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Abstract

For any a := (a1, a2, . . . , an) ∈ (R+)n, we establish inequalities between the two
homogeneous polynomials ∆Pa(x, t) := (x+a1t)(x+a2t) · · · (x+ant)−xn and
Sa(x, y) := a1x

n−1 + a2x
n−2y + · · ·+ anyn−1 in the positive orthant x, y, t ∈ R+.

Conditions for ∆Pa(x, t) ≤ tSa(x, y) yield a new proof and broad generalization
of the number theoretic inequality that for base b ≥ 2 the sum of all nonempty
products of digits of any m ∈ Z+ never exceeds m, and equality holds exactly
when all auxiliary digits are b − 1. Links with an inequality of Bernoulli are also
noted. When n ≥ 2 and a is strictly positive, the surface ∆Pa(x, t) = tSa(x, y)
lies between the planes y = x+ t max{ai : 1 ≤ i ≤ n−1} and y = x+ t min{ai :
1 ≤ i ≤ n − 1}. For fixed t ∈ R+, we explicitly determine functions α, β, γ, δ
of a such that this surface is y = x + αt + βt2x−1 + O(x−2) as x → ∞, and
y = γt + δx + O(x2) as x→ 0 + .

2000 Mathematics Subject Classification: Primary 26D15, 26C99.
Key words: Polynomial inequality, sums of products of digits, Bernoulli inequality.
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1. Introduction
For any finite sequence of real numbersa, let Πa be the product of all terms in
a, and letT (a), thetotal sum of productsof a, be the sum of all productsΠx as
x runs through the nonempty subsequencesx ⊆ a. Thus

T (a) := Σ{Πx : x ⊆ a,x 6= ω},

whereω is the empty sequence. As usual we observe the convention thatΠω =
1. There is a rather surprising inequality whichT (a) must satisfy in the case of
integer sequences. In particular, for given integersb ≥ 2 andm ≥ 0, let a be
the sequence of digits in the baseb representation ofm. Then

T (a) ≤ m

holds for every such integerm and baseb, as shown in [2]. Moreover the in-
equality is sharp:T (a) = m holds precisely when the auxiliary digits ofm, if
any, are allb − 1. (The leadingdigit of n is the most significant digit; the less
significant digits, if any, are itsauxiliary digits.) For example

T (3, 7, 7) = 255 ≤ 377(b),

where377(b) is the baseb representation ofm = 255, 313, 377, 447, . . . when
b = 8, 9, 10, 11, . . . . We also note in passing that ifa is the baseb digit sequence
of m thenT (a) is odd precisely when at least one of the digits ofm is odd.

Our main purpose in this paper is to show that the integer inequality just
described is an instance of a much more general inequality between polynomi-
als. We shall establish the polynomial inequality and investigate some of its
properties.
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2. Polynomial Inequality
Let a be any nonempty finite sequence of real numbers, say

a := (a1, a2, . . . , an) ∈ Rn, with n ≥ 1.

With a we associate two homogeneous polynomials in two real variables, the
productpolynomial

Pa(x, t) := (x + a1t)(x + a2t) · · · (x + ant) =
n∏

r=1

(x + art),

and thesumpolynomial

Sa(x, y) := a1x
n−1 + a2x

n−2y + · · ·+ any
n−1 =

n∑
r=1

arx
n−ryr−1.

Here we shall study these polynomials whena ∈ (R+)n, whereR+ := {x ∈
R : x ≥ 0}. It turns out that it is natural to comparet times the sum polynomial
with the first difference of the product polynomial,

∆Pa(x, t) := Pa(x, t)− Pa(x, 0) = Pa(x, t)− xn.

Note thattSa(x, y) and∆Pa(x, t) are both homogeneous of degreen.

With a we also associate two bounds whenn ≥ 2:

M(a) := max{ar : 1 ≤ r ≤ n− 1}
and m(a) := min{ar : 1 ≤ r ≤ n− 1}.
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Theorem 2.1. For any finite nonnegative sequencea ∈ (R+)
n with n ≥ 1, the

inequality
0 ≤ ∆Pa(x, t) ≤ tSa(x, y)

holds for all x, y, t ∈ R+, providedy ≥ x + tM(a) if n ≥ 2. The reverse
inequality

∆Pa(x, t) ≥ tSa(x, y) ≥ 0

holds for allx, y, t ∈ R+, providedy ≤ x + tm(a) if n ≥ 2.

