INEQUALITIES RELATED TO THE CHEBYCHEV FUNCTIONAL INVOLVING INTEGRALS OVER DIFFERENT INTERVALS

${ }^{(1)}$ I. BUDIMIR, ${ }^{(2)}$ P. CERONE, AND ${ }^{(1)}$ J. PEČARIĆ
${ }^{(1)}$ Department Of Mathematics
Faculty Of Textile Technology
University Of Zagreb Croatia.
ivanb@zagreb.tekstil.hr
${ }^{(2)}$ SCHOOL OF COMMUNICATIONS AND INFORMATICS Victoria University of Technology

PO Box 14428
Melbourne City MC
Victoria 8001, Australia.
pc@matilda.vu.edu.au
URL: http://sci.vu.edu.au/~pc
pecaric@mahazu.hazu.hr
URL:http://mahazu.hazu.hr/DepMPCS/indexJP.html
Received 22 Novenber, 2000; accepted 03 March, 2001.
Communicated by G. Anastassiou

Abstract

A generalised Chebychev functional involving integral means of functions over different intervals is investigated. Bounds are obtained for which the functions are assumed to be of Hölder type. A weighted generalised Chebychev functional is also introduced and bounds are obtained in terms of weighted Grüss, Chebychev and Lupaş inequalities.

Key words and phrases: Grüss, Chebychev and Lupaş inequalities, Hölder.
1991 Mathematics Subject Classification. 26D15, 26D20, 26D99.

1. Introduction

For two measurable functions $f, g:[a, b] \rightarrow \mathbb{R}$, define the functional, which is known in the literature as Chebychev's functional

$$
\begin{equation*}
T(f, g ; a, b):=\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-\frac{1}{(b-a)^{2}} \int_{a}^{b} f(x) d x \cdot \int_{a}^{b} g(x) d x, \tag{1.1}
\end{equation*}
$$

provided that the involved integrals exist.

[^0]The following inequality is well known as the Grüss inequality [9]

$$
\begin{equation*}
|T(f, g ; a, b)| \leq \frac{1}{4}(M-m)(N-n) \tag{1.2}
\end{equation*}
$$

provided that $m \leq f \leq M$ and $n \leq g \leq N$ a.e. on $[a, b]$, where m, M, n, N are real numbers. The constant $\frac{1}{4}$ in 1.2 is the best possible.

Another inequality of this type is due to Chebychev (see for example [1, p. 207]). Namely, if f, g are absolutely continuous on $[a, b]$ and $f^{\prime}, g^{\prime} \in L_{\infty}[a, b]$ and $\left\|f^{\prime}\right\|_{\infty}:=e s s \sup _{t \in[a, b]}\left|f^{\prime}(t)\right|$, then

$$
\begin{equation*}
|T(f, g ; a, b)| \leq \frac{1}{12}\left\|f^{\prime}\right\|_{\infty}\left\|g^{\prime}\right\|_{\infty}(b-a)^{2} \tag{1.3}
\end{equation*}
$$

and the constant $\frac{1}{12}$ is the best possible.
Finally, let us recall a result by Lupaş (see for example [1, p. 210]), which states that:

$$
\begin{equation*}
|T(f, g ; a, b)| \leq \frac{1}{\pi^{2}}\left\|f^{\prime}\right\|_{2}\left\|g^{\prime}\right\|_{2}(b-a), \tag{1.4}
\end{equation*}
$$

provided f, g are absolutely continuous and $f^{\prime}, g^{\prime} \in L_{2}[a, b]$. The constant $\frac{1}{\pi^{2}}$ is the best possible here.

For other Grüss type inequalities, see the books [1] and [2], and the papers [3]-[10], where further references are given.

Recently, Cerone and Dragomir [11] have pointed out generalizations of the above results for integrals defined on two different intervals $[a, b]$ and $[c, d]$.

