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1. I NTRODUCTION

Thek–th (normalized) elementary symmetric function with complex variablesx1, x2, . . . , xn ∈
C is defined by

Ek(x1, x2, . . . , xn) =

∑
1≤j1<j2<...<jk≤n xj1xj2 · · ·xjk(

n
k

) ,

wherek = 1, 2, . . . , n. By convention,E0(x1, x2, . . . , xn) = 1. For the sake of brevity, we
write such a function simply asEk when there is no confusion over its variables.

It is well known that whenx1, x2, . . . , xn ∈ R, the sequence{Ek} satisfies Newton’s inequal-
ities:

(1.1) E2
k ≥ Ek−1Ek+1, 1 ≤ k ≤ n− 1.

For background material regarding Newton’s inequalities including some interesting historical
notes, we refer the reader to [2, 6]. It should be pointed out, however, that a sequence with
property (1.1) is also said to be log–concave or, more generally, Pólya frequency in literature
[1, 8]. Furthermore, it is known that (1.1) holds if and only if

(1.2) EkEl ≥ Ek−1El+1

for all k ≤ l, provided thatEk ≥ 0 for all k and that{Ek} has no internal zeros, namely that
for anyk < j < l, Ej 6= 0 wheneverEk, El 6= 0.

For {Ek} with variablesx1, x2, . . . , xn ∈ C, it is natural to require first that the non–real
entries inx1, x2, . . . , xn appear in conjugate pairs so as to guarantee that{Ek} ⊂ R. A set
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2 JIANHONG XU

of numbers that fulfills this requirement is said to be self-conjugate. In addition, we assume
that for all j, Re xj ≥ 0 unless stated otherwise. Consequently,Ek ≥ 0 for all k. This latter
requirement can be seen in Section 2 to arise naturally in a broader setting for the satisfaction
of inequalities similar to Newton’s.

When it comes to the question of whether Newton’s inequalities continue to hold on{Ek}
with self–conjugate variables, the answer is, in general, negative. One observation is that
if xj 6= 0 for all j, then{Ek(x1, x2, . . . , xn)} satisfies Newton’s inequalities if and only if
{Ek(x

−1
1 , x−1

2 , . . . , x−1
n )} does [5]. In addition, it is shown in [3] that ifx1, x2, . . . , xn form the

spectrum of an M– or inverse M–matrix, then{Ek} satisfies Newton’s inequalities. However,
it is still an open question as to under what conditions Newton’s inequalities carry over to the
complex domain.

On the other hand, it is demonstrated in [4, 5] that when self-conjugate variables are allowed,
{Ek} satisfies the so-called Newton-like inequalities. Specifically, for0 < λ ≤ 1, set

(1.3) Ω = {z : | arg z| ≤ cos−1
√

λ},

and letx1, x2, . . . , xn ∈ Ω be self-conjugate, then according to [4],

(1.4) E2
k ≥ λEk−1Ek+1

for all k. We comment that (1.3) implies the dependence ofλ on x1, x2, . . . , xn. Besides, it
is illustrated in [5] that whenx1, x2, . . . , xn represent the spectrum of the Drazin inverse of
a singular M–matrix, Newton-like inequalities hold in the form of (1.4) with1/2 < λ ≤ 1
being independent ofx1, x2, . . . , xn. It should be noted that Newton-like inequalities go back
to Newton’s whenλ = 1.

In light of condition (1.2), we now extend the formulation of Newton-like inequalities. Sup-
pose thatEk ≥ 0 for all k. For the same0 < λ ≤ 1 as in (1.4), we consider the following
condition on{Ek}:

(1.5) EkEl ≥ λEk−1El+1

for all k ≤ l. We observe that (1.5) leads to (1.4). Nevertheless, the converse is generally
not true, thus the term generalized Newton-like inequalities for (1.5). In order to see that (1.5)
is indeed a stronger condition than (1.4), we take the instance whenEk > 0.1 From (1.4), it
follows that

E2
kEk+1 ≥ λEk−1E

2
k+1 ≥ λ2Ek−1EkEk+2,

implying that

EkEk+1 ≥ λ2Ek−1Ek+2

instead of the tighter inequalityEkEk+1 ≥ λEk−1Ek+2 from (1.5) on lettingl = k + 1.
As another consequence of (1.5), it can be easily verified that fork being even,E1/k

k ≥√
λE

1/(k+2)
k+2 . This also turns out to be an improvement over the existing result in [4].

