 1. (Theorem 6 in [7] and Theorem 6 in [1]). Let X be a real normed space which is $(S),(S C)$ and (R). Then for all $f \in X^{*}$ there exists a unique $x \in X$ such that

$$
f(y)=g(x, y), \quad(y \in X) .
$$

Lemma 2. (Theorem 7 in [1]). Let X be a Banach space which is $(U S)$ and $(U C)$ and let $[\cdot, \cdot]$ be an s.i.p. on X^{2} which generates the norm on X (see [1]). Then the dual space X^{*} is (US) and $(U C)$ and the functional

$$
\langle J x, J y\rangle:=[y, x], \quad(x, y \in X),
$$

is an s.i.p on $\left(X^{*}\right)^{2}$.

1) If (\cdot, \cdot) is an i.p. on X^{2} then $g(x, y)=(x, y)$ and the equality $\sqrt{3}$ is the parallelogram equality.

Lemma 3. (Proposition 3 in [2]). Let X be a real normed space. Then for J, J^{*} and τ on their respective domains we have

$$
J^{-1}=\tau^{-1} J^{*} \text { and } J=J^{*-1} \tau
$$

Remark 4. Under the hypothesis of Lemma 2 , the mappings J, J^{*} and τ are bijective mappings. Then, by Lemma 3. Lemma 2 and Lemma 1, in this case, we have

$$
\langle J x, J y\rangle=g(x, y)=g\left(f_{y}, f_{x}\right), \quad(x, y \in X)
$$

Lemma 5. Let X be a real normed space which is $(S),(S C)$ and (R). Then for $x, y \in S(X)$ we have

$$
\begin{equation*}
1-\left\|\frac{x+y}{2}\right\| \leq \frac{1-\cos (x, y)}{2} \leq \frac{\|x-y\|\left\|f_{x}-f_{y}\right\|}{4} . \tag{4}
\end{equation*}
$$

Proof. Under the hypothesis of Lemma 5, using Lemma 1, we have $f_{x}=g(x, \cdot)(x \in X)$. Consequently,

$$
\begin{aligned}
\left\|f_{x}-f_{y}\right\| & =\sup \{|g(x, t)-g(y, t)| \mid t \in S(X)\} \\
& \geq g(x, t)-g(y, t) \quad(t \in S(X)) .
\end{aligned}
$$

For $t=\frac{x-y}{\|x-y\|},(x \neq y)$, we obtain

$$
\begin{equation*}
g\left(x, \frac{x-y}{\|x-y\|}\right)-g\left(y, \frac{x-y}{\|x-y\|}\right) \leq\left\|f_{x}-f_{y}\right\| . \tag{5}
\end{equation*}
$$

Since X is (S), the functional g is linear in the second argument. Hence, from (5) we get

$$
\begin{equation*}
1-g(x, y)-g(y, x)+1 \leq\|x-y\|\left\|f_{x}-f_{y}\right\| . \tag{6}
\end{equation*}
$$

Using the inequality

$$
1-\left\|\frac{x+y}{2}\right\| \leq \frac{1-\cos (x, y)}{2} \leq \frac{\|x-y\|}{2}
$$

(see Lemma 1 in [5]) and the inequality (6) we obtain the inequality (4].
Lemma 6. Let X be a Banach space which is $(U S)$ and $(U C)$. Let $\delta_{X^{*}}$ be the modulus of convexity of X^{*}. Then for each $\varepsilon>0$ and for all $x, y \in S(X)$ the following implications hold

$$
\begin{align*}
\|x-y\| & \leq 2 \delta_{X^{*}}(\varepsilon) \Longrightarrow\left\|f_{x}-f_{y}\right\| \leq \varepsilon \tag{7}\\
\left\|f_{x}-f_{y}\right\| & \geq \varepsilon \Longrightarrow\|x-y\| \geq 2 \delta_{X^{*}}(\varepsilon) \tag{8}
\end{align*}
$$