Define the functional (generalised Chebychev functional)

$$
\begin{align*}
T(f, g ; a, b, c, d):=M(f g ; a, b)+ & M(f g ; c, d) \tag{1.5}\\
& -M(f ; a, b) M(g ; c, d)-M(f ; c, d) M(g ; a, b),
\end{align*}
$$

where the integral mean is defined by

$$
\begin{equation*}
M(f ; a, b):=\frac{1}{b-a} \int_{a}^{b} f(x) d x \tag{1.6}
\end{equation*}
$$

Cerone and Dragomir [11] proved the following result.
Theorem 1.1. Let $f, g: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be measurable on I and the intervals $[a, b],[c, d] \subset I$. Assume that the integrals involved in (2.12) exist. Then we have the inequality

$$
\begin{align*}
|T(f, g ; a, b, c, d)| \leq[T & \left.(f ; a, b)+T(f ; c, d)+(M(f ; a, b)-M(f ; c, d))^{2}\right]^{\frac{1}{2}} \tag{1.7}\\
& \times\left[T(g ; a, b)+T(g ; c, d)+(M(g ; a, b)-M(g ; c, d))^{2}\right]^{\frac{1}{2}}
\end{align*}
$$

where

$$
\begin{equation*}
T(f ; a, b):=\frac{1}{b-a} \int_{a}^{b} f^{2}(x) d x-\left(\frac{1}{b-a} \int_{a}^{b} f(x) d x\right)^{2} \tag{1.8}
\end{equation*}
$$

and the integrals involved in the right membership of (2.3) exist.
They used a generalisation of the classical identity due to Korkine namely,

$$
\begin{equation*}
T(f, g ; a, b, c, d)=\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d}(f(x)-f(y))(g(x)-g(y)) d y d x \tag{1.9}
\end{equation*}
$$

and the fact that

$$
\begin{equation*}
T(f, f ; a, b, c, d)=T(f ; a, b)+T(f ; c, d)+(M(f ; a, b)-M(f ; c, d))^{2} . \tag{1.10}
\end{equation*}
$$

In the current article, bounds are obtained for the generalised Chebychev functional (1.5) assuming that f and g are of Hölder type. The special case for which f and g are Lipschitzian is also investigated. A weighted generalised Chebychev functional is treated in Section 3 involving weighted means of functions over different intervals. Grüss, Chebychev and Lupaş results are utilised to obtain bounds for such a functional.

2. The Results for Functions of Hölder Type

The following lemma will prove to be useful in the subsequent work.
Lemma 2.1. Let $a, b, c, d \in \mathbb{R}$ with $a<b$ and $c<d$. Define

$$
\begin{equation*}
C_{\theta}(a, b, c, d):=\int_{a}^{b} \int_{c}^{d}|x-y|^{\theta} d y d x, \quad \theta \geq 0 \tag{2.1}
\end{equation*}
$$

then

$$
\begin{equation*}
(\theta+1)(\theta+2) C_{\theta}(a, b, c, d)=|b-c|^{\theta+2}-|b-d|^{\theta+2}+|d-a|^{\theta+2}-|c-a|^{\theta+2} . \tag{2.2}
\end{equation*}
$$

Proof. Let [] denote the order in which a, b, c, d appear on the real number line. There are six possibilities to consider since we are given that $a<b$ and $c<d$.

Firstly, consider the situation $c=a$ and $d=b$. Then

$$
\begin{align*}
D_{\theta}(a, b) & =C_{\theta}(a, b, a, b) \tag{2.3}\\
& =\int_{a}^{b} \int_{a}^{b}|x-y|^{\theta} d y d x, \theta \geq 0 \\
& =\int_{a}^{b}\left[\int_{a}^{x}(x-y)^{\theta} d y+\int_{x}^{b}(y-x)^{\theta} d y\right] d x \\
& =\frac{1}{\theta+1} \int_{a}^{b}\left[(x-a)^{\theta+1}+(b-x)^{\theta+1}\right] d x
\end{align*}
$$

and so

$$
\begin{equation*}
(\theta+1)(\theta+2) D_{\theta}(a, b)=2(b-a)^{\theta+2} \text {. } \tag{2.4}
\end{equation*}
$$

