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ABSTRACT. Inequalities for the transformation operator kernelA(x, y) in terms ofF -function
are given, and vice versa. These inequalities are applied to inverse scattering on the half-line.
Characterization of the scattering data corresponding to the usual scattering classL1,1 of the
potentials, to the class of compactly supported potentials, and to the class of square integrable
potentials is given. Invertibility of each of the steps in the inversion procedure is proved. The
novel points in this paper include: a) inequalities for the transformation operators in terms of
the functionF , constructed from the scattering data, b) a considerably shorter way to study
the inverse scattering problem on the half-axis and to get necessary and sufficient conditions on
the scattering data for the potential to belong to some class of potentials, for example, to the
classL1,1, to its subclassLa

1,1 of potentials vanishing forx > a, and for the class of potentials
belonging toL2(R+).
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1. I NTRODUCTION

Consider the half-line scattering problem data:

(1.1) S = {S(k), kj, sj, 1 ≤ j ≤ J},

whereS(k) = f(−k)
f(k)

is theS-matrix,f(k) is the Jost function,f(ikj) = 0, ḟ(ikj) :=
df(ikj)

dk
6= 0,

kj > 0, sj > 0, J is a positive integer, it is equal to the number of negative eigenvalues of the
Dirichlet operator̀ u := −u′′+q(x)u on the half-line. The potentialq is real-valued throughout,
q ∈ L1,1 :=

{
q :

∫∞
0
x|q|dx <∞

}
. In [4] the classL1,1 :=

{
q :

∫∞
0

(1 + x)|q|dx <∞
}

was
defined in the way, which is convenient for the usage in the problems on the whole line. The
definition ofL1,1 in this paper allows for a larger class of potentials on the half-line: these
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2 A.G. RAMM

potentials may have singularities atx = 0 which are not integrable. Forq ∈ L1,1 the scattering
dataS have the following properties:

A) kj, sj > 0, S(−k) = S(k) = S−1(k), k ∈ R, S(∞) = 1,
B) κ := indS(k) := 1

2π

∫∞
−∞ d logS(k) is a nonpositive integer,

C) F ∈ Lp, p = 1 andp = ∞, xF ′ ∈ L1, Lp := Lp(0,∞).

Here

(1.2) F (x) :=
1

2π

∫ ∞

−∞
[1− S(k)]eikxdk +

J∑
j=1

sje
−kjx,

and

κ = −2J if f(0) 6= 0, κ = −2J − 1 if f(0) = 0.

The Marchenko inversion method is described in the following manner:

(1.3) S ⇒ F (x) ⇒ A(x, y) ⇒ q(x),

where the stepS ⇒ F (x) is done by formula (1.2), the stepF (x) ⇒ A(x, y) is done by solving
the Marchenko equation:

(1.4) (I + Fx)A := A(x, y) +

∫ ∞

x

A(x, t)F (t+ y) dt = −F (x+ y), y ≥ x ≥ 0,

and the stepA(x, y) ⇒ q(x) is done by the formula:

(1.5) q(x) = −2Ȧ(x, x) := −2
dA(x, x)

dx
.

Our aim is to study the estimates forA andF , which give a simple way of finding necessary
and sufficient conditions for the data (1.1) to correspond to aq from some functional class.
We consider, as examples, the following classes: the usual scattering classL1,1, for which the
result was obtained earlier ([2] and [3]) by a more complicated argument, the class of compactly
supported potentials which are locally inL1,1, and the class of square integrable potentials. We
also prove that each step in the scheme (1.3) is invertible. In Section 2 the estimates forF and
A are obtained. These estimates and their applications are the main results of the paper. In
Sections 3 – 6 applications to the inverse scattering problem are given. In [7] one finds a review
of the author’s results on one-dimensional inverse scattering problems and applications.

2. I NEQUALITIES FOR A AND F

If one wants to study the characteristic properties of the scattering data (1.1), that is, a neces-
sary and sufficient condition on these data to guarantee that the corresponding potential belongs
to a prescribed functional class, then conditions A) and B) are always necessary for a real-valued
q to be inL1,1, the usual class in the scattering theory, or other class for which the scattering
theory is constructed, and a condition of the type C) determines actually the class of potentials
q. Conditions A) and B) are consequences of the unitarity of the selfadjointness of the Hamil-
tonian, finiteness of its negative spectrum, and the unitarity of theS−matrix. Our aim is to
derive from equation (1.4) inequalities forF andA. This allows one to describe the set ofq,
defined by (1.5).

