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Abstract

Forany a := (ay,as,...,a,) € (RT)", we establish inequalities between the two
homogeneous polynomials AP,(z,t) == (z+ait)(z+agt) - - (x4 ayt) — 2™ and
Sa(z,y) = a1z ' + aga" 2y + - + a,y" ' in the positive orthant z,y, ¢ € R
Conditions for AP, (z,t) < tSa(z,y) yield a new proof and broad generalization
of the number theoretic inequality that for base b > 2 the sum of all nonempty
products of digits of any m € Z* never exceeds m, and equality holds exactly
when all auxiliary digits are b — 1. Links with an inequality of Bernoulli are also
noted. When n > 2 and a is strictly positive, the surface AP, (z,t) = tSa(z,y)
lies between the planes y = x+tmax{a; : 1 <7 <n-1}and y = z+tmin{a; :
1 <i<n-1}. Forfixed t € RT, we explicitly determine functions a, 3,7, 0
of a such that this surface is y = = + at + 8?21 + O(z7?) as # — oo, and
y=nt+ox+0(x?)asz —0+.
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For any finite sequence of real numbardet I1a be the product of all terms in
a, and let7’(a), thetotal sum of productsf a, be the sum of all producisx as
x runs through the nonempty subsequencésa. Thus

T(a):=>{llx:x Ca,x # w},

wherew is the empty sequence. As usual we observe the conventionthat
_1. There is a rather surprisi_ng inequalit_y wh_iiﬂ(na) must satisfy in the case of A Polynomial Inequality
integer sequences. In particular, for given intedees 2 andm > 0, leta be Generalising an Integer

the sequence of digits in the baseepresentation af.. Then Inequality
R B. Egglet d
T(a) <m “William P. Galvin

holds for every such integern and basé, as shown inf]. Moreover the in-

equality is sharp7'(a) = m holds precisely when the auxiliary digits of, if Title Page
any, are alb — 1. (Theleadingdigit of n is the most significant digit; the less i
significant digits, if any, are itauxiliary digits.) For example
44 44
T(3,7,7) = 255 < 377, > S
where377;) is the basé representation ofn = 255, 313,377,447, ... when E———
b=8,9,10,11,.... We also note in passing thatifis the basé digit sequence
of m thenT'(a) is odd precisely when at least one of the digitsofs odd. Close
Our main purpose in this paper is to show that the integer inequality just Quit
described is an instance of a much more general inequality between polynomi- Page 3 of 21
age 30

als. We shall establish the polynomial inequality and investigate some of its
properties.
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Let a be any nonempty finite sequence of real numbers, say

a:= (ay,as,...,a,) € R" with n > 1.

With a we associate two homogeneous polynomials in two real variables, the
productpolynomial

n

- L _ A Polynomial Inequality
Pa(x’ t) T (:L’ + alt) (J} + a2t) (:L’ + a”t) - H(I + aTt)’ Generalising an Integer
r=1 Inequality
and thesumpolynomial Roger B. Eggleton and

William P. Galvin
n

Salz,y) == a12" ' +ax" Py 4 Fayt = Z apx™ "y L

r=1 Title Page
Here we shall study these polynomials whea (R*)", whereR* := {z € Contents
R : x > 0}. Itturns out that it is natural to compatrémes the sum polynomial << Y3
with the first difference of the product polynomial, P >
APy(x,t) := Pa(x,t) — Pa(x,0) = Pa(x,t) — 2" Go Back
Note thattS,(x,y) andA P,(x, t) are both homogeneous of degree Close
With a we also associate two bounds when 2: Quit
M(a) :==max{a,: 1 <r<n-1} Page 4 of 21

and m(a) := min{a, : 1 <r <n—1}.
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Theorem 2.1. For any finite nonnegative sequente (R*)” withn > 1, the

inequality
0 < APa(x,t) < tSa(z,y)

holds for all z,y,t € R*, providedy > x + tM(a) if n > 2. The reverse

inequality
AP,(x,t) > tSa(z,y) >0

holds for allz, y,t € RT, providedy < x + tm(a) if n > 2.