Now, taking the six possibilities in turn, we have:
(i) For the ordering $[c, d, a, b], y<x$ giving for $C_{\theta}(a, b, c, d)$

$$
\begin{align*}
I_{\theta}(a, b, c, d) & :=\int_{a}^{b} \int_{c}^{d}(x-y)^{\theta} d y d x \tag{2.5}\\
& =\int_{a}^{b}\left[\int_{c}^{x}(x-y)^{\theta} d y+\int_{x}^{d}(y-x)^{\theta} d y\right] d x \\
& =\frac{1}{\theta+1} \int_{a}^{b}\left[(x-c)^{\theta+1}-(x-d)^{\theta+1}\right] d x
\end{align*}
$$

and so

$$
\begin{align*}
(\theta+1)(\theta & +2) I_{\theta}(a, b, c, d) \tag{2.6}\\
& =(b-c)^{\theta+2}-(a-c)^{\theta+2}+(a-d)^{\theta+2}-(b-d)^{\theta+2} \\
& =(\theta+1)(\theta+2) C_{\theta}(a, b, c, d), \quad[c, d, a, b] .
\end{align*}
$$

(ii) For the ordering $[c, a, d, b]$ we have

$$
\begin{aligned}
& C_{\theta}(a, b, c, d) \\
&=\int_{a}^{b} \int_{c}^{a}(x-y)^{\theta} d y d x+\int_{a}^{d} \int_{a}^{d}|x-y|^{\theta} d y d x+\int_{b}^{d} \int_{a}^{d}(x-y)^{\theta} d y d x \\
& \quad=I_{\theta}(a, b, c, a)+D_{\theta}(a, d)+I_{\theta}(d, b, a, d),
\end{aligned}
$$

where we have used (2.3) and (2.5). Further, utilising (2.4) and (2.6) gives
(2.7) $(\theta+1)(\theta+2) C_{\theta}(a, b, c, d)$

$$
=(b-c)^{\theta+2}-(b-d)^{\theta+2}+(d-a)^{\theta+2}-(a-c)^{\theta+2}, \quad[c, a, d, b] .
$$

(iii) For the ordering $[a, c, d, b]$

$$
\begin{aligned}
C_{\theta} & (a, b, c, d) \\
& =\int_{a}^{c} \int_{c}^{d}(y-x)^{\theta} d y d x+\int_{c}^{d} \int_{c}^{d}|y-x|^{\theta} d y d x+\int_{d}^{b} \int_{c}^{d}(x-y)^{\theta} d y d x \\
\quad & =I_{\theta}(c, d, a, c)+D_{\theta}(c, d)+I_{\theta}(d, b, c, d)
\end{aligned}
$$

giving, on using (2.4) and (2.6)
(2.8) $(\theta+1)(\theta+2) C_{\theta}(a, b, c, d)$

$$
=(b-c)^{\theta+2}-(b-d)^{\theta+2}+(d-a)^{\theta+2}-(c-a)^{\theta+2}, \quad[a, c, d, b] .
$$

(iv) For the ordering $[a, c, b, d]$

$$
C_{\theta}(a, b, c, d)
$$

$$
=\int_{a}^{c} \int_{c}^{d}(y-x)^{\theta} d y d x+\int_{c}^{b} \int_{c}^{b}|x-y|^{\theta} d y d x+\int_{c}^{b} \int_{b}^{d}(y-x)^{\theta} d y d x
$$

$$
=I_{\theta}(c, d, a, c)+D_{\theta}(c, b)+I_{\theta}(b, d, c, b),
$$

giving, from (2.4) and (2.6)

$$
\begin{align*}
(\theta+1)(\theta+2) C_{\theta} & (a, b, c, d) \tag{2.9}\\
& =(b-c)^{\theta+2}-(d-b)^{\theta+2}+(d-a)^{\theta+2}-(c-a)^{\theta+2}, \quad[a, c, b, d]
\end{align*}
$$

(v) For the ordering $[a, b, c, d]$

$$
(\theta+1)(\theta+2) C_{\theta}(a, b, c, d)=\theta(\theta+1) I_{\theta}(c, d, a, b)
$$

and so from (2.6)
(2.10) $(\theta+1)(\theta+2) C_{\theta}(a, b, c, d)$

$$
=(d-a)^{\theta+2}-(c-a)^{\theta+2}+(c-b)^{\theta+2}-(d-b)^{\theta+2}, \quad[a, b, c, d] .
$$