Proof. By Lemma 2, X^{*} is a Banach space which is $(U C)$ and $(U S)$. Since X^{*} is $(U C)$, for each $\varepsilon>0$, we have $\delta_{X^{*}}(\varepsilon)>0$ and, for all $x, y \in S(X)$,

$$
\begin{equation*}
\left\|f_{x}+f_{y}\right\|>2-2 \delta_{X^{*}}(\varepsilon) \Longrightarrow\left\|f_{x}-f_{y}\right\|<\varepsilon \tag{9}
\end{equation*}
$$

Under the hypothesis of Lemma 6, by Remark 4, we have $g(x, y)=g\left(f_{y}, f_{x}\right)$. Hence, by inequality

$$
1-\|x-y\| \leq g(x, y) \leq\|x+y\|-1
$$

(see Lemma 1 in [6]), we obtain

$$
\begin{equation*}
1-\|x-y\| \leq g(x, y)=g\left(f_{y}, f_{x}\right) \leq\left\|f_{x}+f_{y}\right\|-1, \tag{10}
\end{equation*}
$$

so that we have

$$
\begin{equation*}
\|x-y\|+\left\|f_{x}+f_{y}\right\| \geq 2 \tag{11}
\end{equation*}
$$

Now, let $x, y \in S(X)$ and $\|x-y\|<2 \delta_{X^{*}}(\varepsilon)$. Then, by (11) we obtain

$$
\left\|f_{x}+f_{y}\right\|>2-2 \delta_{X^{*}}(\varepsilon)
$$

Thus, by (9), we conclude that

$$
\begin{equation*}
\|x-y\|<2 \delta_{X^{*}}(\varepsilon) \Longrightarrow\left\|f_{x}-f_{y}\right\|<\varepsilon \tag{12}
\end{equation*}
$$

On the other hand if $\|x-y\|=2 \delta_{X^{*}}(\varepsilon)$ and $\left\|f_{x}-f_{y}\right\|>\varepsilon$, by (97, it follows

$$
\|x-y\|+\left\|f_{x}+f_{y}\right\| \leq 2
$$

So, by (11), we get

$$
\|x-y\|+\left\|f_{x}+f_{y}\right\|=2
$$

Hence, using (10), we conclude that $g(x, y)=1-\|x-y\|$, i.e., $g(x, x-y)=\|x\|\|x-y\|$. Thus, since X is $(S C)$, using Lemma 5 in [1], we get $x=x-y$, which is impossible. So, the implication (7) is correct. The implication (8) follows from the implication (12).

We now introduce a new definition.
According to the inequality (4), to make further progress in the estimates of the moduli $\delta_{X}, \delta_{X}^{\prime}, \rho_{X}, \rho_{X}^{\prime}$, it is convenient to introduce
Definition 1. Let X be (S) and $x, y \in S(X)$. The function $\underline{e_{J}}:[0,2] \rightarrow[0,2]$, defined by

$$
\underline{e_{J}}(\varepsilon):=\inf \left\{\left\|f_{x}-f_{y}\right\| \mid\|x-y\| \geq \varepsilon\right\}
$$

will be called the lower modulus of expansion of the dual mapping J.
The function $\overline{e_{J}}:[0,2] \rightarrow[0,2]$, defined as

$$
\overline{e_{J}}(\varepsilon):=\sup \left\{\left\|f_{x}-f_{y}\right\| \mid\|x-y\| \leq \varepsilon\right\}
$$

is the upper modulus of expansion of the dual mapping J.
Now, we quote our new results. Firstly, we note some elementary properties of the moduli $\underline{e_{J}}$ and $\overline{e_{J}}$.
Theorem 7. Let X be (S). Then the following assertions are valid.
a) The function e_{J} is nondecreasing on $[0,2]$.
b) The function $\overline{e_{J}}$ is nondecreasing on $[0,2]$.
c) $e_{J}(\varepsilon) \leq \overline{e_{J}}(\varepsilon) \quad(\varepsilon \in[0,2])$.
d) $\overline{I f} X$ is a Hilbert space, then $\underline{e_{J}}(\varepsilon)=\overline{e_{J}}(\varepsilon)$.