Proof. An easy induction om establishes the identity

n n r—1
Pu(z,t) =[x+ at) =2+ aa" "t [[(z + ast)
r=1 s=1

r=1
Forxz,t € R™ we haver + a,t > 0 for eachs, so

r—1

0< [ +at) <y

s=1

holds trivially if » = 1, and forr > 2 it certainly holds if

y>max{r+asd:1<s<r—1}=xz+t max{as;: 1 <s<r—1}

Because each. € R, it follows for z,t € R* that

0 < AP,(x,t) = Pa(x,t) — 2"
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r—1

=t zn: a, 2" [ (@ + a.t)
r=1

s=1

< tz a, 2" "yt = tSa(x, y)

r=1

holds trivially if » = 1, and forn > 2 it holds ify > = + tM(a). An entirely
similar argument establishes the reverse inequality in the theorem. O

: A Polynomial Inequalit
Let us define " Generalising an Integer
E(a) — Z a,. Inequality
r=1 Roge_r B Eggleton_ and
If ac (R+)” andn > 2 then William P. Galvin
0 <m(a) < M(a) < X(a). Title Page
Note thatS,(1,1) = ¥(a). This constant plays a natural role in bounding our Contents
polynomial inequalities away from zero. Specifically, we have <« N
Corollary 2.2. Leta € (R*)" be a finite nonnegative sequence witkr 3 and < >
M (a) > m(a). Then for all strictly positiver, y, ¢ € R the inequality
Go Back
0 < tX(a)z™ ! < APa(z,t) < tSa(z,y)
Close
holds provided) > x + tM(a), and the reverse inequality Quit
AP, (x,t) > tSa(r,y) > tS(a)2" 1 >0 Page 6 of 21

holds provided) < x + tm(a), with z := min{z, y}.
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Proof. We sharpen the details of the proof of Theorém. The condition
M(a) > m(a) ensures that\/(a) > 0, so if z,¢ are strictly positive reals
thenz + a,t > x for at least one < n — 1, and

r—1

H(x +agt) > 2"t

s=1

holds for some < n. Then

A Polynomial Inequality

AP,(x,t) = Pa(z,t) — 2" Generalising an Integer
. . Inequality
= n=r Roger B. Eggleton and
2_; Azt lj[l(:c +ast) William P. Galvin
r=1
Contents
If y >« +tM(a), thenM(a) > m(a) ensures that % N
r—1
4 >
H(az +agt) <yt
s=1 Go Back
holds for at least one < n, so Close
n Quit
AP (z,t) = Pa(z,t) — 2" < tz a,x" "y ! = tSa(z,y). Page 7 of 21
r=1
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For the second inequality, if < y < z + tm(a) thenM (a) > m(a) ensures
that

r—1

H(a: +agt) >yt

s=1
holds for at least one < n, so

AP,(x,t) = Pa(x,t) — a"

n
>t E aTxnfrnyl A Polynomial Inequality
Generalising an Integer
r=1 Inequality

= tSa(z,v)

Roger B. Eggleton and
William P. Galvin

> tZaTz”_l =t¥(a)z" >0,
r=1

Title Page
wherez := min{z, y}. O —
Corollary 2.3. For any realc and given finite sequeneec R, if n = 1 or if

44 44
n >2andM(a) = m(a) = ¢, then
< | 2
APy(z,t) = tSa(x, z + ct)

Go Back
is an identity for allz, ¢t € R. Close
Proof. First suppose € (R*)” andc,z,t € R*. If n = 1 both inequalities Quit
in Theorem2.1 hold, SOAP,(z,t) = tSa(x,x + ct). The same result holds if Page 8 of 21

n > 2whenlM(a) = m(a) = candy = = + ct. Since we have a degree
polynomial equality which holds for more thanvalues ofx and more tham
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values oft, it must in fact be a polynomial identity, and therefore holds for all
z,t € Randa € R™ with M (a) = m(a). O

We shall now show that the integer inequality proved-}y &nd the condi-

tions under which it is an equality, are directly deducible from the above results.

Thus Theoren?.1 provides a new proof of the results if] [as well as placing
them in a much more general context.

Corollary 2.4. For any integersh > 2 andm > 0, leta € (Z")" be the
sequence of bagedigits of m. Then the total sum of products of these digits
satisfiesI'(a) < m, with equality precisely when every auxiliary digit:afis
b—1.

