Journal of Inequalities in Pure and

 Applied Mathematicshttp://jipam.vu.edu.au/
Volume 7, Issue 5, Article 155, 2006

A NOTE ON AN INEQUALITY FOR THE GAMMA FUNCTION

baOGUO JIA
School of Mathematics and Scientific Computer
Zhongshan University
Guangzhou, China, 510275.
mcsjbg@zsu.edu.cn
Received 19 February, 2006; accepted 12 December, 2006
Communicated by A. Laforgia

Abstract

By means of the convex properties of function $\ln \Gamma(x)$, we obtain a new proof of a generalization of a double inequality on the Euler gamma function, obtained by Jozsef Sándor.

Key words and phrases: Gamma function, Inequalities, Convex function.
2000 Mathematics Subject Classification. 33B15, 33C05.
The Euler gamma function $\Gamma(x)$ is defined for $x>0$ by

$$
\Gamma(x)=\int_{0}^{+\infty} e^{-t} t^{x-1} d t
$$

Recently, by using a geometrical method, C. Alsina and M.S. Tomas [1] have proved the folowing double inequality:

Theorem 1. For all $x \in[0,1]$ and all nonnegative integers n, one has

$$
\frac{1}{n!} \leq \frac{\Gamma(1+x)^{n}}{\Gamma(1+n x)} \leq 1
$$

By using a representation theorem of the "digamma function" $\frac{\Gamma^{\prime}(x)}{\Gamma(x)}$, J. Sándor [2] proved the following generalized result:
Theorem 2. For all $a \geq 1$ and all $x \in[0,1]$, one has

$$
\frac{1}{\Gamma(1+a)} \leq \frac{\Gamma(1+x)^{a}}{\Gamma(1+a x)} \leq 1 .
$$

In this paper, by means of the convex properties of function $\ln \Gamma(x)$, for $0<x<+\infty$, we will prove that

[^0]Theorem 3. For all $a \geq 1$ and all $x>-\frac{1}{a}$, one has

$$
\frac{\Gamma(1+x)^{a}}{\Gamma(1+a x)} \leq 1
$$

(i) For all $a \geq 1$ and all $x \in[0,1]$, one has

$$
\frac{1}{\Gamma(1+a)} \leq \frac{\Gamma(1+x)^{a}}{\Gamma(1+a x)} .
$$

(ii) For all $a \geq 1$ and all $x \geq 1$, one has

$$
\frac{1}{\Gamma(1+a)} \geq \frac{\Gamma(1+x)^{a}}{\Gamma(1+a x)} .
$$

(iii) For all $a \in[0,1]$ and all $x \in[0,1]$, one has

$$
\frac{1}{\Gamma(1+a)} \geq \frac{\Gamma(1+x)^{a}}{\Gamma(1+a x)} .
$$

(iv) For all $a \in[0,1]$ and all $x \geq 1$, one has

$$
\frac{1}{\Gamma(1+a)} \leq \frac{\Gamma(1+x)^{a}}{\Gamma(1+a x)} .
$$

Our method is elementary. We only need the following simple lemma, see [3].

Lemma 4.

(a) $\Gamma(x+1)=x \Gamma(x)$, for $0<x<+\infty$.
(b) $\Gamma(n+1)=n$!, for $n=1,2, \ldots$.
(c) $\ln \Gamma(x)$ is convex on $(0,+\infty)$.

Proof of Theorem 3. When $a=1$, it is obvious.
When $a>1$, by (c) of Lemma 4 , we have

$$
\Gamma\left(\frac{u}{p}+\frac{v}{q}\right) \leq \Gamma(u)^{\frac{1}{p}} \Gamma(v)^{\frac{1}{q}},
$$

where $p>1, q>1, \frac{1}{p}+\frac{1}{q}=1, u>0, v>0$.
Let $p=a, q=\frac{a}{a-1}$. Then

$$
\Gamma\left(\frac{1}{a} u+\left(1-\frac{1}{a} v\right)\right) \leq \Gamma(u)^{\frac{1}{a}} \Gamma(v)^{1-\frac{1}{a}},
$$

for $u>0, v>0$.
Let $v=1, u=a x+1$. Note that $\Gamma(1)=1, \frac{1}{a} u+\left(1-\frac{1}{a} v\right)=x+1$.
We obtain

$$
\Gamma(x+1) \geq \Gamma(a x+1)^{\frac{1}{a}}, \quad \text { for } \quad x=\frac{u-1}{a}>-\frac{1}{a} .
$$

Remark 5. Theorem 3 is a generalization of the right side inequality of Theorem 2 .
Proof of Theorem 3 .
(i) Let

$$
f(x)=\ln \Gamma(a x+1)-\ln \Gamma(1+a)-a \ln \Gamma(x+1) .
$$

Since $\Gamma(2)=1$, We have $f(1)=0$.

$$
f^{\prime}(x)=a\left(\frac{\Gamma^{\prime}(a x+1)}{\Gamma(a x+1)}-\frac{\Gamma^{\prime}(x+1)}{\Gamma(x+1)}\right)
$$

Set $h(t)=\ln \Gamma(t)$. By (c) of the Lemma $4, \ln \Gamma(x)$ is convex on $(0,+\infty)$. So $(\ln \Gamma(t))^{\prime \prime} \geq 0$. That is $\left(\frac{\Gamma^{\prime}(t)}{\Gamma(t)}\right)^{\prime} \geq 0$. Therefore $\left(\frac{\Gamma^{\prime}(t)}{\Gamma(t)}\right)$ is increasing. Because $a \geq 1$ and $x \in[0,1]$, one has $a x+1 \geq x+1$. So

$$
\frac{\Gamma^{\prime}(a x+1)}{\Gamma(a x+1)} \geq \frac{\Gamma^{\prime}(x+1)}{\Gamma(x+1)}
$$

Thus $f^{\prime}(x) \geq 0$. In addition to $f(1)=0$, we obtain that $f(x) \leq 0$, for $a \geq 1$ and $x \in[0,1]$.
So (i) is proved.
Note that

$$
\begin{gathered}
a x+1 \geq x+1, \quad \text { for } \quad a \geq 1 \quad \text { and } \quad x \geq 1 \\
a x+1 \leq x+1, \quad \text { for } a \in[0,1] \text { and } x \in[0,1] \\
a x+1 \leq x+1, \quad \text { for } a \in[0,1] \text { and } \quad x \geq 1
\end{gathered}
$$

So (ii), (iii), (iv) are obvious.

References

[1] C. ALAINA AND M.S. TOMAS, A geometrical proof of a new inequality for the gamma function, J. Ineq. Pure Appl. Math., 6(2) (2005), Art. 48. [ONLINE: http://jipam.vu.edu.au/ article.php?sid=517].
[2] J. SÁNDOR, A Note on certain inequalities for the Gamma function, J. Ineq. Pure Appl. Math., 6(3) (2005), Art. 61. [ONLINE: http://jipam.vu.edu.au/article.php?sid=534].
[3] W. RUDIN, Principle of Mathematical Analysis, New York: McGraw-Hill, 1976, p. 192-193.

[^0]: ISSN (electronic): 1443-5756
 (C) 2006 Victoria University. All rights reserved.

 This project was supported in part by the Foundations of the Natural Science Committee and Zhongshan University Advanced Research Centre, China.

 047-06

