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ABSTRACT. We define an approximate Birkhoff orthogonality relation in a normed space. We
compare it with the one given by S.S. Dragomir and establish some properties of it. In particular,
we show that in smooth spaces it is equivalent to the approximate orthogonality stemming from
the semi-inner-product.
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1. I NTRODUCTION

In an inner product space, with the standard orthogonality relation⊥, one can consider the
approximate orthogonality defined by:

x⊥ε y ⇔ | 〈x|y〉 | ≤ ε ‖x‖ ‖y‖ .

( | cos(x, y)| ≤ ε for x, y 6= 0).
The notion of orthogonality in an arbitrary normed space, with the norm not necessarily

coming from an inner product, may be introduced in various ways. One of the possibilities is
the following definition introduced by Birkhoff [1] (cf. also James [6]). LetX be a normed
space over the fieldK ∈ {R, C}; then forx, y ∈ X

x⊥By ⇐⇒ ∀λ ∈ K : ‖x + λy‖ ≥ ‖x‖ .

We call the relation⊥B, aBirkhoff orthogonality(often called a Birkhoff-James orthogonality).
Our aim is to define an approximate Birkhoff orthogonality generalizing the⊥ε one. Such a

definition was given in [3]:

(1.1) x⊥
ε

By ⇐⇒ ∀λ ∈ K : ‖x + λy‖ ≥ (1− ε) ‖x‖ .

We are going to give another definition of this concept.
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2 JACEK CHMIELI ŃSKI

2. BIRKHOFF APPROXIMATE ORTHOGONALITY

Let us define anapproximate Birkhoff orthogonality. Forε ∈ [0, 1):

(2.1) x⊥ε
By ⇐⇒ ∀λ ∈ K : ‖x + λy‖2 ≥ ‖x‖2 − 2ε ‖x‖ ‖λy‖ .

If the above holds, we say thatx is ε-Birkhoff orthogonal toy.
Note, that the relation⊥ε

B is homogeneous, i.e.,x⊥ε
By impliesαx⊥ε

Bβy (for arbitraryα, β ∈
K). Indeed, for anyλ ∈ K we have (excluding the obvious caseα = 0)

‖αx + λβy‖2 = |α|2
∥∥∥∥x + λ

β

α
y

∥∥∥∥2

≥ |α|2
(
‖x‖2 − 2ε ‖x‖

∥∥∥∥λ
β

α
y

∥∥∥∥)
= ‖αx‖2 − 2ε‖αx‖‖λβy‖.

Proposition 2.1. If X is an inner product space then, for arbitraryε ∈ [0, 1),

x⊥ε y ⇐⇒ x⊥ε
By.

We omit the proof – a more general result will be proved later (Theorem 3.3). As a corollary,
for ε = 0, we obtain the well known fact:x⊥By ⇔ x⊥y (in an inner product space).

Let us modify slightly the definition of Dragomir (1.1). Replacing1 − ε by
√

1− ε2 we
obtain:

x⊥ε
Dy ⇐⇒ ∀λ ∈ K : ‖x + λy‖ ≥

√
1− ε2 ‖x‖ .

Thusx⊥ε
Dy ⇔ x⊥

ρ By with ρ = ρ(ε) = 1−
√

1− ε2.
Then, for inner product spaces we have:

x⊥ε
Dy ⇐⇒ x⊥ε y

(see [3, Proposition 1]).
T. Szostok [10], considering a generalization of the sine function introduced, for a real

normed spaceX, the mapping:

s(x, y) =

 infλ∈R
‖x+λy‖
‖x‖ , for x ∈ X \ {0};

1, for x = 0.

It is easily seen thatx⊥By ⇔ s(x, y) = 1. It is also apparent thatx⊥ε
Dy ⇔ s(x, y) ≥√

1− ε2. Definingc(x, y) := ±
√

1− s2(x, y) (generalized cosine) one getsx⊥ε
Dy ⇔ |c(x, y)|

≤ ε.
Let us compare the approximate orthogonalities⊥ε

D and⊥ε
B. In an inner product space both

of them are equal toε-orthogonality⊥ε . Thus one may ask if they are equal in an arbitrary
normed space. This is not true. Moreover, neither⊥ε

B ⊂ ⊥ε
D nor⊥ε

D ⊂ ⊥ε
B holds generally (i.e.,

for an arbitrary normed space and allε ∈ [0, 1)). For, considerX = R2 (overR) equipped with
themaximumnorm‖(x1, x2)‖ := max{|x1|, |x2|}. Now, letx = (1, 0), y =

(
1
2
, 1

)
, ε = 1

2
. One

can verify thatx⊥ε
By (i.e., that

(
max

{∣∣1 + λ
2

∣∣ , |λ|
})2 ≥ 1− |λ| holds for eachλ ∈ R) but not

x⊥ε
Dy (takeλ = −2

3
). Thus⊥ε

B 6⊂ ⊥ε
D.