With the introduction of the generalized Newton-like inequalities in the form of (1.5), there
is a quite intriguing question of whether they hold on{Ek}. Motivated by [2, 4, 6], we shall
utilize an inductive argument to show that the answer is in fact affirmative for{Ek} with self-
conjugate variables inΩ. We mention that the proof of Newton’s inequalities, see for example
[2, 6, 7] for several variants, is essentially inductive, so is that of the Newton-like inequalities
in [4]. The approach that we adopt in this work is mainly inspired by [2].

1This somehow amounts to the requirement of no internal zeros. However, it is clarified later that this require-
ment is actually met with self–conjugate variables inΩ.
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GENERALIZED NEWTON–LIKE INEQUALITIES 3

2. PROOF OF GENERALIZED NEWTON –LIKE I NEQUALITIES

Recall thatEk = Ek(x1, x2, . . . , xn), wherex1, x2, . . . , xn ∈ C are assumed to be self-
conjugate. We begin with the following well-known observation.

Let p(x) =
∏n

k=0(x − xk), the monic polynomial whose zeros arex1, x2, . . . , xn. Then, in
terms ofEk, p(x) can be expressed as

(2.1) p(x) =
n∑

k=0

(−1)k

(
n

k

)
Ekx

n−k.

The first few lemmas below validate the generalized Newton-like inequalities for the cases
whenn = 2, 3. Seeing the fact that Newton’s inequalities are satisfied on{Ek} with real vari-
ables, we only need to look at the cases in which one conjugate pair is present in the variables.
In what follows,a, b, andc are all real numbers.

Lemma 2.1. For k = 0, 1, 2, setEk = Ek(x1, x2), wherex1,2 = a± ib anda2 + b2 > 0. Then
E2

1 ≥ λE0E2 for any0 ≤ λ ≤ a2

a2+b2
.

Proof. Let p(x) = (x − x1)(x − x2) be the monic polynomial with zerosx1 andx2. Clearly,
p(x) = x2 − 2ax + a2 + b2. Next, by comparing with (2.1), we obtain thatE1 = a and
E2 = a2 + b2. ThusE2

1 − λE0E2 = a2 − λ(a2 + b2) ≥ 0 for any0 ≤ λ ≤ a2

a2+b2
. �

The proof of Lemma 2.1 indicates that ifa2+b2 > 0, thena2/(a2+b2) provides the best upper
bound onλ in the generalized Newton-like inequalities for the case whenn = 2. Alternatively,
λ can be thought of as the best lower bound ona2/(a2 + b2) if λ is prescribed whilea andb are
allowed to vary. Besides, Lemma 2.1 indicates that the case of a purely imaginary conjugate
pair should be excluded since they only lead to the trivial result.

Lemma 2.2.Suppose thatb, c ≥ 0. For 0 ≤ k ≤ 3, setEk = Ek(x1, x2, x3), wherex1,2 = a±ib
andx3 = c. Then Newton’s inequalities

E2
k ≥ Ek−1Ek+1, k = 1, 2

hold if and only if either 
a−

√
3b ≥ c,

(
a− c

2

)2
+

(
b−

√
3

2
c
)2

≥ c2;

or 
a +

√
3b ≤ c,

(
a− c

2

)2
+

(
b +

√
3

2
c
)2

≤ c2.