Proof. An easy induction onn establishes the identity

Pa(x, t) =
n∏

r=1

(x + art) = xn +
n∑

r=1

arx
n−rt

r−1∏
s=1

(x + ast).

Forx, t ∈ R+ we havex + ast ≥ 0 for eachs, so

0 ≤
r−1∏
s=1

(x + ast) ≤ yr−1

holds trivially if r = 1, and forr ≥ 2 it certainly holds if

y ≥ max{x + ast : 1 ≤ s ≤ r − 1} = x + t ·max{as : 1 ≤ s ≤ r − 1}.

Because eachar ∈ R+, it follows for x, t ∈ R+ that

0 ≤ ∆Pa(x, t) = Pa(x, t)− xn

http://jipam.vu.edu.au/
mailto:
mailto:roger@math.ilstu.edu
mailto:
mailto:
mailto:mmwpg@cc.newcastle.edu.au
http://jipam.vu.edu.au/


A Polynomial Inequality
Generalising an Integer

Inequality

Roger B. Eggleton and
William P. Galvin

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 6 of 21

J. Ineq. Pure and Appl. Math. 3(4) Art. 52, 2002

http://jipam.vu.edu.au

= t
n∑

r=1

arx
n−r

r−1∏
s=1

(x + ast)

≤ t
n∑

r=1

arx
n−ryr−1 = tSa(x, y)

holds trivially if n = 1, and forn ≥ 2 it holds if y ≥ x + tM(a). An entirely
similar argument establishes the reverse inequality in the theorem.

Let us define

Σ(a) :=
n∑

r=1

ar.

If a ∈ (R+)n andn ≥ 2 then

0 ≤ m(a) ≤M(a) ≤ Σ(a).

Note thatSa(1, 1) = Σ(a). This constant plays a natural role in bounding our
polynomial inequalities away from zero. Specifically, we have

Corollary 2.2. Leta ∈ (R+)n be a finite nonnegative sequence withn ≥ 3 and
M(a) > m(a). Then for all strictly positivex, y, t ∈ R+ the inequality

0 < tΣ(a)xn−1 < ∆Pa(x, t) < tSa(x, y)

holds providedy ≥ x + tM(a), and the reverse inequality

∆Pa(x, t) > tSa(x, y) ≥ tΣ(a)zn−1 > 0

holds providedy ≤ x + tm(a), with z := min{x, y}.
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Proof. We sharpen the details of the proof of Theorem2.1. The condition
M(a) > m(a) ensures thatM(a) > 0, so if x, t are strictly positive reals
thenx + ast > x for at least ones ≤ n− 1, and

r−1∏
s=1

(x + ast) > xr−1

holds for somer ≤ n. Then

∆Pa(x, t) = Pa(x, t)− xn

=
n∑

r=1

arx
n−rt

r−1∏
s=1

(x + ast)

>
n∑

r=1

arx
n−1t = tΣ(a)xn−1 > 0.

If y ≥ x + tM(a), thenM(a) > m(a) ensures that

r−1∏
s=1

(x + ast) < yr−1

holds for at least oner ≤ n, so

∆Pa(x, t) = Pa(x, t)− xn < t
n∑

r=1

arx
n−ryr−1 = tSa(x, y).
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For the second inequality, if0 < y ≤ x + tm(a) thenM(a) > m(a) ensures
that

r−1∏
s=1

(x + ast) > yr−1

holds for at least oner ≤ n, so

∆Pa(x, t) = Pa(x, t)− xn

> t
n∑

r=1

arx
n−ryr−1

= tSa(x, y)

≥ t
n∑

r=1

arz
n−1 = tΣ(a)zn−1 > 0,

wherez := min{x, y}.

Corollary 2.3. For any realc and given finite sequencea ∈ Rn, if n = 1 or if
n ≥ 2 andM(a) = m(a) = c, then

∆Pa(x, t) = tSa(x, x + ct)

is an identity for allx, t ∈ R.

