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Abstract

Let \(z) be a complex valued function defined in the unit disc F and let p(z)
be a function analytic in £ with p(0) = 1 and p(z) # 0 in E. In this article, we
determine the largest constants v, k = 1,2,3,... and conditions on A(z) such
that for given o, 3 and §, the non-autonomous differential subordination

(p(2))° {1 +A(z)2’p/<z)r < <1 . )L , 2€E,

k(, .
) ) p <> 1-2 Non-autonomous Differential
implies 142 ) Subordinations Related to a
)(2) - Sector
Pz 1—.

in E. Here the symbol * < stands for subordination. Almost all the previ- Sukhiit Singh and Sushma Gupta

ously known results on differential subordination concerning a sector follow as
particular cases of our results. Title Page
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Let A denote the class of functionswhich are analytic in the unit dist’ =
{z : |2| < 1} and satisfyf(0) = 0, f'(0) = 1. Denote by.A’, the class of
functionsp analytic in E for whichp(0) = 1 andp(z) # 0 in E.

If f andg are analytic inE, we say thatf is subordinate tg in E, written
asf(z) < g(z)in E, if g is univalentinE, f(0) = ¢g(0) andf(E) C g(E).

Let » be a univalent function i and lety : C? — C, whereC is the
complex plane. If an analytic functignsatisfies the differential subordination

(1.1) b(p(2), 2p'(2)) < h(2), h(0) = (p(0),0), =z € E,

then a univalent function is said to be the dominant of the differential subor-
dination (L.1), if p(0) = ¢(0) andp < ¢ for all p satisfying (L.1). Differential
subordination 1.1) is said to be non-autonomous if a functionzois allowed

to be present on the left hand side, in addition to the terfasandzp’(z).

Since 1981, when a formal study of differential subordination started with a
remarkable paper of Miller and Mocanki]] several results concerning differ-
ential subordination in a sector have been proved (e.g.c53ge’] and [2]).

In the present paper, we establish the following two theorems.

Theorem 1.1.Leta € [0, 1] be fixed and let € (0, 4], whered, is the solution
of the equation

™
Bom =21 — « <§ + arctann)
for 5 > 0 and for a suitable fixeg > 0 such that\(z) : F — C satisfies

dReA(z) S
| '

(1.2) 1+ 0tmA(2)
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If p € A’ satisfies the non-autonomous differential subordination

(1.3) (p(2))? {1 + A(Z)ZMZT < (1 + Z)M ieR,

p(2) 1—=2
then, 5
142 .
E
p(z) < (1—z> in &,
where,
2a
(1.4) v1 = (80 + —arctann, 0 < § < dg.
T

Theorem 1.2.Letk = 2,3,4,...,a € [0,1], 6 € (0, %) be fixed. Also let
B > 0 be such thad < 5§ < 2. For a suitable fixed) > 0, letA(z) : £ — C

be a function satisfying

5IA(2)] cos ¢
) e opGsng] =
where,
)
(1.6) [ = ArgA()| = (k= 1)
and,
(3.7) == (k=18 = (1+ (k=18 = .
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If p € A’ satisfies the non-autonomous differential subordination

(1.8) (p(2))? {1 + )\(z)Zp/(Z)r < (1 + Z)% ieR,

pF(2) 1—=2
then, 5
1+2 ,
E
p(z)%(l_z) in E,
where,
2
(2.9) Vi = [0 + 22 arctan n.
T

We claim that our results unify most of the previously known results related
to differential subordinations in a sector. Some special cases of Thelofiem
and Theoreni..2 have been discussed in Sectidinn Sectiord, we give some
applications of our results to the univalent functions.

We shall need the following lemma to prove our results.

Lemma 1.3. Let F' be analytic inE and letG be analytic and univalent i
except for pointg such thatlim, .. F'(z) = oo, with F(0) = G(0). If F £ G
in £, then there exist pointg, € F,(y, € OF (boundary ofF) and anm > 1
for which

@) F(lz] <lzl) € G(E),
(b) F'(20) = G(¢) and
(€) 20F"(20) = mGoG'(Co)-
Lemmal.3is due to Miller and Mocanud.
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Proof of Theorem..1. Let ¢(z) = (%)‘S Then we need to prove that.Q)
impliesp(z) < ¢(z) in E. Suppose, on the contrary, that£ ¢ in E. Then,
by Lemmal.3 there exist pointg, € E,(, € OF and anm > 1 such that
p(20) = q(Co) andzpp'(z0) = m(oq'(¢o). Sincep(zo) = q(¢o) # 0, it follows
that¢y # +1. Thus{=e = ri for r # 0. Writing A(z) = Re', |¢] < 7/2, a
simple calculation gives

8 Zop'(ZO)r _ 8 { mCoq'(Co)r
(p(z(])) 1+ )‘(20) p(Zg) (Q(C(])) 1+ )‘(ZO) Q(CO)
_ (ri)® {1 N 2m52Re (7’ :—1)}
=V, say.
Then,
) R
(2.1) Arg¥y = :I:% + « arctan [Tzﬁlm— r:(?lsi’iinqﬁ .