Proof. Similar to the proof of Lemma 2.1, we derive thatE1 = 2a+c
3

, E2 = a2+b2+2ac
3

, and
E3 = c(a2 + b2). It is a matter of straightforward calculation to verify thatE2

k ≥ Ek−1Ek+1 for
k = 1, 2 if and only if  |a− c| ≥

√
3b,

|a2 + b2 − ac| ≥
√

3bc,

which leads to the conclusion. �
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4 JIANHONG XU

A similar conclusion can be reached for the case whenc ≤ 0. Note thatb can always be
assumed to be nonnegative. For any fixedc > 0, the region as characterized by the necessary
and sufficient condition in Lemma 2.2 is illustrated in Figure 2.1.

z

c

z�Ξt�c

�z�Η ��c

z�Ξ
���

t�c

�z�Η����c

z

Figure 2.1: The shaded region, wheret is a real parameter,ξ = c + i
√

3c/3, andη = c/2 − i
√

3c/2, represents
the condition ona andb, with c being fixed, such that Newton’s inequalities hold.

It can been seen from the formulas forEk as given in the proof of Lemma 2.2 that{Ek} has
no internal zeros if we further assume thatx1, x2, x3 ∈ Ω. In fact, such a property of{Ek} can
be readily verified to be true even whenx1, x2, x3 ∈ Ω are all real.

We also comment that according to [3], Newton’s inequalities are upheld on{Ek} with
x1, x2, . . . , xn being the spectrum of an M– or inverse M–matrix. Hence Lemma 2.2 also char-
acterizes the region in which the eigenvalues of a3× 3 M– or inverse M–matrix are located. In
Figure 2.1, this region is represented by the shaded part within the first quadrant.

The next lemma concerns the fulfillment of the generalized Newton–like inequalities when
n = 3.

Lemma 2.3. Suppose thata, b, c ≥ 0 with a2 +b2 > 0. For 0 ≤ k ≤ 3, setEk = Ek(x1, x2, x3),
wherex1,2 = a ± ib andx3 = c. Then for anyλ such that0 ≤ λ ≤ a2

a2+b2
, {Ek} satisfies the

relationship that
EkEl ≥ λEk−1El+1

for all k ≤ l.

Proof. It suffices to show the conclusion for the caseλ = a2

a2+b2
. With the formulas forEk,

k = 1, 2, 3, as given in the proof of Lemma 2.2, we have that

E2
1 −

a2

a2 + b2
E0E2 =

(a− c)2

9
+

2ab2c

3(a2 + b2)
≥ 0,

E2
2 −

a2

a2 + b2
E1E3 =

1

9

[
a2(a− c)2 + 2a2b2 + 4ab2c + b4

]
≥ 0,

and

E1E2 −
a2

a2 + b2
E0E3 =

1

9

[
2a(a− c)2 + 2ab2 + b2c

]
≥ 0.
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GENERALIZED NEWTON–LIKE INEQUALITIES 5

This completes the proof. �

Throughout the rest of this paper, we shall mainly focus on the scenario thatRe xj ≥ 0 for
eachj in addition tox1, x2, . . . , xn being self-conjugate. Such a requirement plays a key role
in the justification of Lemma 2.3. It also guarantees thatEk(x1, x2, . . . , xn) ≥ 0. Recall thatΩ
is the region defined as in (1.3). We now fix0 < λ ≤ 1 and assume thatx1, x2, . . . , xn ∈ Ω.
Lemma 2.3 can then be rephrased as follows.

Lemma 2.4. For self-conjugatex1, x2, x3 ∈ Ω, denoteEk = Ek(x1, x2, x3), where0 ≤ k ≤ 3.
Then

EkEl ≥ λEk−1El+1

for all k ≤ l.

Following an inductive approach, the main question now is whether the generalized Newton-
like inequalities continue to hold as the number of variablesn increases, with the assumption
that such inequalities hold on{Ek} with variablesx1, x2, . . . , xn.

The lemma below updates the elementary symmetric functions when a nonnegative variable
c is added to the existing variables{x1, x2, . . . , xn}.