On the other hand, forx =
(
1, 1

2

)
, y = (1, 0), ε =

√
3

2
we have

(
max{|1 + λ|, 1

2
}
)2 ≥

1−
(√

3
2

)2

, i.e.,x⊥ε
Dy but notx⊥ε

By (consider, for example,λ =
√

3
2
− 1). Thus⊥ε

D 6⊂ ⊥ε
B.

See also Remark 4.1 for further comparison of⊥ε
B and⊥ε

D.
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ON AN ε-BIRKHOFF ORTHOGONALITY 3

3. SEMI –INNER –PRODUCT (APPROXIMATE ) ORTHOGONALITY

Let X be a normed space overK ∈ {R, C}. The norm inX need not come from an inner
product. However, (cf. G. Lumer [7] and J.R. Giles [5]) there exists a mapping[·|·] : X ×X →
K satisfying the following properties:

(s1) [λx + µy|z] = λ [x|z] + µ [y|z] , x, y, z ∈ X, λ, µ ∈ K;

(s2) [x|λy] = λ [x|y] , x, y ∈ X, λ ∈ K;

(s3) [x|x] = ‖x‖2 , x ∈ X;

(s4) | [x|y] | ≤ ‖x‖ · ‖y‖ , x, y ∈ X.

(Cf. also [4].) We will call each mapping[·|·] satisfying (s1)–(s4) asemi-inner-product(s.i.p.)
in a normed spaceX. Let us stress that we assume that a s.i.p. generates the given norm inX
(i.e., (s3) is satisfied). Note, that there may exist infinitely many different semi-inner-products
in X. There is a unique s.i.p. inX if and only if X is smooth (i.e., there is a unique supporting
hyperplane at each point of the unit sphereS or, equivalently, the norm is Gâteaux differentiable
onS – cf. [2, 4]). If X is an inner product space, the only s.i.p. onX is the inner-product itself
([7, Theorem 3]).

We say that s.i.p. iscontinuousiff Re [y|x + λy] → Re [y|x] asR 3 λ → 0 for all x, y ∈ S.
The continuity of s.i.p is equivalent to the smoothness ofX (cf. [5, Theorem 3] or [4]). It
follows also in that case (see the proof of Theorem 3 in [5]):

(3.1) lim
λ→0
λ∈R

‖x + λy‖ − 1

λ
= Re [y|x] , x, y ∈ S.

Extending previous notations we definesemi-orthogonalityandapproximate semi-orthogo-
nality:

x⊥sy ⇔ [y|x] = 0;

x⊥ε
sy ⇔ | [y|x] | ≤ ε ‖x‖ · ‖y‖ ,

for x, y ∈ X and0 ≤ ε < 1.
Obviously, for an inner–product space:⊥s = ⊥ and⊥ε

s = ⊥ε.

Proposition 3.1. For x, y ∈ X, if x⊥ε
sy, thenx⊥ε

By (i.e.,⊥ε
s ⊂ ⊥ε

B).

Proof. Suppose thatx⊥ε
sy, i.e., | [y|x] | ≤ ε ‖x‖ · ‖y‖. Then, for someθ ∈ [0, 1] and for some

ϕ ∈ [−π, π] we have:

[y|x] = θε ‖x‖ · ‖y‖ · eiϕ.

For arbitraryλ ∈ K we have:

‖x + λy‖ · ‖x‖ ≥ | [x + λy|x] |
=

∣∣‖x‖2 + λ [y|x]
∣∣

=
∣∣‖x‖2 + θε ‖x‖ · ‖y‖ · λ · eiϕ

∣∣
whence

‖x + λy‖ ≥
∣∣‖x‖+ θε ‖y‖ · λ · eiϕ

∣∣
=

∣∣‖x‖+ θε ‖y‖Re
(
λeiϕ

)
+ iθε ‖y‖ Im

(
λeiϕ

)∣∣ .
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Therefore

‖x + λy‖2 ≥
(
‖x‖+ θε ‖y‖Re

(
λeiϕ

))2
+

(
θε ‖y‖ Im

(
λeiϕ

))2

= ‖x‖2 + 2θε ‖x‖ ‖y‖Re
(
λeiϕ

)
+ θ2ε2 ‖y‖2

((
Re

(
λeiϕ

))2
+

(
Im

(
λeiϕ

))2
)