(vi) For the ordering $[c, a, d, b]$, interchanging a and c and b and d in case (iii) gives
(2.11) $(\theta+1)(\theta+2) C_{\theta}(a, b, c, d)$

$$
=(d-a)^{\theta+2}-(d-b)^{\theta+2}+(b-c)^{\theta+2}-(a-c)^{\theta+2}, \quad[c, a, b, d] .
$$

Combining (2.6) - 2.11) produces the results (2.1) - 2.2) and the lemma is proved.

Remark 2.2. It may be noticed from (2.1) - (2.2) that (2.4) is recaptured of $c=a$ and $d=b$. Further, the answer appears in terms of differences between a limit of one integral and the other integral. The differences between a top and bottom limit is associated with a positive sign while the difference between the two bottom limits or the two top limits is associated with a negative sign. The order of the differences depends on the order of the limits on the real number line and is taken in such a way that the difference is positive.
Theorem 2.3. Let $f, g: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be measurable on I and the intervals $[a, b],[c, d] \subset I$. Further, suppose that f and g are of Hölder type so that for $x \in[a, b], y \in[c, d]$

$$
\begin{equation*}
|f(x)-f(y)| \leq H_{1}|x-y|^{r} \quad \text { and } \quad|g(x)-g(y)| \leq H_{2}|x-y|^{s}, \tag{2.12}
\end{equation*}
$$

where $H_{1}, H_{2}>0$ and $r, s \in(0,1]$ are fixed. The following inequality then holds on the assumption that the integrals involved exist. Namely,

$$
\begin{align*}
& (\theta+1)(\theta+2)|T(f, g ; a, b, c, d)| \tag{2.13}\\
& \quad \leq \frac{H_{1} H_{2}}{(b-a)(d-c)}\left[|b-c|^{\theta+2}-|b-d|^{\theta+2}+|d-a|^{\theta+2}-|c-a|^{\theta+2}\right]
\end{align*}
$$

where $\theta=r+s$ and $T(f, g ; a, b, c, d)$ is as defined by (1.5) and (1.6).
Proof. From the Hölder assumption (2.12), we have

$$
|(f(x)-f(y))(g(x)-g(y))| \leq H_{1} H_{2}|x-y|^{r+s}
$$

for all $x \in[a, b], y \in[c, d]$.
Hence,

$$
\begin{aligned}
& \left|\int_{a}^{b} \int_{c}^{d}(f(x)-f(y))(g(x)-g(y)) d y d x\right| \\
& \quad \leq \int_{a}^{b} \int_{c}^{d}|(f(x)-f(y))(g(x)-g(y))| d y d x \\
& \quad \leq H_{1} H_{2} \int_{a}^{b} \int_{c}^{d}|x-y|^{r+s} d y d x=H_{1} H_{2} C_{r+s}(a, b, c, d)
\end{aligned}
$$

where $C_{\theta}(a, b, c, d)$ is as given by 2.2 .
Now, from identity (1.9) and the above inequality readily produces (2.13) and the theorem is thus proved.
Corollary 2.4. Let $f, g: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be measurable on I and the intervals $[a, b],[c, d] \subset I$. Further, suppose that f and g are Lipschitzian mappings such that for $x \in[a, b]$ and $y \in[c, d]$

$$
|f(x)-f(y)| \leq L_{1}|x-y| \text { and }|g(x)-g(y)| \leq L_{2}|x-y|
$$

where $L_{1}, L_{2}>1$. Assuming that the integrals involved exist, then the following inequality holds. That is,

$$
|T(f, g ; a, b, c, d)| \leq \frac{L_{1} L_{2}}{12(b-a)(d-c)}\left[(b-c)^{4}-(c-a)^{4}+(d-a)^{4}-(b-d)^{4}\right]
$$

Proof. Taking $r=s=1$ in Theorem 2.3 and $L_{1}=H_{1}, L_{2}=H_{2}$, then from (2.13) we obtain the above inequality.
Remark 2.5. The situation in which f is of Hölder type and g is Lipschitzian may be handled by taking $s=1$ and $H_{2}=L_{2}$. Further, taking $d=b$ and $c=a$ recaptures the results of Dragomir [7].