Proof. Assume that the bagedigits of m are arranged ia in order of increas-
ing significance, sa,, is the leading digit. The,(1,b) = m. Furthermore
M(a) <b—1. Putz =1,t = 1andy = b. Theny > = + tM(a), so the first
inequality in Theoren?.1yields

T(a) = Pa(1,1) — 1 = APy (1,1) < Sa(1,0) = m,

as required. Now consider when equality holds. By Corolag the strict
inequality7'(a) < m holds ifn > 3 and the auxiliary digits are not all equal,
so supposer > 2 and all auxiliary digits are equal td/(a). Corollary 2.3
shows thafl'(a) = m*, wherem* = S,(1, M (a) + 1) is the integer with base
M (a) + 1 digit sequenca if we permit the slightly nonstandard possibility that
the leading digit may exceeti/(a). Thusm* = m if M(a) = b — 1, and
m* <mif M(a) <b—1.If n =1, Corollary2.3confirms the already obvious
T(a) = m. O]
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We now note some examples of Theor2r

Example 2.1.Witht = 1, a = (a,b,c,d) € (RT)?, and the change of variables
x «— t,y «— xwithz,t € RT, we have

(t+a)t+b)(t+c)t+d) —t* <at®+ bt*x + cta* + da®

whenz > t + max{a,b,c}. The reverse inequality holds when < ¢ +
min{a, b, c}.

Example 2.2.Witht = 1,a = (d, ¢, b,a) € (R*)*, and the change of variables
x — t,y «— xwithz,t € R, we have

(t+a)(t+b)(t+c)(t+d) —t* <ax® + bt + ct’x + dt?

whenz > ¢ 4+ max{b,c,d}. The reverse inequality holds when < ¢ +
min{b, ¢, d}.

Example 2.3.1n Example2.2, lett = 1 and replace(a, b, ¢, d) in that example
with (a, bt, ct?, dt®), wherea, b, c, d, t are strictly positive. Then

(1+a)(14bt)(1 + ct?)(1 4 dt?) — 1 < az® + bta® + ct?x + dt?

whenz > 1 + max{bt, ct?, dt}.
Example 2.4.Replacga, b, ¢, d) in Example2.2by (a, bt =1, ct =2, dt—3), so

(t+a)#+b)(# +c)(t* +d) — t*° < t%(ax® + br* + cx + d)

whenz > t + max{bt!, ct=2 dt—3}.
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Example 2.5. Evidently
AP,(1,1) > Sa(1,1) = X(a)

holds for anya € (R™)" withn > 1, and holds with strict inequality i, > 2

anda has at least two strictly positive terms. However, it is interesting to note

that it also holds with strict inequality for any € (—1,0)™ withn > 2, a result
which goes back to Jacques [James= Jakob] Bernoulli (1654-1705) in the

case where the sequeneaés constant (seel Theorem 58]). Our focus in the

present paper is on cases in whiake (R™)".

Thereverseof a given finite sequence:= (ay, as, . . .
is the sequence” := (a,,...,as,a;) € R™. Then

,an) € R*withn > 1

Pur(x,t) = Pa(z,t) and Sur(z,y) = Sa(y, x).

Let max(a) := max{a, : 1 <7 <n}andmin(a) := min{a, : 1 <r < n}.If
n > 2 we have

max{M(a), M(a®)} = max(a) and min{m(a), m(a®®)} = min(a).
With these observations, combining the principles used in Exargplesd2.2
readily yields

Corollary 2.5. For any finite nonnegative sequernee (R*)™ withn > 1, the
inequality
0 < AP,(t,1) < min{Sa(t,z), Sa(z,t)}
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holds for all z,t € R*, providedz > ¢ + max(a) if n > 2. The reverse
inequality
AP,(t,1) > max{Sa(t,z), Sa(z,t)} >0

holds for allz, t € R, providedz < ¢t + min(a) if n > 2.
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When does the inequality studied in Theor@rfh become an equality? To re-
duce this to a problem in two variables, let us examine thel cross-section.
Suppose: > 2 anda € (R*)" is strictly positive, thatisg, > 0for1 < r <n.
We have from Theorer.1:

< Sa(z,y) wheny >z + M(a),
> Sa(z,y) wheny <z +m(a).

APs(x,1) {

If z,y are strictly positive, then

0
a—ySa(x,y) > 0,

and continuity ofS, (z, y) as a function ofy ensures the following result:

Lemma 3.1. For any strictly positiver € R* and any strictly positive sequence
a € (RT)"withn > 2, there is a uniquey, > 0 such that

< Sa<x7y) if Y > Yo,
AP&($7 1) - Sa(flf,yo)
> Sa(z,y) if0<y<yo.

Furthermore
x+m(a) <y < x+ Ma).