Lemma 2.5. Suppose thatx1, x2, . . . , xn ∈ C are self-conjugate such thatEk = Ek(x1, x2,

. . . , xn) ≥ 0 for all k. Let Ẽk = Ek(x1, x2, . . . , xn, c), wherec ≥ 0. ThenẼk ≥ 0 for all k.
Moreover,

(2.2) Ẽk =
(n + 1− k)Ek + ckEk−1

n + 1
, 0 ≤ k ≤ n + 1.

In particular, Ẽ0 = E0, andẼn+1 = cEn.1

Proof. Similar to the proof of Lemma 2.1, we setp(x) =
∏n

j=1(x − xj). Denote byp̃(x) the
monic polynomial whose zeros arex1, x2, . . . , xn, andc. Note that according to (2.1),p(x)

and p̃(x) can be expressed in terms ofEk and Ẽk, respectively. The conclusion follows by
comparing the coefficients on both sides of the identityp̃(x) = (x− c)p(x). �

Note that formula (2.2) also shows that{Ẽk} has no internal zeros if the same is true for
{Ek}. Moreover, it can be seen from (2.2) that the number of internal zeros, if present, tends to
diminish while passing from{Ek} to {Ẽk}.

Continuing withEk andẼk as considered in Lemma 2.5, we demonstrate next that the gen-
eralized Newton-like inequalities carry over from{Ek} to {Ẽk} wheneverc ≥ 0. For the sake
of simplicity, we define that

(2.3) Dk,l = EkEl − λEk−1El+1.

By the inductive assumption,Dk,l ≥ 0 for all k ≤ l.

Theorem 2.6.Letx1, x2, . . . , xn ∈ C be self-conjugate. Suppose that for allk, Ek = Ek(x1, x2,

. . . , xn) ≥ 0. SetẼk = Ek(x1, x2, . . . , xn+1), wherexn+1 = c ≥ 0. If there exists some
0 ≤ λ ≤ 1 such thatEkEl ≥ λEk−1El−1 for all 1 ≤ k ≤ l ≤ n− 1, then

(2.4) ẼkẼl ≥ λẼk−1Ẽl+1

for all 1 ≤ k ≤ l ≤ n.

1We follow the convention thatEk = 0 if k < 0 or k > n. This kind of interpretation is adopted throughout
whenever a subscript goes beyond its range.
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Proof. By Lemma 2.5, we have that

(n + 1)2(ẼkẼl − λẼk−1Ẽl+1)

=
[
(n + 1− k)Ek + ckEk−1

][
(n + 1− l)El + clEl−1

]
− λ

[
(n + 2− k)Ek−1 + c(k − 1)Ek−2

][
(n− l)El+1 + c(l + 1)El

]
= (n + 2− k)(n− l)Dk,l + c2(k − 1)(l + 1)Dk−1,l−1 + c(n + 1− k)lDk,l−1

+ c(k − 1)(n− l)Dk−1,l + (1 + l − k)(EkEl + c2Ek−1El−1)

− λc(n + 2 + l − k)Ek−1El + c(n− l + k)Ek−1El.

Note thatDk,l−1 ≥ 0 even whenl = k. It remains to show that the sum of the last three terms
above is nonnegative, which can be done by observing that

(1 + l − k)(EkEl + c2Ek−1El−1) ≥ 2c(1 + l − k)
√

EkElEk−1El−1

≥ 2c(1 + l − k)λEk−1El

and, consequently, that the sum of those last three terms is bounded below byc(1− λ)(n− l +
k)Ek−1El ≥ 0. �

It should be mentioned that the proof of Theorem 2.6 is basically in the same fashion as
that of Theorem 51 in [2]. Our result here, however, is more general in that it involves the
generalized Newton-like inequalities on{Ek} with x1, x2, . . . , xn ∈ C.

Next we proceed to the case when a conjugate complex pairxn+1,n+2 = a± ib, wherea ≥ 0,
is added to the existing variables{x1, x2, . . . , xn}. In a way similar to Lemma 2.5, the result
below provides a connection betweenEk = Ek(x1, x2, . . . , xn) andẼk = Ek(x1, x2, . . . , xn+2).
It also indicates that{Ẽk} is free of internal zeros if{Ek} is, assuming thatxn+1,n+2 ∈ Ω.