= ‖x‖2 + 2θε ‖x‖ ‖y‖Re
(
λeiϕ

)
+ θ2ε2 ‖λy‖2

≥ ‖x‖2 + 2θε ‖x‖ ‖y‖Re
(
λeiϕ

)
≥ ‖x‖2 + 2θε ‖x‖ ‖y‖

(
−

∣∣λeiϕ
∣∣)

= ‖x‖2 − 2θε ‖x‖ ‖λy‖
≥ ‖x‖2 − 2ε ‖x‖ ‖λy‖ ,

i.e.,x⊥ε
By. �

Since| [y|x] | ≤ ‖x‖ ‖y‖, i.e.,x⊥1
sy for arbitraryx, y, the above result gives alsox⊥1

By for
all x, y. That is the reason we restrictε to the interval[0, 1).

Proposition 3.2. If X is a continuous s.i.p. space andε ∈ [0, 1), then⊥ε
B ⊂ ⊥ε

s.

Proof. Suppose thatx⊥ε
By. Because of the homogeneity of relations⊥ε

B and⊥ε
s we may assume,

without loss of generality, thatx, y ∈ S. Then, for arbitraryλ ∈ K we have:

0 ≤ ‖x + λy‖2 − 1 + 2ε |λ| = [x|x + λy] + [λy|x + λy]− 1 + 2ε |λ| .
Therefore

0 ≤ Re [x|x + λy] + Re [λy|x + λy]− 1 + 2ε |λ|
≤ |[x|x + λy]|+ Re [λy|x + λy]− 1 + 2ε |λ|
≤ ‖x + λy‖+ Re [λy|x + λy]− 1 + 2ε |λ|

whence

(3.2) Re [λy|x + λy] + ‖x + λy‖ − 1 ≥ −2ε |λ| , for all λ ∈ K.

Let λ0 ∈ K \ {0}, n ∈ N andλ = λ0

n
. Then from (3.2) we have

Re

[
λ0

n
y|x +

λ0

n
y

]
+

∥∥∥∥x +
λ0

n
y

∥∥∥∥− 1 ≥ −2ε
|λ0|
n

;

Re

[
λ0

|λ0|
y|x +

|λ0|
n

λ0

|λ0|
y

]
+

∥∥∥x + |λ0|
n

λ0

|λ0|y
∥∥∥− 1

|λ0|
n

≥ −2ε.

Puttingy′ := λ0

|λ0|y ∈ S, ξn := |λ0|
n

∈ R (ξn → 0 asn → ∞) we obtain from the above
inequality

Re [y′|x + ξny
′] +

‖x + ξny
′‖ − 1

ξn

≥ −2ε.

Lettingn →∞, using continuity of the s.i.p. and (3.1)

Re [y′|x] + Re [y′|x] ≥ −2ε

whence
Re [λ0y|x] ≥ −ε|λ0|.

Putting−λ0 in the place ofλ0 we obtainRe [λ0y|x] ≤ ε|λ0| whence

|Re [λ0y|x]| ≤ ε|λ0| for arbitraryλ0 ∈ K.
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Now, takingλ0 = [y|x] we get ∣∣∣Re
[
[y|x]y|x

]∣∣∣ ≤ ε| [y|x] |

whence| [y|x] |2 ≤ ε| [y|x] | and finally| [y|x] | ≤ ε, i.e.,x⊥ε
sy. �

Without the additional continuity assumption, the inclusion⊥ε
B ⊂ ⊥ε

s need not hold.

Example 3.1.Consider the spacel1 (with the norm‖x‖ =
∑∞

i=1 |xi| for x = (x1, x2, . . .) ∈ l1).
Define

[x|y] := ‖y‖
∞∑
i=1

yi 6=0

xiyi

|yi|
, x, y ∈ l1

— a semi-inner-product inl1. Let ε ∈ [0,
√

2− 1) and letx = (1, 0, 0, . . .), y = (1, 1, ε, 0, . . .).
Then, for an arbitraryλ ∈ K:

‖x + λy‖2 − ‖x‖2 + 2ε ‖x‖ ‖λy‖ = (|1 + λ|+ |λ|+ |λε|)2 − 1 + 2ε(2 + ε) |λ|
≥ (1 + |λ| ε)2 − 1 + 2ε(2 + ε) |λ|
= 2ε(3 + ε) |λ|+ |λ|2 ε2

≥ 0,

i.e.,x⊥ε
By (in fact,x⊥By). On the other hand,

[y|x] = 1 =
1

2 + ε
‖x‖ ‖y‖ > ε ‖x‖ ‖y‖

whence¬(x⊥ε
sy). In particular, forε = 0, this shows that⊥B 6⊂ ⊥s (cf. [4, 8, 9]).