Let us assume:

(2.1) sup
y≥x

|F (y)| := σF (x) ∈ L1, F ′ ∈ L1,1.
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The functionσF is monotone decreasing,|F (x)| ≤ σF (x). Equation (1.4) is of Fredholm type
in Lp

x := Lp(x,∞) ∀x ≥ 0 andp = 1. The norm of the operator in (1.4) can be estimated:

(2.2) ‖Fx‖ ≤
∫ ∞

x

σF (x+ y)dy ≤ σ1F (2x), σ1F (x) :=

∫ ∞

x

σF (y)dy.

Therefore (1.4) is uniquely solvable inL1
x for anyx ≥ x0 if

(2.3) σ1F (2x0) < 1.

This conclusion is valid for anyF satisfying (2.3), and conditions A), B), and C) are not used.
Assuming (2.3) and (2.1) and takingx ≥ x0, let us derive inequalities forA = A(x, y). Define

σA(x) := sup
y≥x

|A(x, y)| := ‖A‖ .

From (1.4) one gets:

σA(x) ≤ σF (2x) + σA(x) sup
y≥x

∫ ∞

x

σF (s+ y)ds ≤ σF (2x) + σA(x)σ1F (2x).

Thus, if (2.3) holds, then

(2.4) σA(x) ≤ cσF (2x), x ≥ x0.

By c > 0 different constants depending onx0 are denoted. Let

σ1A(x) := ‖A‖1 :=

∫ ∞

x

|A(x, s)|ds.

Then (1.4) yieldsσ1A(x) ≤ σ1F (2x) + σ1A(x)σ1F (2x). So

(2.5) σ1A(x) ≤ cσ1F (2x), x ≥ x0.

Differentiate (1.4) with respect tox andy to obtain:

(2.6) (I + Fx)Ax(x, y) = A(x, x)F (x+ y)− F ′(x+ y), y ≥ x ≥ 0,

and

(2.7) Ay(x, y) +

∫ ∞

x

A(x, s)F ′(s+ y)ds = −F ′(x+ y), y ≥ x ≥ 0.

Denote

(2.8) σ2F (x) :=

∫ ∞

x

|F ′(y)|dy, σ2F (x) ∈ L1.

Then, using (2.7) and (2.4), one gets

||Ay||1 ≤
∫ ∞

x

|F ′(x+ y)|dy + σ1A(x) sup
s≥x

∫ ∞

x

|F ′(s+ y)|dy(2.9)

≤ σ2F (2x)[1 + cσ1F (2x)]

≤ cσ2F (2x),

and using (2.6) one gets:

‖Ax‖1 ≤ A(x, x)σ1F (2x) + σ2F (2x) + ‖Ax‖1 σ1F (2x),

so

(2.10) ‖Ax‖1 ≤ c[σ2F (2x) + σ1F (2x)σF (2x)].

J. Inequal. Pure and Appl. Math., 4(4) Art. 69, 2003 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


4 A.G. RAMM

Let y = x in (1.4), then differentiate (1.4) with respect tox and get:

(2.11) Ȧ(x, x) = −2F ′(2x) + A(x, x)F (2x)−
∫ ∞

x

Ax(x, s)F (x+ s)ds

−
∫ ∞

x

A(x, s)F ′(s+ x)ds.

From (2.4), (2.5), (2.10) and (2.11) one gets:

(2.12) |Ȧ(x, x)| ≤ 2|F ′(2x)|+ cσ2
F (2x) + cσF (2x)[σ2F (2x) + σ1F (2x)σF (2x)]

+ cσF (2x)σ2F (2x).