Proof. First supposea ∈ (R+)n andc, x, t ∈ R+. If n = 1 both inequalities
in Theorem2.1 hold, so∆Pa(x, t) = tSa(x, x + ct). The same result holds if
n ≥ 2 whenM(a) = m(a) = c andy = x + ct. Since we have a degreen
polynomial equality which holds for more thann values ofx and more thann
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values oft, it must in fact be a polynomial identity, and therefore holds for all
x, t ∈ R anda ∈ Rn with M(a) = m(a).

We shall now show that the integer inequality proved in [2], and the condi-
tions under which it is an equality, are directly deducible from the above results.
Thus Theorem2.1provides a new proof of the results in [2] as well as placing
them in a much more general context.

Corollary 2.4. For any integersb ≥ 2 and m ≥ 0, let a ∈ (Z+)n be the
sequence of baseb digits ofm. Then the total sum of products of these digits
satisfiesT (a) ≤ m, with equality precisely when every auxiliary digit ofm is
b− 1.

Proof. Assume that the baseb digits ofm are arranged ina in order of increas-
ing significance, soan is the leading digit. ThenSa(1, b) = m. Furthermore
M(a) ≤ b − 1. Putx = 1, t = 1 andy = b. Theny ≥ x + tM(a), so the first
inequality in Theorem2.1yields

T (a) = Pa(1, 1)− 1 = ∆Pa(1, 1) ≤ Sa(1, b) = m,

as required. Now consider when equality holds. By Corollary2.2, the strict
inequalityT (a) < m holds if n ≥ 3 and the auxiliary digits are not all equal,
so supposen ≥ 2 and all auxiliary digits are equal toM(a). Corollary 2.3
shows thatT (a) = m∗, wherem∗ = Sa(1, M(a) + 1) is the integer with base
M(a)+1 digit sequencea if we permit the slightly nonstandard possibility that
the leading digit may exceedM(a). Thusm∗ = m if M(a) = b − 1, and
m∗ < m if M(a) < b− 1. If n = 1, Corollary2.3confirms the already obvious
T (a) = m.
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We now note some examples of Theorem2.1.

Example 2.1.With t = 1, a = (a, b, c, d) ∈ (R+)4, and the change of variables
x← t, y ← x with x, t ∈ R+, we have

(t + a)(t + b)(t + c)(t + d)− t4 ≤ at3 + bt2x + ctx2 + dx3

when x ≥ t + max{a, b, c}. The reverse inequality holds whenx ≤ t +
min{a, b, c}.

Example 2.2.With t = 1, a = (d, c, b, a) ∈ (R+)4, and the change of variables
x← t, y ← x with x, t ∈ R+, we have

(t + a)(t + b)(t + c)(t + d)− t4 ≤ ax3 + btx2 + ct2x + dt3

whenx ≥ t + max{b, c, d}. The reverse inequality holds whenx ≤ t +
min{b, c, d}.

Example 2.3. In Example2.2, let t = 1 and replace(a, b, c, d) in that example
with (a, bt, ct2, dt3), wherea, b, c, d, t are strictly positive. Then

(1 + a)(1 + bt)(1 + ct2)(1 + dt3)− 1 ≤ ax3 + btx2 + ct2x + dt3

whenx ≥ 1 + max{bt, ct2, dt3}.

Example 2.4.Replace(a, b, c, d) in Example2.2by (a, bt−1, ct−2, dt−3), so

(t + a)(t2 + b)(t3 + c)(t4 + d)− t10 ≤ t6(ax3 + bx2 + cx + d)

whenx ≥ t + max{bt−1, ct−2, dt−3}.
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Example 2.5.Evidently

∆Pa(1, 1) ≥ Sa(1, 1) = Σ(a)

holds for anya ∈ (R+)n with n ≥ 1, and holds with strict inequality ifn ≥ 2
anda has at least two strictly positive terms. However, it is interesting to note
that it also holds with strict inequality for anya ∈ (−1, 0)n with n ≥ 2, a result
which goes back to Jacques [= James= Jakob] Bernoulli (1654-1705) in the
case where the sequencea is constant (see [1, Theorem 58]). Our focus in the
present paper is on cases in whicha ∈ (R+)n.