Proof. The assertions a) and b) follow from the implications

$$
\begin{aligned}
& \varepsilon_{1}<\varepsilon_{2} \Longrightarrow\left\{(x, y) \mid\|x-y\| \geq \varepsilon_{1}\right\} \supset\left\{(x, y) \mid\|x-y\| \geq \varepsilon_{2}\right\} \quad(x, y \in S(X)), \\
& \varepsilon_{1}<\varepsilon_{2} \Longrightarrow\left\{(x, y) \mid\|x-y\| \leq \varepsilon_{1}\right\} \subset\left\{(x, y) \mid\|x-y\| \leq \varepsilon_{2}\right\} \quad(x, y \in S(X)) .
\end{aligned}
$$

c) Assume, to the contrary, i.e., that there is an $\varepsilon \in[0,2]$ such that $\underline{e_{J}}(\varepsilon)>\overline{e_{J}}(\varepsilon)$. Then

$$
\begin{aligned}
\inf \left\{\left\|f_{x}-f_{y}\right\| \mid\|x-y\|=\varepsilon\right\} & \geq \inf \left\{\left\|f_{x}-f_{y}\right\| \mid\|x-y\| \geq \varepsilon\right\} \\
& >\sup \left\{\left\|f_{x}-f_{y}\right\| \mid\|x-y\| \leq \varepsilon\right\} \\
& \geq \sup \left\{\left\|f_{x}-f_{y}\right\| \mid\|x-y\|=\varepsilon\right\}
\end{aligned}
$$

which is not possible.
d) In a Hilbert space, we have

$$
\left\|f_{x}-f_{y}\right\|=\sup \{|(x, t)-(y, t)| \mid t \in S(X)\} \leq\|x-y\|
$$

On the other hand, the functional $f_{x}-f_{y}$ attains its maximum in $t=\frac{x-y}{\|x-y\|} \in S(X)$.
Hence $\|x-y\|=\left\|f_{x}-f_{y}\right\|$. Because of that, we have $\underline{e_{J}}(\varepsilon)=\overline{e_{J}}(\varepsilon)=\varepsilon$.
In the next theorems some relation between moduli $\delta_{X}^{\prime}, \rho_{X}^{\prime}, \underline{e_{J}}, \overline{e_{J}}$ are given.
Theorem 8. Let X be $(S),(S C)$ and (R). Then, for $\varepsilon \in(0,2]$ we have
a) $\delta_{X}^{\prime}(\varepsilon) \leq \frac{1}{2} \underline{e_{J}}(\varepsilon)$
b) $\rho_{X}^{\prime}(\varepsilon) \leq \frac{\varepsilon}{4} \overline{e_{J}}(\varepsilon)$,
c) $\frac{2}{\varepsilon} \rho_{X}(\varepsilon) \leq \eta_{X}(\varepsilon) \leq \frac{1}{2} \overline{e_{J}}(\varepsilon)$.

Proof. The proof of the assertions a) and b) follows immediately using the definitions of the functions δ_{X}^{\prime} and ρ_{X}^{\prime} and the inequality (4).
c) Let $x, y \in S(X), x \neq y$. By Lemma 5 , we have

$$
\begin{aligned}
\frac{2-\|x+y\|}{\|x-y\|} & =\frac{2}{\|x-y\|}\left(1-\frac{\|x+y\|}{2}\right) \\
& \leq \frac{1-\cos (x, y)}{\|x-y\|} \\
& \leq \frac{\|x-y\|\left\|f_{x}-f_{y}\right\|}{2\|x-y\|} \\
& =\frac{\left\|f_{x}-f_{y}\right\|}{2} .
\end{aligned}
$$

So

$$
\frac{2-\|x+y\|}{\|x-y\|} \leq \frac{\left\|f_{x}-f_{y}\right\|}{2} .
$$

Using the definition of η_{X} and $\overline{e_{J}}$, we obtain

$$
\eta_{X}(\varepsilon) \leq \frac{1}{2} \overline{e_{J}}(\varepsilon) .
$$

On the other hand

$$
(0<\|x-y\| \leq \varepsilon) \Longrightarrow\left(\frac{1}{\|x-y\|} \geq \frac{1}{\varepsilon}\right) \Longrightarrow \frac{2-\|x+y\|}{\|x-y\|} \geq \frac{2}{\varepsilon}\left(1-\frac{\|x+y\|}{2}\right) .
$$