Thus,

(2.13) x|Ȧ(x, x)| ∈ L1,

provided thatxF ′(2x) ∈ L1, xσ2
F (2x) ∈ L1, andxσF (2x)σ2F (2x) ∈ L1. Assumption (2.1)

implies xF ′(2x) ∈ L1. If σF (2x) ∈ L1, andσF (2x) > 0 decreases monotonically, then
xσF (x) → 0 asx→∞. Thusxσ2

F (2x) ∈ L1, andσ2F (2x) ∈ L1 because∫ ∞

0

dx

∫ ∞

x

|F ′(y)|dy =

∫ ∞

0

|F ′(y)|ydy <∞,

due to (2.1). Thus, (2.1) implies (2.4), (2.5), (2.8), (2.9), and (2.12), while (2.12) and (1.5)

imply q ∈ L̃1,1 whereL̃1,1 =
{
q : q = q,

∫∞
x0
x|q(x)|dx <∞

}
, andx0 ≥ 0 satisfies (2.3).

Let us assume now that (2.4), (2.5), (2.9), and (2.10) hold, whereσF ∈ L1 andσ2F ∈ L1 are
some positive monotone decaying functions (which have nothing to do now with the function
F , solving equation (1.4)), and derive estimates for this functionF . Let us rewrite (1.4) as:

(2.14) F (x+ y) +

∫ ∞

x

A(x, s)F (s+ y)ds = −A(x, y), y ≥ x ≥ 0.

Let x+ y = z, s+ y = v. Then,

(2.15) F (z) +

∫ ∞

z

A(x, v + x− z)F (v)dv = −A(x, z − x), z ≥ 2x.

From (2.15) one gets:

σF (2x) ≤ σA(x) + σF (2x) sup
z≥2x

∫ ∞

z

|A(x, v + x− z)|dv ≤ σA(x) + σF (2x) ‖A‖1 .

Thus, using (2.5) and (2.3), one obtains:

(2.16) σF (2x) ≤ cσA(x).

Also from (2.15) it follows that:

σ1F (2x) := ||F ||1 :=

∫ ∞

2x

|F (v)|dv(2.17)

≤
∫ ∞

2x

|A(x, z − x)|dz +

∫ ∞

2x

∫ ∞

z

|A(x, v + x− z)||F (v)|dvdz

≤ ‖A‖1 + ||F ||1 ‖A‖1 ,

so
σ1F (2x) ≤ cσ1A(x).
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From (2.6) one gets:

(2.18)
∫ ∞

x

|F ′(x+ y)|dy = σ2F (2x) ≤ cσA(x)σ1A(x) + ‖Ax‖+ c ‖Ax‖1 σ1A(x).

Let us summarize the results:

Theorem 2.1. If x ≥ x0 and (2.1) holds, then one has:

σA(x) ≤ cσF (2x), σ1A(x) ≤ cσ1F (2x), ||Ay||1 ≤ σ2F (2x)(1 + cσ1F (2x)),(2.19)

‖Ax‖1 ≤ c[σ2F (2x) + σ1F (2x)σF (2x)].

Conversely, ifx ≥ x0 and

(2.20) σA(x) + σ1A(x) + ‖Ax‖1 + ||Ay||1 <∞,

then

σF (2x) ≤ cσA(x), σ1F (2x) ≤ cσ1A(x),(2.21)

σ2F (x) ≤ c[σA(x)σ1A(x) + ‖Ax‖1 (1 + σ1A(x))].

In Section 3 we replace the assumptionx ≥ x0 > 0 by x ≥ 0. The argument in this case is
based on the Fredholm alternative. In [5] and [6] a characterization of the class of bounded and
unbounded Fredholm operators of index zero is given.

3. APPLICATIONS

First, let us givenecessary and sufficient conditions onS for q to belong to the classL1,1

of potentials. These conditions are known [2], [3] and [4], but we give a short new argument
using some ideas from [4]. We assume throughout that conditions A), B), and C) hold. These
conditions are known to be necessary forq ∈ L1,1. Indeed, conditions A) and B) are obvious,
and C) is proved in Theorems 2.1 and 3.3. Conditions A), B), and C) are also sufficient for
q ∈ L1,1. Indeed if they hold, then we prove that equation (1.4) has a unique solution inL1

x for
all x ≥ 0. This is a known fact [2], but we give a (new) proof because it is short. This proof
combines some ideas from [2] and [4].

Theorem 3.1. If A), B), and C) hold, then (1.4) has a solution inL1
x for anyx ≥ 0 and this

solution is unique.

