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ABSTRACT. Let A\(z) be a complex valued function defined in the unit disand letp(z) be
a function analytic inE with p(0) = 1 andp(z) # 0in E. In this article, we determine the
largest constants,, k = 1,2, 3, ... and conditions on\(z) such that for given, 5 andd, the
non-autonomous differential subordination

((2))” {1 +AG) Zp/(z)r < (1 + Z)% , z€E,

pF(z) 1—2

p(z) < sz)é

in E. Here the symbol < ' stands for subordination. Almost all the previously known results
on differential subordination concerning a sector follow as particular cases of our results.

implies
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1. INTRODUCTION

Let A denote the class of functiorfswhich are analytic in the unit dise' = {z : |z| < 1}
and satisfyf(0) = 0, f’(0) = 1. Denote byA’, the class of functiong analytic in £ for which
p(0) = 1andp(z) #0in E.

If fandg are analytic inZ, we say thaff is subordinate tg in E, written asf(z) < g(z) in
E, if gis univalentinE, f(0) = ¢g(0) andf(E) C g(E).

Let h be a univalent function i’ and lety) : C* — C, whereC is the complex plane. If an
analytic functionp satisfies the differential subordination

(1.1) b(p(2), 2p'(2)) < h(2), h(0) = ¢(p(0),0), z € E,
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2 SUKHJIT SINGH AND SUSHMA GUPTA

then a univalent function is said to be the dominant of the differential subordinatjon|(1.1), if
p(0) = ¢(0) andp < ¢ for all p satisfying [1.1). Differential subordinatiop (1.1) is said to be
non-autonomous if a function afis allowed to be present on the left hand side, in addition to
the termsp(z) andzp/(z).

Since 1981, when a formal study of differential subordination started with a remarkable paper
of Miller and Mocanul([5], several results concerning differential subordination in a sector have
been proved (e.g. see [6], [9] and [3]).

In the present paper, we establish the following two theorems.

Theorem 1.1.Leta € [0, 1] be fixed and let € (0, dy], whered, is the solution of the equation
T
Bom =21 — « (§ + arctann)

for 5 > 0 and for a suitable fixeg > 0 such that\(z) : £ — C satisfies

dRe A(2)
1.2 —_— > E.
(1.2) 1+ |TmA(z)] =1 Z€
If p € A’ satisfies the non-autonomous differential subordination
s 2p'(2) 1 14+2\"
(1.3) (p(2)) [1 + A(2) o) } =< (1 — ) *E€ E,
then,
5
1 .
() < (15) inE,
where,
2c
(1.4) v1 = (80 + —arctann, 0 < § < dy.
m

Theorem 1.2.Letk =2,3,4,...,a € [0,1],6 € (0, /1) be fixed. Also le > 0 be such that

k—1
0 < 9 < 2. For a suitable fixed) > 0, let \(z) : E — C be a function satisfying

0| A(2)| cos v

' >
(9 x + 0| A(2)]] sin | zn €k
where,
om
(1.6) ¥~ ArgA(2)| = (1)
and,
(.7 r=(= (=10 (4 (k=10
If p € A’ satisfies the non-autonomous differential subordination
B8 2p/(2)]° 1+2z\™
- o [0 5] < (125) sem
then,
1+2\° .
E
p(z) < (1—,2) in E,
where,
(1.9) Y = B0 + 2—Oéaurctam n.
m
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We claim that our results unify most of the previously known results related to differential
subordinations in a sector. Some special cases of Theoregm 1.1 and Thedrem 1.2 have been
discussed in Sectidr} 3. In Section 4, we give some applications of our results to the univalent
functions.

We shall need the following lemma to prove our results.

Lemma 1.3. Let F be analytic inE and letG be analytic and univalent i except for points
¢ such thatlim,_..F'(z) = oo, with F/(0) = G(0). If F A G in E, then there exist points
z0 € B,y € OF (boundary ofF’) and anm > 1 for which

@) F(|z| <lzl) c G(E),

(b) F(20) = G(¢) and

(€) 20" (20) = mCoG'(Co)-

Lemmd 1.8 is due to Miller and Mocanu [5].