3. A Weighted Generalised Chebychev Functional

Define the weighted generalised Chebychev Functional by

$$
\begin{align*}
\mathfrak{T}(f, g ; a, b, c, d)= & \mathfrak{M}(f g ; a, b)+\mathfrak{M}(f g ; c, d) \tag{3.1}\\
& -\mathfrak{M}(f ; a, b) \mathfrak{M}(g ; c, d)-\mathfrak{M}(f ; c, d) \mathfrak{M}(g ; a, b),
\end{align*}
$$

where the w-weighted integral mean is given by

$$
\begin{equation*}
\mathfrak{M}(f ; a, b)=\frac{1}{\int_{a}^{b} w(x) d x} \int_{a}^{b} w(x) f(x) d x \tag{3.2}
\end{equation*}
$$

with $w:[a, b] \rightarrow[0, \infty)$ is integrable and $0<\int_{a}^{b} w(x) d x<\infty$.
Theorem 3.1. Let $f, g, w: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be measurable on I and the intervals $[a, b],[c, d] \subset I$. Assuming that the integrals involved in (3.1) exist and $\int_{I} w(x) d x>0$, then we have

$$
\begin{align*}
&|\mathfrak{T}(f, g ; a, b, c, d)| \leq\left[\mathfrak{T}(f ; a, b)+\mathfrak{T}(f ; c, d)+(\mathfrak{M}(f ; a, b)-\mathfrak{M}(f ; c, d))^{2}\right]^{\frac{1}{2}} \tag{3.3}\\
& \times\left[\mathfrak{T}(g ; a, b)+\mathfrak{T}(g ; c, d)+(\mathfrak{M}(g ; a, b)-\mathfrak{M}(g ; c, d))^{2}\right]^{\frac{1}{2}}
\end{align*}
$$

where

$$
\begin{equation*}
\mathfrak{T}(f ; a, b):=\mathfrak{M}\left(f^{2} ; a, b\right)-\mathfrak{M}^{2}(f ; a, b) \tag{3.4}
\end{equation*}
$$

and the integrals involved in the right hand side of (3.1) exist.
Proof. It is easily demonstrated that the identity

$$
\begin{align*}
\mathfrak{T}(f, g ; a, b, c, d)=\frac{1}{\int_{a}^{b} w(x) d x \int_{c}^{d} w(y) d y} \int_{a}^{b} & \int_{c}^{d} w(x) w(y) \tag{3.5}\\
& \times(f(x)-f(y))(g(x)-g(y)) d x d y
\end{align*}
$$

holds, which is a weighted generalised Korkine type identity involving integrals over different intervals.

Using the Cauchy-Buniakowski-Schwartz inequality for double integrals gives

$$
\begin{equation*}
|\mathfrak{T}(f, g ; a, b, c, d)|^{2} \leq \mathfrak{T}(f, f ; a, b, c, d) \mathfrak{T}(g, g ; a, b, c, d), \tag{3.6}
\end{equation*}
$$

where from (3.1)

$$
\mathfrak{T}(f, f ; a, b, c, d)=\mathfrak{M}\left(f^{2} ; a, b\right)+\mathfrak{M}\left(f^{2} ; c, d\right)-2 \mathfrak{M}(f ; a, b) \mathfrak{M}(f ; c, d)
$$

and using (3.4) gives

$$
\begin{equation*}
\mathfrak{T}(f, f ; a, b, c, d)=\mathfrak{T}(f ; a, b)+\mathfrak{T}(f ; c, d)+(\mathfrak{M}(f ; a, b)-\mathfrak{M}(f ; c, d))^{2} . \tag{3.7}
\end{equation*}
$$

A similar identity to (3.7) holds for g and thus from (3.6) and (3.2), the result (3.3) is obtained and the theorem is thus proved.