Here a positive sign correspondsito- 0 and a negative sign to< 0.
LetA = A(m,7r) = ﬁ%, wherez(r) = ;#7. Then, Maz(r)| = 1
for all values ofr whether positive or negative.

If we define,

mod Rcos¢o
|z(r)| + mdR|sing|’

B = B(m,r) =
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thenB is an increasing function of, for each fixed-, and therefore, fom > 1,
we have

dRcos¢ d Rcosg _
- = > 2).
= #(r)[ + ORJsing| = 1+ oR[sing| = (using (1.2))

Now, It is easy to check the following six cases:

(i) Whenr > 0 andsing < 0, we haveA = B.

.. . Non-autonomous Differential

Sector
(iii) Whenr > 0 andxz(r) < mdRsing, we getAd < —B.
Sukhijit Singh and Sushma Gupta
(iv) Whenr < 0 andsing > 0, we haved = —B.

(v) Whenr < 0 andmdRsing < —|z(r)|, we haveA > B. Title Page
(vi) Whenr < 0 and0 > mdRsing > —|z(r)|, we getd < —B. Contents
Since arctan is an increasing function of its argument, therefore, in view of S Al
cases (i) and (ii), we get fron2 (1), < >
) Go Back
Arg¥g > ﬁ—ﬂ + « arctanB
2 Close
pom _
> T + o arctan i Quit
_nr Page 7 of 23
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For the case (iii), we get

J
Arg¥, < 677 + a arctan(—B)

Bom
< T — aarctan n
:ﬁ(sw—% §27T—%, since0 < 85 < 38, < 2.

For cases (iv) and (vi), we get

Arg¥, < —@ + a arctan(—B)
Bom

< -5 T « arctan

_nr
5

In case (v), we have

)
Arg¥y > —ﬁTW + « arctanB

Bom
= —T+aarctan77
_ _nrT
- (55” 2 )

> — (27r— %) , sincel < 6 < By < 2.

Combining all the above cases, we obtain

% < |Arg W SQW—%,
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which is a contradiction to1(3). Hencep(z) < (}jz)é. The proof of the

theorem is complete. O

Proof of Theorenmi..2. Proceeding as in the proof of Theordmi, we get

(p(20))” {1 + )\(zo)%/(:;)} *

= (r ) {1 n 2m25R( 1) (k- )5€i(¢(k1)5ﬂ/2)]
= Op say.
Now, if ) — ¢ = —(k — 1)%, then we get

md Rcosy

1+ (k—1)8 ;
QTTQ—_H - m(SRSIHw

(2.2) Arg©) = @ + « arctan [

Let A = A(m,r) = [ﬂ%] ,wherez(r) = 252" Since(k — 1)8 <

1, it is easy to verify that for > 0 (and, of course, also for < 0),

1—(k=1)§ 1+(k 1)s
2

max |z(r)] = (1 — (k — 1)J) (14 (k—1)9) =z, using (L.7).

Now, if we define,

mo Rcosy

B =B(mr) = |z(r)| + mdR|siny)|’
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then, B is an increasing function of: and, therefore, fom > 1, we have

0 Rcostp S 0 Rcostp
~ |z(r)| + OR|sing)| T z + dR|siny|

Now, one can easily verify the following three cases:

>mn, using (L.5).

Case (i). A = B, whensiny < 0.

Case(ii). A > B, whensiny > 0 andz(r) > md Rsin.
Non-autonomous Differential

Case (iii). A < — B, whensiny > 0 andx(r) < mdRsin. Subordinations Related to a
Sector

Since arctan is an increasing function of its argument, therefore, in view of

. .. Sukhijit Singh and Sushma Gupta
cases (i) and (ii), we get fron2(2)

o :
Arg©y > % + a arctan n Title Page
Contents
= M, using (L.9).
2 «“« =
For the case (iii), we obtain < >
)
Arg9, < BTW + «a arctan(—B) Go Back
Bom Close
< — —aarctann _
2 Quit
T
< por 9 Page 10 of 23
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Now, consider the case when< 0. Writing r = —a, a > 0 we have

: i —ifon imoR (a2 + 1)ei(@+(k=1)d7/2)
(p(20)" |1+ A(z0) 22 W] _ 55 {1_% (a? 4 1)

PF(20) 9 L+ (E=1)0

= ¢, say.