Thereverseof a given finite sequencea := (a1, a2, . . . , an) ∈ Rn with n ≥ 1
is the sequenceaR := (an, . . . , a2, a1) ∈ Rn. Then

PaR(x, t) = Pa(x, t) and SaR(x, y) = Sa(y, x).

Let max(a) := max{ar : 1 ≤ r ≤ n} andmin(a) := min{ar : 1 ≤ r ≤ n}. If
n ≥ 2 we have

max{M(a), M(aR)} = max(a) and min{m(a), m(aR)} = min(a).

With these observations, combining the principles used in Examples2.1and2.2
readily yields

Corollary 2.5. For any finite nonnegative sequencea ∈ (R+)n with n ≥ 1, the
inequality

0 ≤ ∆Pa(t, 1) ≤ min{Sa(t, x), Sa(x, t)}
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holds for all x, t ∈ R+, providedx ≥ t + max(a) if n ≥ 2. The reverse
inequality

∆Pa(t, 1) ≥ max{Sa(t, x), Sa(x, t)} ≥ 0

holds for allx, t ∈ R+, providedx ≤ t + min(a) if n ≥ 2.
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3. Conditions for Equality to Hold
When does the inequality studied in Theorem2.1 become an equality? To re-
duce this to a problem in two variables, let us examine thet = 1 cross-section.
Supposen ≥ 2 anda ∈ (R+)n is strictly positive, that is,ar > 0 for 1 ≤ r ≤ n.
We have from Theorem2.1:

∆Pa(x, 1)

{
≤ Sa(x, y) wheny ≥ x + M(a),

≥ Sa(x, y) wheny ≤ x + m(a).

If x, y are strictly positive, then

∂

∂y
Sa(x, y) > 0,

and continuity ofSa(x, y) as a function ofy ensures the following result:

Lemma 3.1. For any strictly positivex ∈ R+ and any strictly positive sequence
a ∈ (R+)n with n ≥ 2, there is a uniquey0 > 0 such that

∆Pa(x, 1)


< Sa(x, y) if y > y0,
= Sa(x, y0)
> Sa(x, y) if 0 < y < y0.

Furthermore
x + m(a) ≤ y0 ≤ x + M(a).

In what follows we shall determiney0 more explicitly. It is convenient to
introduce some notation. LetΣk(a) be thekth elementary symmetric function
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of the sequencea, defined to be the sum of productsΠx asx runs through all
thek-term subsequencesx ⊆ a. Thus

Σk(a) := Σ{Πx : x ⊆ a, |x| = k}.

In particularΣ1(a) = Σ(a) = Σn
r=1ar andΣ2(a) = Σn−1

r=1Σn
s=r+1aras. Again let

Wk(a) :=
n∑

r=1

(
r − 1

k − 1

)
ar.

We callWk(a) thekth binomially-weighted sumof the sequencea. Note that
W1(a) = Σ1(a).

Lemma 3.2. For any finite strictly positive sequencea ∈ (R+)n and any posi-
tive integerk ≤ n, we have

min(a)k

max(a)
≤ Σk(a)

Wk(a)
≤ max(a)k

min(a)
,

with strict inequalities whena is not constant.

Proof. Let a∗ ∈ (R+)n be the constant sequence with every term equal to
max(a). Then

Σk(a) ≤ Σk(a
∗) =

(
n

k

)
max(a)k,

and the inequality is strict whena is not constant. Also

Wk(a) =
n∑

r=1

(
r − 1

k − 1

)
ar ≥

n∑
r=1

(
r − 1

k − 1

)
min(a) =

(
n

k

)
min(a) > 0,
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so
Σk(a)

Wk(a)
≤ max(a)k

min(a)
,

with strict inequality whena is not constant. An entirely similar argument es-
tablishes the other inequality in the lemma.