Corollary 3.2. Let the conditions of Theorem 3.1 hold. Moreover, assume that

$$
m_{1} \leq f \leq M_{1} \text {, a.e. on }[a, b], m_{2} \leq f \leq M_{2} \text {, a.e. on }[c, d]
$$

and

$$
n_{1} \leq g \leq N_{1} \text {, a.e. on }[a, b], n_{2} \leq g \leq N_{2} \text {, a.e. on }[c, d]
$$

The inequality

$$
\begin{aligned}
&|\mathfrak{T}(f, g ; a, b, c, d)| \leq \frac{1}{4}\left[\left(M_{1}-m_{1}\right)^{2}+\left(M_{2}-m_{2}\right)^{2}+4(\mathfrak{M}(f ; a, b)-\mathfrak{M}(f ; c, d))^{2}\right]^{\frac{1}{2}} \\
& \times\left[\left(N_{1}-n_{1}\right)^{2}+\left(N_{2}-n_{2}\right)^{2}+4(\mathfrak{M}(g ; a, b)-\mathfrak{M}(g ; c, d))^{2}\right]^{\frac{1}{2}}
\end{aligned}
$$

holds.
Proof. From (3.3) and using the fact that for the Grüss inequality involving weighted means (see for example, Dragomir [7]), then

$$
\mathfrak{T}(f ; a, b) \leq\left(\frac{M_{1}-m_{1}}{2}\right)^{2}, \quad \mathfrak{T}(f ; c, d) \leq\left(\frac{N_{1}-n_{1}}{2}\right)^{2}
$$

and similar results for the mapping g readily produces the results as stated.
Corollary 3.3. Let f and g be absolutely continuous on I. In addition, assume that $f^{\prime}, g^{\prime} \in$ $L_{\infty}(I)$ and $[a, b],[c, d] \subseteq \circ(I)$ is the closure of $\left.I\right)$. Then we have the inequality

$$
\begin{aligned}
& |\mathfrak{T}(f, g ; a, b, c, d)| \\
& \leq\left[S(a, b)\left\|f^{\prime}\right\|_{\infty,[a, b]}+S(c, d)\left\|f^{\prime}\right\|_{\infty,[c, d]}+(\mathfrak{M}(f ; a, b)-\mathfrak{M}(f ; c, d))^{2}\right]^{\frac{1}{2}} \\
& \quad \times\left[S(a, b)\left\|g^{\prime}\right\|_{\infty,[a, b]}+S(c, d)\left\|g^{\prime}\right\|_{\infty,[c, d]}+12(\mathfrak{M}(g ; a, b)-\mathfrak{M}(g ; c, d))^{2}\right]^{\frac{1}{2}},
\end{aligned}
$$

where $\left\|f^{\prime}\right\|_{\infty,[a, b]}:=e s s \sup _{x \in[a, b]}\left|f^{\prime}(x)\right|$,

$$
S(a, b)=\frac{W_{2}(a, b)}{W_{0}(a, b)}-\left(\frac{W_{1}(a, b)}{W_{0}(a, b)}\right)^{2} \text { and } W_{n}(a, b)=\int_{a}^{b} x^{n} w(x) d x
$$

Proof. Using (3.3) and the fact that the weighted Chebychev inequality (see [7] for example) is such that

$$
\mathfrak{T}(f ; a, b) \leq S(a, b)\left\|f^{\prime}\right\|_{\infty,[a, b]}
$$

then, the stated result is readily produced.
Finally, using a weighted generalisation of the Lupaş inequality of G.V and I.Z. Milovanić [12], namely, for $w^{-\frac{1}{2}} f^{\prime} \in L_{2}[a, b]$

$$
\mathfrak{T}(f ; a, b) \leq \frac{W_{0}(a, b)}{\pi^{2}}\left\|w^{-\frac{1}{2}} f^{\prime}\right\|_{2}^{2}
$$

produces the following corollary.
Corollary 3.4. Let f and g be absolutely continuous on $I{ }^{\prime}, f^{\prime}, g^{\prime} \in L_{2}(I)$ and $[a, b],[c, d] \subset i \circ$. The following inequality then holds