Because of that we have

$$
\eta_{X}(\varepsilon) \geq \frac{2}{\varepsilon} \rho_{X}(\varepsilon)
$$

Remark 9. The last inequality is true for an arbitrary space X.
Corollary 10. For a q.i.p. space, it holds that

$$
\begin{equation*}
\underline{e_{J}}(\varepsilon) \geq\left(\frac{\varepsilon}{2}\right)^{4} \quad(\varepsilon \in[0,2]) \tag{13}
\end{equation*}
$$

Proof. By a) of Theorem 8 and the inequality $\frac{\varepsilon^{4}}{32} \leq \delta_{X}^{\prime}(\varepsilon)$ (see Corollary 2 in [5]), we get (13).

Corollary 11. If X is $(S),(S C)$ and (R) then
a) $\delta_{X^{*}}^{\prime}(\varepsilon) \leq \frac{1}{2} \underline{e_{J}}(\varepsilon)$,
b) $\rho_{X^{*}}^{\prime} \leq \frac{1}{2} \overline{e_{J^{*}}}(\varepsilon)$,
c) $\frac{2}{3} \rho_{X^{*}}(\varepsilon) \leq \eta_{X^{*}}(\varepsilon) \leq \frac{1}{2} \overline{e_{J^{*}}}(\varepsilon)$.

Proof. It is well-known that if X is $(S),(S C)$ and (R) then X^{*} is $(S),(S C)$ and (R). Hence Theorem 8 is valid for X^{*}.
Theorem 12. Let X be a Banach space which is $(U C)$ and $(U S)$. Then, for all $\varepsilon>0$, we have the following estimations:
a) $\rho_{X}^{\prime}\left(2 \delta_{X^{*}}(\varepsilon)\right) \leq \frac{\varepsilon \delta_{X^{*}}(\varepsilon)}{2}$,
b) $\rho_{X^{*}}^{\prime}\left(2 \delta_{X}(\varepsilon)\right) \leq \frac{\varepsilon \delta_{X}(\varepsilon)}{2}$,
c) $\underline{e_{J^{*}}}(\varepsilon) \geq 2 \delta_{X^{*}}(\varepsilon)$,
d) $\overline{e_{J}}\left(2 \delta_{X^{*}}(\varepsilon)\right) \leq \varepsilon, \quad\left(\overline{e_{J^{*}}}\left(2 \delta_{X}(\varepsilon)\right) \leq \varepsilon\right)$.

Proof. a) Using, in succession, the definition of the function ρ_{X}^{\prime}, the inequality (4) in Lemma 2 and the implication (7), we obtain:

$$
\begin{aligned}
\rho_{X}^{\prime}\left(2 \delta_{X^{*}}(\varepsilon)\right) & =\sup \left\{\left.\frac{1-\cos (x, y)}{2} \right\rvert\,\|x-y\| \leq 2 \delta_{X^{*}}(\varepsilon)\right\} \\
& \leq \frac{1}{4} \sup \left\{\|x-y\|\left\|f_{x}-f_{y}\right\| \mid\|x-y\| \leq 2 \delta_{X^{*}}(\varepsilon)\right\} \\
& \leq \frac{1}{4} 2 \varepsilon \delta_{X^{*}}(\varepsilon) \\
& =\frac{\varepsilon \delta_{X^{*}}(\varepsilon)}{2}
\end{aligned}
$$

b) If, in a), we set X^{*} instead of $X\left(X^{* *}\right.$ instead of $\left.X^{*}\right)$, we get

$$
\begin{equation*}
\rho_{X^{*}}^{\prime}\left(2 \delta_{X^{* *}}(\varepsilon)\right) \leq \frac{\varepsilon \delta_{X^{* *}}(\varepsilon)}{2} \tag{14}
\end{equation*}
$$