Lemma 2.7. Suppose thatx1, x2, . . . , xn ∈ C are self–conjugate such thatEk = Ek(x1, x2,
. . . , xn) ≥ 0 for all k. Let xn+1,n+2 = a ± ib be a conjugate pair such thata ≥ 0. Denote
Ẽk = Ek(x1, x2, . . . , xn+2). ThenẼk ≥ 0 for all k. Moreover, for0 ≤ k ≤ n + 2,

(2.5) Ẽk =
(n + 1− k)(n + 2− k)Ek + 2a(n + 2− k)kEk−1 + (a2 + b2)k(k − 1)Ek−2

(n + 1)(n + 2)
.

In particular, Ẽ0 = E0, Ẽ1 = nE1+2aE0

n+2
, Ẽn+1 = 2aEn+n(a2+b2)En−1

n+2
, andẼn+2 = (a2 + b2)En.

Proof. The proof of this conclusion is similar to that of Lemma 2.5. Denote byp(x) the monic
polynomial with zeros atx1, x2, . . . , xn. Setp̃(x) = (x− xn+1)(x− xn+2)p(x), which reduces
to p̃(x) = (x2 − 2ax + a2 + b2)p(x). A comparison of the coefficients, in terms ofEk andẼk

in accordance with (2.1), on both sides of this latter identity yields (2.5). �

If a > 0, then on letting

(2.6) Fk =
(n + 1− k)Ek + akEk−1

n + 1

and

(2.7) Gk =
(n + 1− k)Ek + a2+b2

a
kEk−1

n + 1
,

we can rewrite (2.5) as

(2.8) Ẽk =
(n + 2− k)Fk + akGk−1

n + 2
.
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It is obvious that Theorem 2.6 applies to bothFk andGk. Moreover, there is the following
connection betweenFk andGk.

Lemma 2.8. Assuming thata > 0, Fk andGk as defined in (2.6) and (2.7), respectively, satisfy

(2.9) Fk ≤ Gk ≤
a2 + b2

a2
Fk

for all k.

In the following several technical lemmas we suppose that there exists some0 < λ ≤ 1 such
that{Ek} satisfies the generalized Newton-like inequalities (1.5). Furthermore, as motivated by
[4] as well as by the discussion in Lemmas 2.1 and 2.3, we assume that the following additional
condition holds ona andb:

(2.10)
a√

a2 + b2
≥
√

λ,

which implies thatxn+1,n+2 ∈ Ω, whereΩ is defined as in (1.3). Note that such a condition also
implies thata > 0.

Lemma 2.9. For all k ≤ l,

(2.11) FkGl−1 ≥ λFk−1Gl,

provided that condition (2.10) holds ona andb.

Proof. We first verify the case whenk = l, namelyFkGk−1 ≥ λFk−1Gk. By Lemma 2.8 and
condition (2.10), it follows that

FkGk−1 ≥
a2

a2 + b2
Fk−1Gk ≥ λFk−1Gk.

For the case whenk < l, using (2.6) and (2.7), we obtain that

(n + 1)2(FkGl−1 − λFk−1Gl)

=
[
(n + 1− k)Ek + akEk−1

] [
(n + 2− l)El−1 +

a2 + b2

a
(l − 1)El−2

]
− λ

[
(n + 2− k)Ek−1 + a(k − 1)Ek−2

] [
(n + 1− l)El +

a2 + b2

a
lEl−1

]
= (n + 2− k)(n + 1− l)Dk,l−1 + (a2 + b2)(k − 1)lDk−1,l−2

+
a2 + b2

a
(n + 1− k)(l − 1)Dk,l−2 + a(k − 1)(n + 1− l)Dk−1,l−1

+ (l − k)
[
EkEl−1 + (a2 + b2)Ek−1El−2

]
− λ

a2 + b2

a
(n + 1 + l − k)Ek−1El−1

+ a(n + 1− l + k)Ek−1El−1,

whereDk,l is defined as in (2.3). Note thatDk,l−2 ≥ 0 even whenl = k+1. It therefore suffices
to show that the sum of the last three terms above, denoted byS, is nonnegative. Clearly,