$$
\begin{aligned}
|\mathfrak{T}(f, g ; a, b, c, d)| \leq \frac{1}{\pi}\left[W_{0}^{2}(a, b)\left\|w^{-\frac{1}{2}} f^{\prime}\right\|_{2,[a, b]}^{2}+\right. & W_{0}^{2}(c, d)\left\|w^{-\frac{1}{2}} f^{\prime}\right\|_{2,[c, d]}^{2} \\
& \left.+\pi^{2}(\mathfrak{M}(f ; a, b)-\mathfrak{M}(f ; c, d))^{2}\right]^{\frac{1}{2}}
\end{aligned}
$$

$$
\times \frac{1}{\pi}\left[W_{0}^{2}(a, b)\left\|w^{-\frac{1}{2}} g^{\prime}\right\|_{2,[a, b]}^{2}+W_{0}^{2}(c, d)\left\|w^{-\frac{1}{2}} g^{\prime}\right\|_{2,[c, d]}^{2}+\pi^{2}(\mathfrak{M}(g ; a, b)-\mathfrak{M}(g ; c, d))^{2}\right]^{\frac{1}{2}}
$$

where

$$
\left\|w^{-\frac{1}{2}} f^{\prime}\right\|_{2,[a, b]}:=\left(\int_{a}^{b} w^{-\frac{1}{2}}\left|f^{\prime}(x)\right|^{2} d x\right)^{\frac{1}{2}}
$$

and $W_{0}(a, b)$ is the zeroth moment of $w(\cdot)$ over (a, b).
Remark 3.5. If $c=a$ and $d=b$ then prior results are recaptured.
Remark 3.6. If f and g are assumed to be of Hölder type, then bounds along similar lines to those obtained in Section 2 could also be obtained for the weighted Chebychev functional utilising identity (3.5). This will however not be pursued further.

REFERENCES

[1] J. PEČARIĆ, F. PROSCHAN AND Y. TONG, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, San Diego, 1992.
[2] D.S. MITRINOVIĆ, J.E. PEČARIĆ AND A.M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.
[3] S.S. DRAGOMIR, Grüss inequality in inner product spaces, The Australian Math Soc. Gazette, 26(2) (1999), 66-70.
[4] S.S. DRAGOMIR, A generalization of Grüss' inequality in inner product spaces and applications, J. Math. Anal. Appl., 237 (1999), 74-82.
[5] S.S. DRAGOMIR AND I. FEDOTOV, An inequality of Grüss' type for Riemann-Stieltjes integral and applications for special means, Tamkang J. of Math., 29(4) (1998), 286-292.
[6] S.S. DRAGOMIR, A Grüss type integral inequality for mappings of r-Hölder's type and applications for trapezoid formula, Tamkang J. of Math., 31(1), (2000), 43-47.
[7] S.S. DRAGOMIR, Some integral inequalities of Grüss type, Indian J. of Pure and Appl. Math., 31(4), (2000), 397-415.
[8] S.S. DRAGOMIR AND G.L. BOOTH, On a Grüss-Lupaş type inequality and its applications for the estimation of p-moments of guessing mappings, Mathematical Communications, 5 (2000), 117126.
[9] G. GRÜSS, Über das Maximum des absoluten Betrages von $\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-$ $\frac{1}{(b-a)^{2}} \int_{a}^{b} f(x) d x \int_{a}^{b} g(x) d x$, Math. Z., 39(1935), 215-226.
[10] A.M. FINK, A treatise on Grüss' inequality, Analytic and Geometric Inequalities and Applications, Math. Appl., 478 (1999), Kluwer Academic Publishers, Dordrecht, 93-113.
[11] P. CERONE AND S. DRAGOMIR, Generalisations of the Grüss, Chebychev and Lupaş inequalities for integrals over different intervals, Int. J. Appl. Math. , 6(2) (2001), 117-128.
[12] G.V. MILOVANIĆ AND I.Z. MILOVANIĆ, On a generalization of certain results of A. Ostrowski and A. Lupaş, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 634-677 (1979), 62-69.

[^0]: ISSN (electronic): 1443-5756
 (c) 2001 Victoria University. All rights reserved.

 048-00