For any realc > 0, if c ∈ (R+)n is the constant sequence with every
term equal toc, then Lemma3.2 shows thatΣk(c)/Wk(c) = ck−1. Hence
(Σk(a)/Wk(a))

1
k−1 is a measure of central tendency for the terms of the se-

quencea ∈ (R+)n, for each integerk in the interval2 ≤ k ≤ n. The casek = 2
enters into the asymptotic behaviour ofy0, as we now show.

Theorem 3.3.For strictly positivex, y ∈ R+ and any strictly positive sequence
a ∈ (R+)n with n ≥ 2, the equality∆Pa(x, 1) = Sa(x, y) holds for largex
when

y = x + α + O(x−1) (x→∞),

where

α :=
Σ2(a)

W2(a)
.

Proof. Let y0 = x + f0(x), so∆Pa(x, 1) = Sa(x, x + f0(x)). Thenm(a) ≤
f0(x) ≤M(a) by Lemma3.1, soO(f0(x)) = O(1) asx→∞. Hence

Sa(x, x + f0(x)) =
n∑

r=1

arx
n−r(x + f0(x))r−1

=

(
n∑

r=1

ar

)
xn−1 +

(
n∑

r=1

(r − 1)ar

)
f0(x)xn−2 + O(xn−3)

http://jipam.vu.edu.au/
mailto:
mailto:roger@math.ilstu.edu
mailto:
mailto:
mailto:mmwpg@cc.newcastle.edu.au
http://jipam.vu.edu.au/


A Polynomial Inequality
Generalising an Integer

Inequality

Roger B. Eggleton and
William P. Galvin

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 16 of 21

J. Ineq. Pure and Appl. Math. 3(4) Art. 52, 2002

http://jipam.vu.edu.au

= Σ1(a)xn−1 + W2(a)f0(x)xn−2 + O(xn−3).

Also

∆Pa(x, 1) = (x + a1)(x + a2) · · · (x + an)− xn

= Σ1(a)xn−1 + Σ2(a)xn−2 + O(xn−3).

But these two expressions are equal, so for largex it follows that

f0(x) =
Σ2(a)

W2(a)
+ O(x−1).

By Theorem3.3, if we puty0 = x + α + f1(x) thenO(f1(x)) = O(x−1) as
x → ∞. Explicit expansion of∆Pa(x, 1) andSa(x, x + α + f1(x)) as far as
terms inxn−3 yields

Corollary 3.4. For any finite strictly positive sequencea ∈ (R+)n with n ≥ 3,
the equality∆Pa(x, 1) = Sa(x, y) holds for largex, y ∈ R+ when

y = x + α + βx−1 + O(x−2) (x→∞),

where

α :=
Σ2(a)

W2(a)
and β :=

Σ3(a)− α2W3(a)

W2(a)
.

From Lemma3.1we immediately deduce

Corollary 3.5. If M(a) = m(a) = c, thenα = c andβ = 0.
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Next we shall considery0 whenx is small but positive. It will be conve-
nient to useG(a) to denote the geometric mean of{ar : 1 ≤ r ≤ n − 1}, so
G(a) := (a1a2 · · · an−1)

1
n−1 . For any finite strictly positive sequencea ∈ (R+)n

we definea−1 := (a−1
1 , a−1

2 , . . . , a−1
n ), soΣ1(a

−1) is the sum of reciprocals of
the terms ofa. Of course,Σ1(a

−1) = Σn−1(a)/Σn(a). This sum enters into the
small scale behaviour ofy0, as we now show.

Theorem 3.6.For strictly positivex, y ∈ R+ and any strictly positive sequence
a ∈ (R+)n with n ≥ 2, the equality∆Pa(x, 1) = Sa(x, y) holds for smallx
when

y = γ + δx + O(x2) (x→ 0+),

where

γ := G(a) and δ :=
γanΣ1(a

−1)− an−1

(n− 1)an

.