If v — ¢ = (k—1)%, then
Argdy = ﬁ + a arctan C,

whereC' = C(m,r) = —7‘96(21)‘&705;23@.
It is now elementary to check the following three cases:

Case (a)Whensiny > 0, we haveC' = —B.

Case (b).Whensiny < 0 andmdR sinyy < —|z(r)|, we obtain
C > B.

Case (c).Forsiny < 0andmod Rsiny > —|z(r)|, we haveC' < —B.

For cases (a) and (c), we get

Arg®dy < @ + a arctan(—B)
< —(Bom

S5 T o arctan n
VT

5

;
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In case (b), we have

—36
Arg®g > por + aarctan B
—Bom
> 5 + a arctan n
VT
— (857 — _>
(ﬁ T

> — (27r — %) , sincefd < 2.

Combining the above six cases, threesfar 0 and three for < 0, we have

5 < s (Wt |1+ 2 ] < - 2

which is a contradiction to1(8). Hencep(z) < (%)5 This completes the

proof. ]
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(i) Takinga = 3 = 1in Theoreml.1, we get the result of S. Ponnusamy [
p. 399, Lemma 1].

(i) Settinga = B = 1 and\(z) = A, a positive real number, in Theorelil,
we get Theorem 5 of Miller and Mocang, [p. 532].

(iii) Puttings = 1and\(z) = 1in Theoreml.1, we get the result of A. Lecko
et.al. 4, p. 198, Theorem 2.1].

(iv) In Theoreml.l, takinga = 1, we get the following result:
Let 5 > 0 and letd, be the solution of the equation

3
Bom = ; — arctan 7,

for a suitable fixed) > 0 such that\(z) : E — C'is a function satisfying

dReA(z)
146/ Im A(2)

yzn,zeE.

If p € A’ satisfies the non-autonomous differential subordination

PO @ < (152) s

then,

1—=2

p(z) < (1+2)5 in E,
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where, )
v = 3§ + —arctann, 0 < § < .
T

(V) In Theoreml.2, takingA(z) = 1 andj3 = 1, we get the result of A. Lecko
[3, p. 344, Theorem 2.1].

(vi) Puttinga = 8 = 1 andk = 2 in Theoreml.2, we obtain the following

result:
For0 <o < landn > 0, letA(z) : E — C be a function satisfying Non-autonomous Differential
Subordinations Related to a
SIA Sector
[Me)lcosyy I -
T+ 5|)\(Z) ’ ‘SHH/J’ Sukhijit Singh and Sushma Gupta
where|i) — ArgA(z)| = 2 andz = (1 +6)'s (1 —6)'=" .
g -2 - : Title Page
R
If p € A’ satisfies, E—
/ 1 2
p(z) + A(z)Zp(<§) < (1 J_r Z) « dd
P\ : < >
in E, then, Go Back
1+2\°
p(z) < 1> Close
Quit

in E, wherey, = § + Zarctan 1.

Taking A(z) = A, a positive real number in the above result, we get the
well-known differential subordination (se€, [p. 268, 5.1-40]).

Page 14 of 23
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(vii)

(viii)

Taking 5 + « in place of 3, A\(z) = 1,k = 2 andp(z) = zf;S), where

f € A, in Theoreml.2, we get the following (Also see Darus and Thomas
[2, p. 1050, Theorem 1]):

Leta € [0,1],0 € (0,1) and3 > 0 be such that < (8 + )0 < 2. If

f € A satisfies
z2f"(2)1¢ 142\
i f’(Z)] <(1—»2) ’

(F) [

then, 5

zf'(2) 1+2\" .
FE

) <(1—z> "

where,

65+2aa0ta ta 57r+ g
= — arctan |tan — T — .
V2 T 2 (1+5)%6(1—5)?6cos%”

Writing 8 = 1, a = 1, A(2) = 1,k = 2 andp(z) = zf'(2)/f(2),
wheref € A, in Theoreml.2, we get well-known result of Nunokawa
and Thomasd, p. 364, Theoreml1].
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In this section, we give some applications of our results to univalent functions
and obtain some new conditions for univalence, starlikeness and strongly star-

likeness.
A function f € A is said to be strongly starlike of order0 < o < 1, if
2f'(z)|  am .
ar < —In E.
T | T2

We denote the set of all such functions B¥(«). The classS*(«) was intro-
duced and studied independently by Brannan and Kirwgarjd Stankiewicz
[1C]. Note thatS*(1) is the usual class of starlike functioyisn A satisfying

[

>0, z€ E.