2. PROOFS OF MAIN THEOREMS

Proof of Theorerfi I]1Let ¢(z) = (}j—j)‘s Then we need to prove th.3) implis) <
q(z) in E. Suppose, on the contrary, that£ ¢ in E. Then, by Lemma 1|3, there exist
pointszy € E,(y € OF and anm > 1 such thatp(zy) = q(¢) andzop'(z0) = moq'((o).
Sincep(zg) = q(¢p) # 0, it follows that(, # +1. Thus }fg’] = ri for r # 0. Writing
AMz0) = Re™,|p| < /2, a simple calculation gives

g 20 (20) ] _ s mCoq'(Co)r
(o)) |1+ 2 2] — a1+ A
_ (i) [1 N zm§2Rel¢ (7’2:- 1>}
=V, say.
Then,
) OR
(2.1) Arg¥y = j:ﬁ—; + «a arctan [,,flim— ch(;j%iingb .

Here a positive sign correspondsito- 0 and a negative sign to< 0.
Let A = A(m,r) = ﬂ%, wherez(r) = 2. Then, Maxz(r)| = 1 for all values of
r whether positive or negative.

If we define,

mo Rcosg
B=2B —
(m.7) = e = moRlsima]
then B is an increasing function of. for each fixed-, and therefore, fom > 1, we have

0 Rcosp 0 Rcosgp _
> > - |
= Ja(r)| + 0RJsing| = 1+ 0RJsing| = (using [T:2))

Now, It is easy to check the following six cases:

() Whenr > 0 andsing < 0, we haved = B.
(i) Whenr > 0 andz(r) > mdRsing > 0, we getA > B.
(ili) Whenr > 0 andx(r) < mdRsing, we getd < —B.
(iv) Whenr < 0 andsing > 0, we haveAd = —B.
(V) Whenr < 0 andmdéRsing < —|z(r)|, we haved > B.
(vi) Whenr < 0 and0 > mdRsing > —|z(r)|, we getA < —B.
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Since arctan is an increasing function of its argument, therefore, in view of cases (i) and (ii),
we get from|[(2.1),

Arg¥g > @ + « arctanB
Bom

> N + o arctan i
_nn
5
For the case (iii), we get

J
Arg¥, < ﬁTW + a arctan(—B)

Bom
ST—aarctann
"™
— Bom — 22
Bom 5

< or — % since0 < 45 < (38, < 2.

For cases (iv) and (vi), we get

Arg¥, < —@ + a arctan(—DB)
Bom

< 5 o arctan n

_nr
5

In case (v), we have

)
Arg¥y > —ﬁ—; + « arctanB

Bom
> 5 + avarctan
_ _ T
- (ﬁéﬁ 2>

> — (27r — %) , sincel < 36 < Bdy < 2.
Combining all the above cases, we obtain

% < | Arg Uy §27r—%,

which is a contradiction t.3). Hengéz) < (%)6 The proof of the theorem is complete.
O

Proof of Theorem 1]2Proceeding as in the proof of Theorgm|1.1, we get

(p(zo))ﬁ 14 )\(ZO>Zop (20) _ (M)ﬁé 14 imoR (r2 + 1)r—1—(k—l)éei(¢—(k—1)5n/2)
P*(20) 2
= Oy say.
Now, if  — ¢ = —(k — 1)%F, then we get
) )
(2.2) Arg©) = pom + o arctan 1+(7€j§5 ficosy .
2 2r = — MmoRsingy

J. Inequal. Pure and Appl. Math4(4) Art. 72, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

NON-AUTONOMOUS DIFFERENTIAL SUBORDINATIONS RELATED TO A SECTOR 5

Let A = A(m,r) = [m’;ﬁ—?;;ﬁw} , Wherez(r) = QTIL(EI)‘S. Since(k — 1)§ < 1, itis easy to
verify that forr > 0 (and, of course, also for < 0),
max |z(r)| = (1 — (k — 1)6) == (1 + (k — 1)8) "= =z, using [LJ).
Now, if we define,
mod Rcosy

B = B(m,r) = 2(r)| + moR|sinip|’

then,B is an increasing function of: and, therefore, fom > 1, we have
0 Rcostp 0 Rcostp .
> > p, usin .
Z () + ORjsing] = = + oRjsing] = " USing [L:9)
Now, one can easily verify the following three cases:

Case (i). A = B, whensiny < 0.
Case(ii). A > B, whensiny > 0 andz(r) > md Rsin.
Case (iii). A < —B, whensiny > 0 andx(r) < mdRsiny.
Since arctan is an increasing function of its argument, therefore, in view of cases (i) and (ii),
we get from|[(2.R)

)
Arg©qy > 5777 + « arctan n
WL, using (1.9).

For the case (iii), we obtain

J
Arg©y < por + « arctan(—B)

2
Bom
< T — avarctan i
T
< Bém
g 2
VT

<27 — BN since(d < 2.