Proof. For 0 < x < M(a) let y0 = g0(x), so ∆Pa(x, 1) = Sa(x, g0(x)).
Lemma3.1 ensures thatm(a) < g0(x) < 2M(a), so O(g0(x)) = O(1) as
x→ 0 + . Then

Sa(x, g0(x)) =
n∑

r=1

an−r+1x
r−1g0(x)n−r = ang0(x)n−1 + O(x)

and
∆Pa(x, 1) = (a1a2 · · · an) + O(x),

so equality of these expressions implies that

g0(x) = G(a) + O(x).
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Now lety0 = G(a) + g1(x), soO(g1(x)) = O(x) asx→ 0 + . Then

Sa(x, G(a) + g1(x))

=
n∑

r=1

an−r+1x
r−1(G(a) + g1(x))n−r

= anG(a)n−1 + (n− 1)anG(a)n−2g1(x) + an−1xG(a)n−2 + O(x2)

and

∆Pa(x, 1) = (a1a2 · · · an)

{
1 +

(
n∑

r=1

a−1
r

)
x + O(x2)

}
.

Equality of these two expressions implies that

g1(x) =
(anG(a)Σ1(a

−1)− an−1) x

(n− 1)an

+ O(x2),

and the theorem follows.

From Lemma3.1we deduce

Corollary 3.7. If M(a) = m(a) = c, thenγ = c andδ = 1.

Let us now consider the geometry underlying Theorems3.3 and3.6. The
positive quadrantx, y ∈ R+ is divided into an “S-region”, where

∆Pa(x, 1) < Sa(x, y),

and a “∆P -region”, where

∆Pa(x, 1) > Sa(x, y).
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The boundary between these two regions is

E1(a) := {(x, y) ∈ (R+)2 : ∆Pa(x, 1) = Sa(x, y)}.
On this boundary curve the polynomials∆Pa(x, 1) andSa(x, y) are equal, so
we call E1(a) the equipoise curvefor a. Lemma3.1 ensures thatE1(a) lies
in the strip between the parallel linesy = x + M(a) andy = x + m(a). By
Theorem3.3 the equipoise curve is asymptotic toy = x + α, and by Theorem
3.6 it cuts they-axis aty = G(a), with slopeδ.

Whenn = 2, we haveM(a) = m(a) = α = G(a) = a1 andE1(a) is
the liney = x + a1. Whenn ≥ 3, asx → ∞ the equipoise curve approaches
the asymptote from theS-region side ifβ > 0, and from the∆P -region side if
β < 0.

It appears likely that the equipoise curve never crosses the asymptote, though
we were not able to demonstrate this in general. The condition for such a cross-
ing to occur is a polynomial of degreen− 3 in x, so such crossings are possible
only whenn ≥ 4. However it seems unlikely that there are ever any solutions
with x > 0. Whenn = 3, it is clear thatE1(a) must be entirely on one side of
the asymptote unlessα2 = a1a2. In the latter case,β = 0 andE1(a) actually
coincides with the asymptote; this behaviour is demonstrated byE1(1, 4, 4) for
example.

Throughout the preceding discussion in this section we have been comparing
∆Pa(x, 1) with Sa(x, y) in the positivex, y-quadrant. A simple observation
enables us to deduce the corresponding information comparing∆Pa(x, t) with
tSa(x, y) in the positivex, y, t-orthant. For anyt ∈ R+ anda ∈ (R+)n, let
ta := (ta1, ta2, . . . , tan) ∈ (R+)n. Then

Pta(x, 1) = Pa(x, t) and Sta(x, y) = tSa(x, y),
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so all the relevant facts about∆Pa(x, t) = tSa(x, y) follow from our earlier
results in this section by replacinga by ta. In particular, theequipoise surface

E2(a) := {(x, y, t) ∈ (R+)3 : ∆Pa(x, t) = tSa(x, y)}

lies in the region between the planesy = x+ tM(a) andy = x+ tm(a), which
coincide ifM(a) = m(a), and otherwise intersect in the liney = x, t = 0. For
any fixedt > 0 the equipoise surface satisfies

y = x + αt + βt2x−1 + O(x−2) (x→∞)

and
y = γt + δx + O(x2) (x→ 0+).

However, the device of replacinga by ta does not provide any information
about the comparison of the product and sum polynomials for a general finite
sequencea ∈ Rn. As hinted at by Bernoulli’s Inequality, mentioned in Example
2.5, there is potentially much of interest in this more general case.
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