We denote this class byt.
First of all, we note that iff A, then the functional$'), /(=) and <12
are all members of the clast.

Theorem 4.1.Leta € [0,1] and letd, = 0.6165 ... be the unique root of the
equation

(4.1) 2arctan(l — 0) + (1 — 20) = 0.

Further, let3 > 0 be such that3é < 55y < 2for0 < § < dy. If a function
feA fl(z)#0, z € E, satisfies

4.2) (F(2)? {1+2J{”/’;S>r< ij)v ey
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thenf € St wherey = 36 + Z2arctan 4.

Proof. In Theoreml.1, takingA(z) = 1 andp(z) = f’(z), the subordination
(4.2) implies

)
4.3) £1(2) < (HZ) :€E,

1—=z2

wherey = 36 + 2farctan . Again using Theorem.lwitha = = \(z) =1
andp(z) = @ we get from ¢.3),

&< (1+Z>u, z€eFl,

z 11—z

whered = u + % arctany which is equivalent to4.1) with 4 =1 — 6. Now

zf/(z)‘ , f (z)’
ar < |ar Z)| + |ar
80 larg f'(2)] &~
Vs s
< — = —
< (6+p) 5= 5
and the desired result follows. O]

Writing p(z) = @ andA(z) = 1in Theoreml.1, we get:

Lemma 4.2. Leta € [0, 1]be fixed and led € (0, dy], whered, is the solution
of the equation

Bom =21 — « (g + arctan 5)
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for fixed3 > 0. If f € A, f ) £ 0, z € E, satisfies
FEN e (1+2)
(1) rer< (152) e,

1
1 (1) e

z 1—=2

then,

wherey = 36 + 270‘ arctan 0.

Theorem 4.3.Leta € [0,1], 8 > 0 be fixed. Suppose thag, /2 < 7 < a,

is the unique root of the equation

(4.4) B = (a—7)cot [(2707 a) g] :
Letf e A 12 20, » € E, satisfy

2\ 2\
(4.5) <fi)) () = GL) in E.
Thenf € St.

Proof. In view of (4.5 and Lemmat.2, we have

5
M<(ﬁ> , 2 € B

z 1—=z
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where/ is given by the equation

(4.6) v = [0+ 2o arctan .
T

We observe that4(6) is equivalent to4.4) with 63 = o — v. Now

/ B—a B
a argZ}f(S) < larg(f'(2))” (f(;)) + |arg (f(zz))
yro Bom am
< 5 + S T
and the conclusion follows. O

Remark 4.1. Takinga = 1 in Theorenmi.3, we get the Theorem 1 of Ponnusamy
[9, p. 403].

Takinga = 8 = § in Theorem4.3, we get
Example 4.1. For f € A, the differential subordination

fl(z) < (1+Z)7 in E,

1—=2

implies thatf is starlike in £ wherey = 0.3082... is given by2 arctan (1 —
2y)+ (1l —4y) =0.

Settingp(z) = f'(z) anda = A(z) = 1 in Theoreml.1, we obtain
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Corollary 4.4. For g > 0, if an analytic functionf in A satisfies

26+1

() + (PP (:) < (1 i ) in E,

1—=z
then .
f(z) < in B,
and, hencef is univalent inE.
. 2f(2) . . Non-autonomous Differential
Writing p(z) = ) k =2 and (ﬁ + a) in place ofg in Theoreml.2, we Subordinations Related to a
get the following result: Sector
Theorem 4.5.Leta € [0,1] and3 > 0 be fixed. Le € (0,1) be such that SUIESHONand SashmatCaRta
0 < (f+a)d <2.Forafixedn > 0, let\(z) : E — C be a function satisfying
SIA(2)|cost . C Title Page
71 o2 |Jsing] =T 7S Contents
where|i) — Arg \(2)| = % anda: = (1 4 6) % (1 — §)'F". S R
If f € A satisfies the differential subordination < >
21'(2)\” 2f'(z) 2f"(2)\]" _ (1+2\" Go Back
1—A A 1 <
( f(2) ) ( (=) f(z) M) " f(2) -2 Close
in £/, then 5 Quit
2f'(2) 1+ Page 20 of 23
f(2) 1—2
|n E |e f c S*(é) |n E, Where,y2 — (ﬂ + a)5 + %arctan n J. Ineq. Pure and Appl. Math. 4(4) Art. 72, 2003
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Taking3 = 0, a = 1, A(z) = A, A real, in Theoremd.5 we obtain the
well-known result |/, p. 266, Cor. 5. 1i. 1].
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