In what follows we shall determing, more explicitly. It is convenient to
introduce some notation. L&1;(a) be thekth elementary symmetric function
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of the sequenca, defined to be the sum of produdis asx runs through all
the k-term subsequencesC a. Thus

Yi(a) :=3{lIx: x C a,|x| = k}.
In particulary; (a) = X(a) = X'_,a, and¥y(a) = '/ ¥"_ . a.as. Again let

Wi(a) == z”: <; ~ D Q.

r=1

A Polynomial Inequality

We call W (a) the kth binomially-weighted surof the sequenca. Note that Generalising an Integer
Inequality

Wl(a) = El(a).

e . . . Roger B. Eggleton and
Lemma 3.2. For any finite strictly positive sequenaec (R*)" and any posi- William P. Galvin
tive integerk < n, we have

min(a)® _ Yi(a) _ max(a)* Title Page

max(a) — Wi(a) ~ min(a) ’ Contents
with strict inequalities whea is not constant. <« Y
Proof. Let a* € (R*)" be the constant sequence with every term equal to < >
max(a). Then i —
and the inequality is strict whesis not constant. Also Quit

n 1 n 1 Page 14 of 21
Wi(a) = ; (;; B 1) a, > Z (2 B 1) min(a) = (Z) min(a) > 0,

=1 J. Ineq. Pure and Appl. Math. 3(4) Art. 52, 2002
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SO

Yr(a)  max(a)k

Wi(a) — min(a) ’
with strict inequality whera is not constant. An entirely similar argument es-
tablishes the other inequality in the lemma. O

For any realc > 0, if ¢ € (R™)" is the constant sequence with every
term equal toc, then Lemma3.2 shows thaty;(c)/Wi(c) = ¢*'. Hence

(Zk(a)/Wk(a))ﬁ Is a measure of central tendency for the terms of the se-

A Polynomial Inequality

quencea € (R*)", for each integek in the intervak < k < n. The casé = 2 Generalising an Integer
enters into the asymptotic behaviourgf as we now show. Inequality
Theorem 3.3. For strictly positiver, y € R* and any strictly positive sequence R S e
a € (RY)" withn > 2, the equalityAP,(x,1) = Sa(z,y) holds for largex
when :
y = l’—}—Oé—i—O(l‘il) (l’ _ OO), Title Page
where Contents
o 2@ «“ b
Wx(a) < 4
Proof. Letyo = = + fo(x), SOAP,(z,1) = Sa(z,z + fo(x)). Thenm(a) <
fo(z) < M(a) by Lemma3.1, soO(fy(z)) = O(1) asz — oo. Hence Go Back
n X Close
Sa(z,z + fo(x)) = Zlarx (x + fo(x)) Quit
n n Page 15 of 21
= Z a, 14 Z(T _ 1)aT f0<x>xn—2 + O([L’n_3)
r=1 r=1 J. Ineq. Pure and Appl. Math. 3(4) Art. 52, 2002
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= Si(a)a" " + Wa(a) fo(x)2" 2 + O(a" 7).
Also
APy(z,1) = (z4+a)(z+az) - (x+a,) — 2"
=Y ()" + Xp(a)z" 2 + O(2" 7).
But these two expressions are equal, so for largdollows that

_ 3a(a)

Wa(a) +O(x7).

fo(z)

]

By Theorem3.3, if we putyy, = = + « + f1(z) thenO(f1(z)) = O(z™') as
r — oo. Explicit expansion ofAP,(z,1) and S, (z, z + a + fi(z)) as far as
terms inz" 3 yields

Corollary 3.4. For any finite strictly positive sequenaec (R*)™ withn > 3,
the equalityA P,(x, 1) = Sa(z,y) holds for largex, y € Rt when

y:x—i—oz—l—ﬁx_l—i—O(x_Q) (x — o0),
where 5 (a) 5(a) 0 ()
L 2la o 3la) — @ Wg a
o= (@) and [:= @)

From Lemma3.1we immediately deduce
Corollary 3.5. If M (a) = m(a) = ¢, thena = candj = 0.
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Next we shall consideg, whenz is small but positive. It will be conve-
nient to use&(a) to denote the geometric meanff, : 1 <r < n — 1}, so
G(a) := (araz - - -an_l)ﬁ. For any finite strictly positive sequenaez (R™)"
we definea™ := (a; ', a3, ..., a;Y), soEl( ~1) is the sum of reciprocals of
the terms of. Of course Y (a™!) = 33, _;(a)/3,(a). This sum enters into the
small scale behaviour af), as we now show.