S ≥ 2(l − k)
√

λ(a2 + b2)Ek−1El−1 − λ
a2 + b2

a
(n + 1 + l − k)Ek−1El−1

+ a(n + 1− l + k)Ek−1El−1.
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Sett =

√
λ(a2+b2)

a
. Thus

S ≥ a
[
2(l − k)t− (n + 1 + l − k)t2 + n + 1− (l − k)

]
Ek−1El−1

= a(1− t)
[
(n + 1)(1 + t)− (l − k)(1− t)

]
Ek−1El−1 ≥ 0

since0 < t ≤ 1. �

Lemma 2.10.For all k ≤ l,

(2.12) Gk−1Fl ≥ λGk−2Fl+1.

Proof. With (2.6) and (2.7) we compute as follows.

(n + 1)2(Gk−1Fl − λGk−2Fl+1)

=

[
(n + 2− k)Ek−1 +

a2 + b2

a
(k − 1)Ek−2

] [
(n + 1− l)El + alEl−1

]
− λ

[
(n + 3− k)Ek−2 +

a2 + b2

a
(k − 2)Ek−3

] [
(n− l)El+1 + a(l + 1)El

]
= (n + 3− k)(n− l)Dk−1,l + (a2 + b2)(k − 2)(l + 1)Dk−2,l−1

+ a(n + 2− k)lDk−1,l−1 +
a2 + b2

a
(k − 2)(n− l)Dk−2,l

+ (2 + l − k)
[
Ek−1El + (a2 + b2)Ek−2El−1

]
− λa(n + 3 + l − k)Ek−2El

+
a2 + b2

a
(n− 1− l + k)Ek−2El.

We again setS to be the sum of the last three terms in the above expression.

S ≥ 2(2 + l − k)
√

λ(a2 + b2)Ek−2El − λa(n + 3 + l − k)Ek−2El

+
a2 + b2

a
(n− 1− l + k)Ek−2El

= λa
[
2(2 + l − k)t− (n + 3 + l − k) + (n− 1− l + k)t2

]
Ek−2El,

wheret = 1
a

√
a2+b2

λ
≥ 1. Hence,

S ≥ λa(t− 1)
[
(n− 1)(t + 1)− (l − k)(t− 1) + 4

]
Ek−2El ≥ 0,

which concludes the proof. �

We comment that, unlike Lemma 2.9, Lemma 2.10 does not require condition (2.10) to hold
ona andb.

Lemma 2.11.For all k ≤ l,

(2.13) FlGk−1 ≥ λFk−1Gl,

provided thata andb satisfy condition (2.10).
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Proof. By (2.6) and (2.7), it is clear that

(n + 1)2(FlGk−1 − λFk−1Gl)

=
[
(n + 1− l)El + alEl−1

] [
(n + 2− k)Ek−1 +

a2 + b2

a
(k − 1)Ek−2

]
− λ

[
(n + 2− k)Ek−1 + a(k − 1)Ek−2

] [
(n + 1− l)El +

a2 + b2

a
lEl−1

]
= (1− λ)(n + 2− k)(n + 1− l)Ek−1El + (1− λ)(a2 + b2)(k − 1)lEk−2El−1

+ a(k − 1)(n + 1− l)

(
a2 + b2

a2
− λ

)
Ek−2El

+ a(n + 2− k)l

(
1− λ

a2 + b2

a2

)
Ek−1El−1

≥ 0,

thus verifying the claim. �

For Ek and Ẽk as defined in Lemma 2.7, the next conclusion shows that the generalized
Newton-like inequalities still carry over from{Ek} to {Ẽk} as long asa andb satisfy condition
(2.10).