Proof. SinceFx is compact inL1
x, ∀x ≥ 0, by the Fredholm alternative it is sufficient to prove

that

(3.1) (I + Fx)h = 0, h ∈ L1
x,

impliesh = 0. Let us prove it forx = 0. The proof is similar forx > 0. If h ∈ L1, thenh ∈ L∞
because‖h‖∞ ≤ ‖h‖L1 σF (0). If h ∈ L1 ∩ L∞, thenh ∈ L2 because‖h‖2

L2 ≤ ‖h‖L∞ ‖h‖L1.
Thus, ifh ∈ L1 and solves (3.1), thenh ∈ L2 ∩ L1 ∩ L∞.

Denoteh̃ =
∫∞

0
h(x)eikxdx, h ∈ L2. Then,

(3.2)
∫ ∞

−∞
h̃2dk = 0.
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6 A.G. RAMM

SinceF (x) is real-valued, one can assumeh to be real-valued. One has, using Parseval’s equa-
tion:

0 = ((I + F0)h, h) =
1

2π
‖h‖2 +

1

2π

∫ ∞

−∞
[1− S(k)]h̃2(k)dk +

J∑
j=1

sjh
2
j ,

hj :=

∫ ∞

0

e−kjxh(x)dx.

Thus, using (3.2), one gets

hj = 0, 1 ≤ j ≤ J, (h̃, h̃) = (S(k)h̃, h̃(−k)),

where we have used the real-valuedness ofh, i.e. h̃(−k) = h̃(k),∀k ∈ R.
Thus,(h̃, h̃) = (h̃, S(−k)h̃(−k)), where A) was used. Since‖S(−k)‖ = 1, one has‖h‖2 =∣∣∣(h̃, S(−k)h̃(−k))

∣∣∣ ≤ ‖h‖2, so the equality sign is attained in the Cauchy inequality. Therefore,

h̃(k) = S(−k)h̃(−k).
By condition B), the theory of Riemann problem (see [1]) guarantees existence and unique-

ness of an analytic inC+ := {k : =k > 0} function f(k) := f+(k), f(ikj) = 0, ḟ(ikj) 6=
0, 1 ≤ j ≤ J, f(∞) = 1, such that

(3.3) f+(k) = S(−k)f−(k), k ∈ R,

andf−(k) = f(−k) is analytic inC− := {k : Im k < 0}, f−(∞) = 1 in C−, f−(−ikj) =

0, ḟ−(−ikj) 6= 0. Here the propertyS(−k) = S−1(k), ∀k ∈ R is used.
One has

ψ(k) :=
h̃(k)

f(k)
=
h̃(−k)
f(−k)

, k ∈ R, hj = h̃(ikj) = 0, 1 ≤ j ≤ J.

The functionψ(k) is analytic inC+ andψ(−k) is analytic inC−, they agree onR, soψ(k) is
analytic inC. Sincef(∞) = 1 andh̃(∞) = 0, it follows thatψ ≡ 0.

Thus,h̃ = 0 and, consequently,h(x) = 0, as claimed. Theorem 3.1 is proved. �

The unique solution to equation (1.4) satisfies the estimates given in Theorem 2.1. In the
proof of Theorem 2.1 the estimatex|Ȧ(x, x)| ∈ L1(x0,∞) was established. So, by (1.5),
xq ∈ L1(x0,∞).

The method developed in Section 2 gives accurate information about the behavior ofq near
infinity. An immediate consequence of Theorems 2.1 and 3.1 is:

Theorem 3.2.If A), B), and C) hold, thenq, obtained by the scheme (1.3), belongs toL1,1(x0,∞).

Investigation of the behavior ofq(x) on(0, x0) requires additional argument. Instead of using
the contraction mapping principle and inequalities, as in Section 2, one has to use the Fredholm
theorem, which says that‖(I + Fx)

−1‖ ≤ c for anyx ≥ 0, where the operator norm is forFx

acting inLp
x, p = 1 andp = ∞, and the constantc does not depend onx ≥ 0.

Such an analysis yields:

Theorem 3.3. If and only if A), B), and C) hold, thenq ∈ L1,1.