Let $F, G \in S\left(X^{* *}\right)$. Under the hypothesis of Theorem 12, we have

$$
\begin{aligned}
\delta_{X^{* *}}(\varepsilon) & =\inf \left\{\left.1-\frac{\|F+G\|}{2} \right\rvert\,\|F-G\| \geq \varepsilon\right\} \\
& =\inf \left\{\left.1-\frac{\|\tau x+\tau y\|}{2} \right\rvert\,\|\tau x-\tau y\| \geq \varepsilon\right\} \\
& =\inf \left\{\left.1-\frac{\|\tau(x+y)\|}{2} \right\rvert\,\|\tau(x-y)\| \geq \varepsilon\right\} \\
& =\inf \left\{\left.1-\frac{\|x+y\|}{2} \right\rvert\,\|x-y\| \geq \varepsilon\right\} \\
& =\delta_{X}(\varepsilon)
\end{aligned}
$$

Consequently the inequality (14) is equivalent to the inequality b).
c) Using, in succession, the definition of \underline{e}_{J}, Lemma 33 and the implication (8), we get

$$
\begin{aligned}
\underline{e_{J^{*}}}(\varepsilon) & =\inf \left\{\left\|J^{*} f_{x}-J^{*} f_{y}\right\| \mid\left\|\overline{f_{x}}-f_{y}\right\| \geq \varepsilon\right\} \\
& =\inf \left\{\|\tau x-\tau y\| \mid\left\|f_{x}-f_{y}\right\| \geq \varepsilon\right\} \\
& \geq 2 \delta_{X^{*}}(\varepsilon)
\end{aligned}
$$

d) Using the definition of $\overline{e_{J}}$ and the implication (7), we get

$$
\overline{e_{J}}\left(2 \delta_{X^{*}}(\varepsilon)\right)=\sup \left\{\left\|f_{x}-f_{y}\right\| \mid\|x-y\| \leq 2 \delta_{X^{*}}(\varepsilon)\right\} \leq \varepsilon
$$

Replacing, here, X^{*} with $X^{* *}$ and J with J^{*}, we get the second inequality.

Since in a Banach space X we have

$$
\delta_{X}(\varepsilon) \leq 1-\sqrt{1-\frac{\varepsilon^{2}}{4}} \text { and } \delta_{X}(\varepsilon) \leq \delta_{X}^{\prime}(\varepsilon)
$$

(see Theorem 1 in [5]), using b) and a) of Theorem [12, we obtain
Corollary 13. Under the hypothesis of Theorem 12 we have
a) $\frac{2}{\varepsilon} \rho_{X^{*}}^{\prime}\left(2 \delta_{X}(\varepsilon)\right) \leq \delta_{X}(\varepsilon) \leq \frac{2}{\varepsilon} \delta_{X}^{\prime}(\varepsilon)$,
b) $\rho_{X}^{\prime}\left(2 \delta_{X^{*}}(\varepsilon)\right) \leq \frac{\varepsilon}{2}\left(1-\sqrt{1-\frac{\varepsilon^{2}}{4}}\right)$.

References

[1] J.R. GILES, Classes of semi-inner product spaces, Trans. Amer. Math. Soc., 129 (1967), 436-446.
[2] C.R. De PRIMA AND W.V. PETRYSHYN, Remarks on strict monotonicity and surjectivity properties of duality mapping defined on real normed linear spaces, Math. Z., 123 (1971), 49-55.
[3] P.M. MILIČIĆ, Sur le g-angle dans un espace normé, Mat. Vesnik, 45 (1993), 43-48.
[4] P.M. MILIČIĆ, A generalization of the parallelogram equality in normed spaces, J. Math. of Kyoto Univ., 38(1) (1998), 71-75.
[5] P.M. MILIČIĆ, The angle modulus of the deformation of a normed space, Riv. Mat. Univ. Parma, (6) 3(2002), 101-111.
[6] P.M. MILIČIĆ, On the quasi inner product spaces, Mat. Bilten, (Skopje), 22(XLVIII) (1998), 19-30.
[7] P.M. MILIČIĆ, Sur la géometrie d'un espace normé avec la proprieté (G), Proceedings of the International Workshop in Analysis and its Applications, Institut za Matematiku, Univ. Novi Sad (1991), 163-170.