Theorem 2.12.Letx1, x2, . . . , xn ∈ C be self–conjugate such thatEk = Ek(x1, x2, . . . , xn) ≥
0 for all k and that for some0 ≤ λ ≤ 1, EkEl ≥ λEk−1El+1 for all k ≤ l. Suppose that
a and b satisfyb ≥ 0, a2 + b2 > 0, and condition (2.10), i.e. a√

a2+b2
≥

√
λ. SetẼk =

Ek(x1, x2, . . . , xn+2), wherexn+1,n+2 = a± ib. Then

(2.14) ẼkẼl ≥ λẼk−1Ẽl+1

for all 1 ≤ k ≤ l ≤ n + 1.

Proof. The above conclusion holds trivially ifa = 0.
Suppose next thata > 0. Using (2.8), we see that

(n + 2)2(ẼkẼl − λẼk−1Ẽl+1)

=
[
(n + 2− k)Fk + akGk−1

][
(n + 2− l)Fl + alGl−1

]
− λ

[
(n + 3− k)Fk−1 + a(k − 1)Gk−2

][
(n + 1− l)Fl+1 + a(l + 1)Gl

]
= (n + 3− k)(n + 1− l)(FkFl − λFk−1Fl+1)

+ a2(k − 1)(l + 1)(Gk−1Gl−1 − λGk−2Gl) + a(n + 2− k)l(FkGl−1 − λFk−1Gl)

+ a(k − 1)(n + 1− l)(Gk−1Fl − λGk−2Fl+1) + (1 + l − k)(FkFl + a2Gk−1Gl−1)

− aλ(n + 3 + l − k)Fk−1Gl + a(n + 1− l + k)Gk−1Fl.

By Theorem 2.6 and Lemmas 2.9 and 2.10, the terms in the last expression are all nonnegative
except possibly the sum of the last three. For convenience, we designate this sum byS again.
Note that

S ≥ 2a(1 + l − k)
√

FkFlGk−1Gl−1 − aλ(n + 3 + l − k)Fk−1Fl

+ a(n + 1− l + k)Gk−1Fl

≥ 2a(1 + l − k)
√

λFk−1GlFlGk−1 − 2aλ(1 + l − k)Fk−1Gl
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by Theorem 2.6, Lemma 2.8, and condition (2.10). Continuing withS, we note further that

S = 2a
√

λFk−1Gl(
√

FlGk−1 −
√

λFk−1Gl) ≥ 0

by Lemma 2.11, which consequently yields (2.14). �

Combining Lemma 2.4 with Theorems 2.6 and 2.12, together with Newton’s inequalities for
the case of real variables, we are now in a position to state the following main result, thus
concluding the inductive proof of the generalized Newton–like inequalities:

Theorem 2.13. Let Ω be the region in the complex plane as defined in (1.3). For any self-
conjugatex1, x2, . . . , xn ∈ Ω, setEk = Ek(x1, x2, . . . , xn), wherek = 0, 1, . . . , n. Then

EkEl ≥ λEk−1El+1

for all k ≤ l. In particular,E2
k ≥ λEk−1Ek+1 for 1 ≤ k ≤ n− 1.

3. CONCLUDING REMARKS

In this paper we introduce the notion of generalized Newton-like inequalities on elementary
symmetric functions with self-conjugate variablesx1, x2, . . . , xn and show that such inequali-
ties are satisfied asx1, x2, . . . , xn range, essentially, in the right half-plane. The main conclusion
of this work also includes as its special cases Newton-like inequalities [4, 5] as well as the cel-
ebrated Newton’s inequalities on elementary symmetric functions with nonnegative variables.

The methodology of this paper is an inductive argument. It is motivated largely by the proof
in [2] of Newton’s inequalities as well as several recent results on Newton’s and Newton-like
inequalities [4, 6, 7]. It, however, differs from previous works mostly in that no argument in-
volving mean value theorems, either Rolle’s or Gauss-Lucas’, is required. It therefore serves
as an alternative which may turn out to be useful for the further investigation of some related
problems, particularly problems regarding higher order Newton’s inequalities, Newton’s and
Newton-like inequalities on elementary symmetric functions with respect to eigenvalues of ma-
trices, and such inequalities over the complex domain.
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