Proof. It is sufficient to check that Theorem 2.1 holds withx ≥ 0 replacingx ≥ x0. To get
(2.4) withx0 = 0, one uses (1.4) and the estimate:

(3.4) ‖A(x, y)‖ ≤
∥∥(I + Fx)

−1
∥∥ ‖F (x+ y)‖ ≤ cσF (2x), ‖·‖ = sup

y≥x
|·| , x ≥ 0,
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where the constantc > 0 does not depend onx. Similarly:

(3.5) ‖A(x, y)‖1 ≤ c sup
s≥x

∫ ∞

x

|F (s+ y)|dy ≤ cσ1F (2x), x ≥ 0.

From (2.6) one gets:

||Ax(x, y)||1 ≤ c[||F ′(x+ y)||1 + A(x, x)||F (x+ y)||1](3.6)

≤ cσ2F (2x) + cσF (2x)σ1F (2x), x ≥ 0.

From (2.7) one gets:

(3.7) ||Ay(x, y)||1 ≤ c[σ2F (2x) + σ1F (2x)σ2F (2x)] ≤ σ2F (2x).

Similarly, from (2.11) and (3.3) – (3.6) one gets (2.12). Then one checks (2.13) as in the proof
of Theorem 2.1. Consequently Theorem 2.1 holds withx0 = 0. Theorem 3.3 is proved. �

4. COMPACTLY SUPPORTED POTENTIALS

In this section,necessary and sufficient conditions are given forq to belong to the class

La
1,1 :=

{
q : q = q, q = 0 if x > a,

∫ a

0

x|q|dx <∞
}
.

Recall that the Jost solution is:

(4.1) f(x, k) = eikx +

∫ ∞

x

A(x, y)eikydy, f(0, k) := f(k).

Lemma 4.1. If q ∈ La
1,1, thenf(x, k) = eikx for x > a, A(x, y) = 0 for y ≥ x ≥ a,

F (x+ y) = 0 for y ≥ x ≥ a (cf. (1.4)), andF (x) = 0 for x ≥ 2a.

Thus, (1.4) withx = 0 yieldsA(0, y) := A(y) = 0 for x ≥ 2a. The Jost function

(4.2) f(k) = 1 +

∫ 2a

0

A(y)eikydy, A(y) ∈ W 1,1(0, a),

is an entire function of exponential type≤ 2a, that is,|f(k)| ≤ ce2a|k|, k ∈ C, andS(k) =
f(−k)/f(k) is a meromorphic function inC. In (4.2) W l,p is the Sobolev space, and the
inclusion (4.2) follows from Theorem 2.1.

Let us formulate the assumption D):
D) the Jost functionf(k) is an entire function of exponential type≤ 2a.

Theorem 4.2. Assume A),B), C) and D). Thenq ∈ La
1,1. Conversely, ifq ∈ La

1,1, then A),B), C)
and D) hold.

Proof. Necessity.If q ∈ L1,1, then A), B) and C) hold by Theorem 3.3, and D) is proved in
Lemma 4.1. The necessity is proved.
Sufficiency.If A), B) and C) hold, thenq ∈ L1,1. One has to prove thatq = 0 for x > a. If D)
holds, then from the proof of Lemma 4.1 it follows thatA(y) = 0 for y ≥ 2a.

We claim thatF (x) = 0 for x ≥ 2a.
If this is proved, then (1.4) yieldsA(x, y) = 0 for y ≥ x ≥ a, and soq = 0 for x > a by

(1.5).
Let us prove the claim.
Takex > 2a in (1.2). The function1 − S(k) is analytic inC+ except forJ simple poles at

the pointsikj. If x > 2a then one can use the Jordan lemma and residue theorem to obtain:

(4.3) FS(x) =
1

2π

∫ ∞

−∞
[1− S(k)]eikxdk = −i

J∑
j=1

f(−ikj)

ḟ(ikj)
e−kjx, x > 2a.
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Sincef(k) is entire, the Wronskian formula

f ′(0, k)f(−k)− f ′(0,−k)f(k) = 2ik

is valid onC, and atk = ikj it yields:

f ′(0, ikj)f(−ikj) = −2kj,

becausef(ikj) = 0. This and (4.3) yield

Fs(x) =
J∑

j=1

2ikj

f ′(0, ikj)ḟ(ikj)
e−kjx = −

J∑
j=1

sje
−kjx = −Fd(x), x > 2a.