Now, consider the case when< 0. Writing r = —a, a > 0 we have

Zop’(zo) a _ aﬁ%# - iméR (a2 + 1)ei(¢+(k—l)67r/2) fe?
P*(20) 2 al+(k—=1)s

(p(20))7 |1+ A(z0)
= ¢, say.

If ¢ — ¢ = (k—1)%, then
Argdy = @ + a arctan C,

whereC' = C(m,r) = —i5tesnes.
It is now elementary to check the following three cases:
Case (a). Wheniny > 0, we haveC' = —B.
Case (b). Wheginy) < 0 andmdR siny < —|z(r)],
Case (c). Foginy < 0 andmdRsiny > —|z(r)|, we haveC' < —B.
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For cases (a) and (c), we get

— 036
Arg®y < % + a arctan(—B)
—Bom
< T — aarctan g

_ T

5

In case (b), we have

-6
Arg®g > % + a arctan B

—[Bom
> — + avarctan n

= —(8om — L5)

VET
-2

> —(27 , sincefo < 2.

Combining the above six cases, three/ifar 0 and three for < 0, we have

YT 8 zop'(20) “ VT
> Alrg <(p(20)) |:1 + /\(ZO> pk(ZO) :| ) = 27 92 )
which is a contradiction t.8). Hengé:) < (}_iz)‘; This completes the proof. O

3. SPECIAL CASES

(i) Takinga = § = 1 in Theoren{ 1.]1, we get the result of S. Ponnusamy [9, p. 399,
Lemma 1].

(i) Settinga = 3 = 1 and\(z) = )\, a positive real number, in Theorgm|1.1, we get
Theorem 5 of Miller and MocanUL[6, p. 532].

(i) Putting 8 = 1 and\(z) = 1 in Theorenj 1./1, we get the result of A. Lecko et.al. [4, p.
198, Theorem 2.1].

(iv) In Theoren] 1.1, taking: = 1, we get the following result:

Let 3 > 0 and letd, be the solution of the equation

3
Bom = g — arctan 7,

for a suitable fixed) > 0 such that\(z) : £ — C'is a function satisfying

dRe A(2)
1+0|ImA(2)|
If p € A’ satisfies the non-autonomous differential subordination

P (2) + AP ()2 () < (1 i ) e,

>n, z€ k.

1—2

p(z) < (1+2)5 in £,

then,

1—=z2
where,
2
v = [0+ —arctann, 0 < d < Jp.
T
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(v) In Theorenj 1.2, taking(z) = 1 and = 1, we get the result of A. Leckd[3, p. 344,
Theorem 2.1].

(vi) Puttinga = § = 1 andk = 2 in Theorenj 1.2, we obtain the following result:
For0 <0 < 1andn > 0, let\(z) : E — C be a function satisfying
d|A(z)|cosy
x + 0| A(2)]|]siny|
where|y — ArgA\(z)| = & andz = (1 +6) 2" (1 —6) 2.
If p € A’ satisfies,

p(2) + A(2) 2 (1 + Z)w

p(2) 1—=2

p(z) < Gtz)é

in £/, wherevy, = § + %arctan 7.
Taking A\(z) = A, a positive real number in the above result, we get the well-known
differential subordination (segl[7, p. 268, 5.1-40]).
(vii) Taking 3 + « in place of3, A\(z) = 1,k = 2 andp(z) = z;:;gh wheref € A, in
Theorenj 1.p, we get the following (Also see Darus and Thomas [2, p. 1050, Theorem
1)):
Leta € [0,1],6 € (0,1) andg > 0 be such thab < (3+a)0 < 2. If f € A satisfies

() D] < ()

>n, z€Fk,

in E, then,

then,
z2f'(2) 1+2\° .
E
e <<1—z) e
where,
o —56+2—aarctan tana—ﬂ—i— i
’ T 2 (1—1—5)%5(1—5)1;26cos%7r .

(vii) Writing =1, a =1, AN(2) = 1, k = 2andp(z) = zf'(z)/f(z), wheref € A, in
Theoren] 1.p, we get well-known result of Nunokawa and Thomas [8, p. 364, Theo-
reml].

4. APPLICATIONS TO UNIVALENT FUNCTIONS

In this section, we give some applications of our results to univalent functions and obtain
some new conditions for univalence, starlikeness and strongly starlikeness.
A function f € A is said to be strongly starlike of order0 < o < 1, if

2f'(2) am .
<— InkE.
f(2) 2
We denote the set of all such functions §%(«). The classS*(«) was introduced and studied

independently by Brannan and Kirwéan [1] and Stankiewicz [10]. Note $hét) is the usual
class of starlike functiong in A satisfying

Re [ZJ{(SW >0, 2¢€ E.

arg
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We denote this class byt.
First of all, we note that iff € A, then the functionalé, f(z) and%f)) are all members
of the classA’.