From the last two propositions we have:

Theorem 3.3. If X is a continuous s.i.p. space, then

⊥ε
B = ⊥ε

s.

Moreover we obtain, forε = 0, (cf. [5, Theorem 2])

Corollary 3.4. If X is a continuous s.i.p. space, then

⊥B = ⊥s.

Conversely,⊥B ⊂ ⊥s implies continuity of s.i.p. (smoothness) – cf. [4] and [8].

4. SOME REMARKS

Remark 4.1. Dragomir [3, Definition 5] introduces the following concept: The s.i.p.[·|·] is of
(APP)-type if there exists a mappingη : [0, 1) → [0, 1) such thatη(ε) = 0 ⇔ ε = 0 and
x⊥η(ε)

D y impliesx⊥ε
sy for all ε ∈ [0, 1). It follows from Proposition 3.1 that in that case we have

also

(4.1) x⊥η(ε)
D y ⇒ x⊥ε

By

for all ε ∈ [0, 1).

It follows from [3, Lemma 1] that for a closed, proper linear subspaceG of a normed space
X and for an arbitraryε ∈ (0, 1), the setG⊥

ε
D of all vectors⊥ε

D-orthogonal toG is nonzero.
Using (4.1) we get

(4.2) G⊥
η(ε)
D ⊂ G⊥

ε
B .

Therefore, we have
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Lemma 4.2. If X is a normed space with the s.i.p.[·|·] of the (APP)-type, then for an arbitrary

proper and closed linear subspaceG and an arbitraryε ∈ [0, 1) the setG⊥
ε
B of all vectors

ε-Birkhoff orthogonal toG is nonzero.

We have also

Theorem 4.3.If X is a normed space with the s.i.p.[·|·] of the (APP)-type, then for an arbitrary
closed linear subspaceG and an arbitraryε ∈ [0, 1) the following decomposition holds:

X = G + G⊥
ε
B .

Proof. Fix G andε ∈ [0, 1). It follows from [3, Theorem 3] that

X = G + G⊥
η(ε)
D .

Using (4.2) we get the assertion. �

The final example shows that the set of allε-orthogonal vectors may be equal to the set of all
orthogonal ones.

Example 4.1. Consider again the spacel1 with the s.i.p. defined above. Lete = (1, 0, . . .).
Observe that vectorsε-orthogonal toe are, in fact, orthogonal toe:

(4.3) x⊥ε
Be ⇒ x⊥Be.

Indeed, letε ∈ [0, 1) be fixed and letx = (x1, x2, . . .) ∈ l1 satisfyx⊥ε
Be. Because of the

homogeneity of⊥ε
B we may assume, without loss of generality, that‖x‖ = 1 andx1 ≥ 0. Thus

we have

∀λ ∈ K : ‖x + λe‖2 ≥ 1− 2ε |λ| .

Therefore

∀λ ∈ K : (|x1 + λ|+ 1− x1)
2 ≥ 1− 2ε |λ| .

Suppose thatx1 > 0. Takeλ ∈ R such thatλ < 0, λ > −x1 andλ > −2(1− ε). Then we have

(x1 + λ + 1− x1)
2 ≥ 1 + 2ελ,

which leads toλ ≤ −2(1 − ε) – a contradiction. Thusx1 = 0, i.e, x = (0, x2, x3, . . .) and
|x2|+ |x3|+ · · · = 1. This yields, for arbitraryλ ∈ K,

‖x + λe‖ = |λ|+ 1 ≥ 1 = ‖x‖ ,

i.e.,x⊥Be. It follows from (4.3) that forG := lin e we have

G⊥
ε
B = G⊥B .

Note, that the implicatione⊥ε
Bx ⇒ e⊥Bx is not true. Take for examplex =

(
3
4
, 1

4
, 0, . . .

)
.

Then [x|e] = 3
4
‖e‖ ‖x‖, i.e, e⊥

3
4
sx, whence (Proposition 3.1)e⊥

3
4
Bx. On the other hand, for

λ = −5
3

one has

‖e + λx‖ =
2

3
< 1 = ‖e‖,

i.e.,¬(e⊥Bx).
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