Thus,F (x) = Fs(x) + Fd(x) = 0 for x > 2a. The sufficiency is proved.
Theorem 4.2 is proved. �

In [2] a condition onS, which guarantees thatq = 0 for x > a, is given under the assumption
that there is no discrete spectrum, that isF = Fs.

5. SQUARE I NTEGRABLE POTENTIALS

Let us introduce conditions (5.1) – (5.3):

(5.1) 2ik

[
f(k)− 1 +

Q

2ik

]
∈ L2(R+) := L2, Q :=

∫ ∞

0

qds,

(5.2) k

[
1− S(k) +

Q

ik

]
∈ L2,

(5.3) k[|f(k)|2 − 1] ∈ L2.

Theorem 5.1. If A), B), C), and any one of the conditions (5.1) – (5.3) hold, thenq ∈ L2.

Proof. We refer to [3] for the proof. �

6. I NVERTIBILITY OF THE STEPS IN THE I NVERSION PROCEDURE

We assume A), B), and C) and prove:

Theorem 6.1.The steps in (1.3) are invertible:

(6.1) S ⇐⇒ F ⇐⇒ A⇐⇒ q.

Proof.

(1) StepS ⇒ F is done by formula (1.2). StepF ⇒ S is done by takingx → −∞ in
(1.2). The asymptotics ofF (x), asx → −∞, yieldsJ, sj, kj, 1 ≤ j ≤ J , that is,
Fd(x). ThenFs = F −Fd is calculated, and1−S(k) is calculated by taking the inverse
Fourier transform ofFs(x). Thus,

(2) StepF ⇒ A is done by solving (1.4), which has one and only one solution inL1
x for

anyx ≥ 0 by Theorem 3.1. StepA ⇒ F is done by solving equation (1.4) forF . Let
x+ y = z ands+ y = v. Write (1.4) as

(6.2) (I +B)F := F (z) +

∫ ∞

z

A(x, v + x− z)F (v)dv = −A(x, z − x), z ≥ 2x ≥ 0.
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The norm of the integral operatorB in L1
2x is estimated as follows:

||B|| ≤ sup
v>0

∫ v

0

|A(x, v + x− z)|dz(6.3)

≤ c sup
v>0

∫ v

0

σ

(
x+

v − z

2

)
dz

≤ 2

∫ ∞

0

σ(x+ w)dw = 2

∫ ∞

x

σ(t)dt,

where the known estimate [2] was used:|A(x, y)| ≤ cσ
(

x+y
2

)
, σ(x) :=

∫∞
x
|q|dt.

It follows from (6.3) that||B|| < 1 if x > x0, wherex0 is large enough. Indeed,∫∞
x
σ(s)ds→ 0 asx→∞ if q ∈ L1,1. Therefore, forx > x0 equation (6.2) is uniquely

solvable inL1
2x0

by the contraction mapping principle.
(3) StepA⇒ q is done by formula (1.5). Stepq ⇒ A is done by solving the known Volterra

equation (see [2] or [3]):

(6.4) A(x, y) =
1

2

∫ ∞

x+y
2

q(t)dt+

∫ ∞

x+y
2

ds

∫ y−x
2

0

dtq(s− t)A(s− t, s+ t).

Thus, Theorem 6.1 is proved.
�

Note that Theorem 6.1 implies that if one starts with aq ∈ L1,1, computes the scattering data
(1.1) corresponding to thisq, and uses the inversion scheme (1.3), then the potential obtained
by the formula (1.5) is equal to the original potentialq.

If F (z) is known forx ≥ 2x0, then (6.2) can be written as a Volterra equation with a finite
region of integration.

(6.5) F (z) +

∫ 2x0

z

A(x, v + x− z)F (v)dv = −A(x, z − x)−
∫ ∞

2x0

A(x, v + x− z)F (v)dv,

where the right-hand side in (6.5) is known. This Volterra integral equation on the interval
z ∈ (0, 2x0) is uniquely solvable by iterations. Thus,F (z) is uniquely determined on(0, 2x0),
and, consequently, on(0,∞).
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