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ABSTRACT. In this paper, we prove that the classical Entropy Power Inequality, as derived in
the continuous case, can be extended to the discrete family of binomial random variables with
parameter1/2.
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1. I NTRODUCTION

The continuous Entropy Power Inequality

(1.1) e2h(X) + e2h(Y ) ≤ e2h(X+Y )

was first stated by Shannon [1] and later proved by Stam [2] and Blachman [3]. Later, several
related inequalities for continuous variables were proved in [4], [5] and [6]. There have been
several attempts to provide discrete versions of the Entropy Power Inequality: in the case of
Bernoulli sources with addition modulo 2, results have been obtained in a series of papers [7],
[8], [9] and [11].

In general, inequality (1.1) does not hold whenX andY are discrete random variables and
the differential entropy is replaced by the discrete entropy: a simple counterexample is provided
whenX andY are deterministic.
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In what follows,Xn ∼ B
(
n, 1

2

)
denotes a binomial random variable with parametersn and

1
2
, and we prove our main theorem:

Theorem 1.1.The sequenceXn satisfies the following Entropy Power Inequality

∀m, n ≥ 1, e2H(Xn) + e2H(Xm) ≤ e2H(Xn+Xm).

With this aim in mind, we use a characterization of the superadditivity of a function, together
with an entropic inequality.

2. SUPERADDITIVITY

Definition 2.1. A functionn y Yn is superadditive if

∀m, n Ym+n ≥ Ym + Yn.

A sufficient condition for superadditivity is given by the following result.

Proposition 2.1. If Yn

n
is increasing, thenYn is superadditive.

Proof. Takem andn and supposem ≥ n. Then by assumption

Ym+n

m + n
≥ Ym

m
or

Ym+n ≥ Ym +
n

m
Ym.

However, by the hypothesism ≥ n
Ym

m
≥ Yn

n
so that

Ym+n ≥ Ym + Yn.

�

In order to prove that the function

(2.1) Yn = e2H(Xn)

is superadditive, it suffices then to show that functionn y Yn

n
is increasing.

3. AN I NFORMATION THEORETIC I NEQUALITY

Denote asB ∼ Ber (1/2) a Bernoulli random variable so that

(3.1) Xn+1 = Xn + B

and

(3.2) PXn+1 = PXn ∗ PB =
1

2
(PXn + PXn+1) ,

wherePXn = {pn
k} denotes the probability law ofXn with

(3.3) pn
k = 2−n

(
n

k

)
.

A direct application of an equality by Topsøe [12] yields

(3.4) H
(
PXn+1

)
=

1

2
H (PXn+1) +

1

2
H (PXn) +

1

2
D

(
PXn+1||PXn+1

)
+

1

2
D

(
PXn||PXn+1

)
.
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Introduce the Jensen-Shannon divergence

(3.5) JSD (P, Q) =
1

2
D

(
P

∥∥∥∥P + Q

2

)
+

1

2
D

(
Q

∥∥∥∥P + Q

2

)
and remark that

(3.6) H (PXn) = H (PXn+1) ,

since each distribution is a shifted version of the other. We conclude thus that

(3.7) H
(
PXn+1

)
= H (PXn) + JSD (PXn+1, PXn) ,

showing that the entropy of a binomial law is an increasing function ofn. Now we need the
stronger result thatYn

n
is an increasing sequence, or equivalently that

(3.8) log
Yn+1

n + 1
≥ log

Yn

n
or

(3.9) JSD (PXn+1, PXn) ≥ 1

2
log

n + 1

n
.

We use the following expansion of the Jensen-Shannon divergence, due to B.Y. Ryabko and
reported in [13].

Lemma 3.1. The Jensen-Shannon divergence can be expanded as follows

JSD (P, Q) =
1

2

∞∑
ν=1

1

2ν (2ν − 1)
∆ν (P, Q)

with

∆ν (P, Q) =
n∑

i=1

|pi − qi|2ν

(pi + qi)
2ν−1 .

This lemma, applied in the particular case whereP = PXn and Q = PXn+1 yields the
following result.