Theorem 4.1.Leta € [0, 1] and letd, = 0.6165. .. be the unique root of the equation
(4.2) 2arctan(l — 0) + 7(1 —20) = 0.

Further, let3 > 0 be such thapls < 3, < 2for 0 < § < &. If afunctionf € A,
f(z) #0, z € E, satisfies

/ 8 zf"(z) : 1+ 2’
(4.2) (f'(2)) {1+ f’(z)] <<1_Z , z€F,
thenf € St wherey = (3 + 2farctan 0.
Proof. In Theorenj 111, taking(z) = 1 andp(z) = f'(z), the subordinatior] (42) implies

1 5
4.3) £1(2) < ( “) :€E,
1—=z
wherey = 3§+ 22arctan d. Again using Theore@.l with = 8 = A\(z) = landp(z) = f(j),
we get from|[(4.B),
I
/() =< (1+2) , z€l,
z 1—z
whered =y + 2 arctanu which is equivalent td (4]1) with = 1 — 6. Now
2f'(2) : f(z) ’
ar < |ar Z)| + |ar
80 larg f'(2))] 8=
e m
< =
<@+ngz =73
and the desired result follows. O

Writing p(z) = 22 andA(z) = 1 in Theoren] L]L, we get:

Lemma 4.2. Leta € [0, 1]be fixed and lef € (0, 6y}, whered, is the solution of the equation
™
Bom =21 — « (§ + arctan 5)

for fixeds > 0. If f € A, 12 £ 0, 2z € B, satisfies
FEN™ e (142
(1) rer<(12) ne

é
0 (1) Lo,

z 1—2

then,

wherey = 36 + 2?“ arctan 9.

Theorem 4.3.Leta € [0,1], 8 > 0 be fixed. Suppose that,a/2 < v < «, is the unique
root of the equation

(4.4) B = (a—7)cot [(27_0‘) g]

«
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Letf e A 12 20, » € E, satisfy
2)\ P 2\ .
(4.5) (M) (f'(2)* < G t Z) in E.

z

Thenf € St.
Proof. In view of (4.5) and Lemmpa 4.2, we have

5
f(z) . (1+z) -

z 1—2

whered is given by the equation

(4.6) v =00+ 2a arctan 9.
m
We observe thaf (4]6) is equivalent fo (4.4) with= o — . Now
2f'(2) e (FEN IO
<
a |arg 8 ‘_ arg(f'(2)) ( . + |arg .
yr - [Bom am

< g7 0

-2 + 2 27
and the conclusion follows. O

Remark 4.4. Takinga = 1 in Theorenj 4.3, we get the Theorem 1 of Ponnusary [9, p. 403].

Takinga = 8 = § in Theorenj 4.3, we get
Example 4.1. For f € A, the differential subordination

7)< (Tz)v in I

implies thatf is starlike inE wherey = 0.3082 . . . is given by2 arctan (1—2v)+m(1—4v) = 0.
Settingp(z) = f'(z) ando = A(z) = 1 in Theorenj 1.]1, we obtain

Corollary 4.5. For g > 0, if an analytic functionf in A satisfies

28+1

P+ () 2f"(2) < (1 ! ) "y

1—2

then
1+2z

1—2

f'(z) < in E,

and, hencef is univalent inE.

Writing p(z) = Z}C(S) k =2 and(f + «) in place ofg in Theore , we get the following
result:
Theorem 4.6.Leta € [0, 1] and3 > 0 be fixed. Leb € (0, 1) be such thab < (5 + «)d < 2.
For a fixedn > 0, let \(z) : E — C be a function satisfying
d|A(z)|cosy
x + 0| A(2)]|[siny|
1-6

where|y) — Arg A(z)| = & andz = (1 + 5 (1—6)7.

>n, z€k,
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If f € A satisfies the differential subordination
')\’ 2f'(2) ")\ (1+2\"
(75 la-refg a0 53] < (15)
in E, then
z2f'(z) 1+2\°
) - (1 - )
inEi.e. f € 5*(6)in E, wherey, = (8 + a)d + Zarctan 1.

Takings =0, a =1, A\(2) = A, Areal,in Theore6, we obtain the well-known redult [7,
p. 266, Cor. 5. 1i. 1].
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