Theorem 3.6. For strictly positiver, y € R™ and any strictly positive sequence
a € (RT)" withn > 2, the equalityAP,(z,1) = Sa(z,y) holds for smallx
when

y=7+0r+0(?) (z — 04),
where £, (a )

o Yan ) —Qp—

v:=G(a) and §:= -1,
Proof. For0 < = < M(a) letyo = go(x), SO AP,(x,1) = Sa(z, go(x)).
Lemma3.1 ensures thain(a) < go(z) < 2M(a), soO(gO( )) = O(1) as
x — 04 .Then
QT gO Z Qp,— T‘+1x 1 :L,)n—r = anQO(x)n_l + O(Zlf)

and
APa(QZ, 1) = <a1a2 c an) + O(‘T>7

so equality of these expressions implies that

go(x) = G(a) + O(z).
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Now lety, = G(a) + ¢1(x), S00(g1(z)) = O(x) asx — 0 + . Then
Sa(z,G(a) + g1(x))

=3t (Ga) + ()

= CrL:lC;(a)n_l + (n — 1)a,G(a)" g1 (z) + ay_12G(a)"* + O(2?)
and

AP,(x,1) = (aray - - {1—1—(2@ )x—l—O )}

Equality of these two expressions implies that

~ (a,Ga)X(a™!) —ap-1)
g(z) = (n—1an

and the theorem follows. O]

+0(z?),

From Lemma3.1we deduce
Corollary 3.7. If M(a) = m(a) = ¢, theny = candd = 1.

Let us now consider the geometry underlying Theoréndsand3.6. The
positive quadrant, y € R* is divided into an 'S-region”, where

APs(x,1) < Sal(z,y),
and a A P-region”, where

AP,(x,1) > Sa(z,y).
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The boundary between these two regions is
Ei(a) = {(z,y) € (R")?: AP,(x,1) = Sa(x,%)}.

On this boundary curve the polynomialsP,(z, 1) and S,(x,y) are equal, so
we call £;(a) the equipoise curvdor a. Lemma3.1 ensures that);(a) lies
in the strip between the parallel lings= = + M(a) andy = = + m(a). By
Theorem3.3the equipoise curve is asymptoticgo= = + «, and by Theorem
3.6it cuts they-axis aty = G(a), with sloped.

Whenn = 2, we haveM (a) = m(a) = a = G(a) = a; and E4(a) is

A Polynomial Inequality

the liney = = + a;. Whenn > 3, asx — oo the equipoise curve approaches Generalising an Integer
the asymptote from th&-region side if3 > 0, and from theA P-region side if Inequality
ﬂ < 0. Roger B. Eggleton and

It appears likely that the equipoise curve never crosses the asymptote, though Wiliam P Galvin

we were not able to demonstrate this in general. The condition for such a cross-
ing to occur is a polynomial of degree— 3 in x, so such crossings are possible Title Page
only whenn > 4. However it seems unlikely that there are ever any solutions

with z > 0. Whenn = 3, it is clear thatF; (a) must be entirely on one side of contents
the asymptote unless® = a,a,. In the latter case3 = 0 and E;(a) actually A 44
coincides with the asymptote; this behaviour is demonstratef, by, 4, 4) for < >
example.

Throughout the preceding discussion in this section we have been comparing Go Back
AP,(x,1) with S,(x,y) in the positivez, y-quadrant. A simple observation Close
enables us to deduce the corresponding information comparingz, t) with Quit

tSa(z,y) in the positiver, y, t-orthant. For any € R* anda € (R™)", let
ta := (tay, tas, ..., ta,) € (RT)". Then Page 19 of 21

pta(xa 1) = Pa(.flf, t) and Sta(x7y) = tSa<x7y)7
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so all the relevant facts aboWtP,(x,t) = tSa(z,y) follow from our earlier
results in this section by replaciragby ta. In particular, theequipoise surface

Ey(a) := {(x,y,t) € (RT)?: APy(x,t) = tSa(z,y)}

lies in the region between the planes- « +tM (a) andy = x4 tm(a), which
coincide if M (a) = m(a), and otherwise intersect in the lige= x,t = 0. For
any fixedt > 0 the equipoise surface satisfies

y=x+at+ 2z + O(x7?) (x — o0)

and
y =t + dx + O(z?) (x — 0+).

However, the device of replacing by ta does not provide any information
about the comparison of the product and sum polynomials for a general finite
sequenca € R". As hinted at by Bernoulli's Inequality, mentioned in Example
2.5, there is potentially much of interest in this more general case.
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