Lemma 3.2. The Jensen-Shannon divergence betweenPXn+1 andPXn can be expressed as

JSD (PXn+1, PXn) =
∞∑

ν=1

1

ν (2ν − 1)
· 22ν−1

(n + 1)2ν m2ν

(
B

(
n + 1,

1

2

))
,

wherem2ν

(
B

(
n + 1, 1

2

))
denotes the order2ν central moment of a binomial random variable

B
(
n + 1, 1

2

)
.

Proof. DenoteP = pi, Q = p+
i andp̄i = (pi + p+

i )/2. For the term∆ν (PXn+1, PXn) we have

∆ν (PXn+1, PXn) =
n∑

i=1

∣∣p+
i − pi

∣∣2ν(
p+

i + pi

)2ν−1

= 2
n∑

i=1

(
p+

i − pi

p+
i + pi

)2ν

p̄i

and

p+
i − pi

p+
i + pi

=
2−n

(
n

i−1

)
− 2−n

(
n
i

)
2−n

(
n

i−1

)
+ 2−n

(
n
i

)
=

2i− n− 1

n + 1
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so that

∆ν (PXn+1, PXn) = 2
n∑

i=1

(
2i− n− 1

n + 1

)2ν

p̄i

= 2

(
2

n + 1

)2ν n∑
i=1

(
i− n + 1

2

)2ν

p̄i

=
22ν+1

(n + 1)2ν m2ν

(
B

(
n + 1,

1

2

))
.

Finally, the Jensen-Shannon divergence becomes

JSD (PXn+1, PXn) =
1

4

+∞∑
ν=1

1

ν (2ν − 1)
∆ν (PXn+1, PXn)

=
+∞∑
ν=1

1

ν (2ν − 1)
· 22ν−1

(n + 1)2ν m2ν

(
B

(
n + 1,

1

2

))
.

�

4. PROOF OF THE M AIN THEOREM

We are now in a position to show that the functionn y Yn

n
is increasing, or equivalently that

inequality (3.9) holds.

Proof. We remark that it suffices to prove the following inequality

(4.1)
3∑

ν=1

1

ν (2ν − 1)
· 22ν−1

(n + 1)2ν m2ν

(
B

(
n + 1,

1

2

))
≥ 1

2
log

(
1 +

1

n

)
since the termsν > 3 in the expansion of the Jensen-Shannon divergence are all non-negative.
Now an explicit computation of the three first even central moments of a binomial random
variable with parametersn + 1 and 1

2
yields

m2 =
n + 1

4
, m4 =

(n + 1) (3n + 1)

16
and m6 =

(n + 1) (15n2 + 1)

64
,

so that inequality (4.1) becomes

1

60

30n4 + 135n3 + 245n2 + 145n + 37

(n + 1)5 ≥ 1

2
log

(
1 +

1

n

)
.

Let us now upper-bound the right hand side as follows

log

(
1 +

1

n

)
≤ 1

n
− 1

2n2
+

1

3n3

so that it suffices to prove that

1

60
· 30n4 + 135n3 + 245n2 + 145n + 37

(n + 1)5 − 1

2

(
1

n
− 1

2n2
+

1

3n3

)
≥ 0.

Rearranging the terms yields the equivalent inequality

1

60
· 10n5 − 55n4 − 63n3 − 55n2 − 35n− 10

(n + 1)5 n3
≥ 0

which is equivalent to the positivity of polynomial

P (n) = 10n5 − 55n4 − 63n3 − 55n2 − 35n− 10.
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Assuming first thatn ≥ 7, we remark that

P (n) ≥ 10n5 − n4

(
55 +

63

6
+

55

62
+

35

63
+

10

64

)
=

(
10n− 5443

81

)
n4

whose positivity is ensured as soon asn ≥ 7.
This result can be extended to the values1 ≤ n ≤ 6 by a direct inspection at the values of

functionn y Yn

n
as given in the following table.

n 1 2 3 4 5 6
e2H(Xn)

n
4 4 4.105 4.173 4.212 4.233

Table 4.1: Values of the functionn y Yn

n for 1 ≤ n ≤ 6.

�
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