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ABSTRACT. Making use of the generalized hypergeometric functions, we introduce some gen-
eralized class ofk−uniformly convex and starlike functions and for this class, we settle the
Silverman’s conjecture for the integral means inequality. In particular, we obtain integral means
inequalities for various classes of uniformly convex and uniformly starlike functions in the unit
disc.
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1. I NTRODUCTION

Let A denote the class of functions of the form

(1.1) f(z) = z +
∞∑

n=2

anz
n

which are analytic and univalent in the open discU = {z : z ∈ C, |z| < 1}. For functions
f ∈ A given by (1.1) andg ∈ A given byg(z) = z +

∑∞
n=2 bnz

n, we define the Hadamard
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product (or convolution ) off andg by

(1.2) (f ∗ g)(z) = z +
∞∑

n=2

anbnz
n, z ∈ U.

For complex parametersα1, . . . , αl andβ1, . . . , βm (βj 6= 0,−1, . . . ; j = 1, 2, . . . ,m) the
generalized hypergeometric functionlFm(z) is defined by

lFm(z) ≡ lFm(α1, . . . αl; β1, . . . , βm; z) :=
∞∑

n=0

(α1)n . . . (αl)n

(β1)n . . . (βm)n

zn

n!
(1.3)

(l ≤ m + 1; l,m ∈ N0 := N ∪ {0}; z ∈ U)

whereN denotes the set of all positive integers and(x)n is the Pochhammer symbol defined by

(1.4) (x)n =

{
1, n = 0
x(x + 1)(x + 2) · · · (x + n− 1), n ∈ N.

The notationlFm is quite useful for representing many well-known functions such as the
exponential, the Binomial, the Bessel, the Laguerre polynomial, and others; for example see [5]
and [17].

For positive real values ofα1, . . . , αl andβ1, . . . , βm (βj 6= 0,−1, . . . ; j = 1, 2, . . . ,m), let
H(α1, . . . αl; β1, . . . , βm) : A → A be a linear operator defined by

[(H(α1, . . . αl; β1, . . . , βm))(f)](z) := z lFm(α1, α2, . . . αl; β1, β2 . . . , βm; z) ∗ f(z)

= z +
∞∑

n=2

Γn anz
n,(1.5)

where

(1.6) Γn =
(α1)n−1 . . . (αl)n−1

(n− 1)!(β1)n−1 . . . (βm)n−1

.

For notational simplicity, we use a shorter notationH l
m[α1, β1] for H(α1, . . . αl; β1, . . . , βm) in

the sequel.
The linear operatorH l

m[α1, β1] called the Dziok-Srivastava operator (see [7]), includes (as
its special cases) various other linear operators introduced and studied by Bernardi [3], Carlson
and Shaffer [6], Libera [10], Livingston [12], Owa [15], Ruscheweyh [21] and Srivastava-Owa
[27].

For λ ≥ 0, 0 ≤ γ < 1 andk ≥ 0, we let Sl
m(λ, γ, k) be the subclass ofA consisting of

functions of the form (1.1) and satisfying the analytic criterion

(1.7) Re

{
z(H l

m[α1, β1]f(z))′ + λz2(H l
m[α1, β1]f(z))′′

(1− λ)H l
m[α1, β1]f(z) + λz(H l

m[α1, β1]f(z))′
− γ

}
> k

∣∣∣∣ z(H l
m[α1, β1]f(z))′ + λz2(H l

m[α1, β1]f(z))′′

(1− λ)H l
m[α1, β1]f(z) + λz(H l

m[α1, β1]f(z))′
− 1

∣∣∣∣ , z ∈ U,

whereH l
m[α1, β1]f(z) is given by (1.5). We further letTSl

m(λ, γ, k) = Sl
m(λ, γ, k)∩T, where

(1.8) T :=

{
f ∈ A : f(z) = z −

∞∑
n=2

|an|zn, z ∈ U

}
is a subclass ofA introduced and studied by Silverman [24].

In particular, for0 ≤ λ < 1, the classTSl
m(λ, γ, k) provides a transition fromk−uniformly

starlike functions tok−uniformly convex functions.
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INTEGRAL MEANS FORUNIFORMLY CONVEX AND STARLIKE FUNCTIONS 3

By suitably specializing the values ofl, m, α1, α2, . . . , αl, β1, β2, . . . , βm, λ, γ andk, the
classTSl

m(λ, γ, k) reduces to the various subclasses introduced and studied in [1, 4, 13, 14, 20,
22, 23, 24, 28, 29]. As illustrations, we present some examples for the case whenλ = 0.

Example 1.1. If l = 2 andm = 1 with α1 = 1, α2 = 1, β1 = 1, then

TS2
1(0, γ, k) ≡ UST (γ, k)(1.9)

:=

{
f ∈ T : Re

{
zf ′(z)

f(z)
− γ

}
> k

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ , z ∈ U

}
.

A function inUST (γ, k) is calledk−uniformly starlike of orderγ, 0 ≤ γ < 1. This class was
introduced in [4]. We also note that the classesUST (γ, 0) andUST (0, 0) were first introduced
in [24].

Example 1.2. If l = 2 andm = 1 with α1 = 2, α2 = 1, β1 = 1, then

TS2
1(0, γ, k) ≡ UCT (γ, k)(1.10)

:=

{
f ∈ T : Re

{
1 +

zf ′′(z)

f ′(z)
− γ

}
> k

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ , z ∈ U

}
.

A function in UCT (γ, k) is calledk−uniformly convex of orderγ, 0 ≤ γ < 1. This class
was introduced in [4]. We also observe that

UST (γ, 0) ≡ T ∗(γ), UCT (γ, 0) ≡ C(γ)

are, respectively, well-known subclasses of starlike functions of orderγ and convex functions
of orderγ. Indeed it follows from (1.9) and (1.10) that

(1.11) f ∈ UCT (γ, k) ⇔ zf ′ ∈ UST (γ, k).

Example 1.3. If l = 2 andm = 1 with α1 = δ + 1 (δ ≥ −1), α2 = 1, β1 = 1, then

TS2
1(0, γ, k) ≡ Rδ(γ, k)

:=

{
f ∈ T : Re

(
z(Dδf(z))′

Dδf(z)
− γ

)
> k

∣∣∣∣z(Dδf(z))′

Dδf(z)
− 1

∣∣∣∣ , z ∈ U

}
,

whereDδ is called Ruscheweyh derivative of orderδ (δ ≥ −1) defined by

Dδf(z) :=
z

(1− z)δ+1
∗ f(z) ≡ H2

1 (δ + 1, 1; 1)f(z).

The classRδ(γ, 0) was studied in [20, 22]. Earlier, this class was introduced and studied by
the first author in [1, 2].

Example 1.4. If l = 2 andm = 1 with α1 = c + 1(c > −1), α2 = 1, β1 = c + 2, then

TS2
1(0, γ, k) ≡ BTc(γ, k)

:=

{
f ∈ T : Re

(
z(Jcf(z))′

Jcf(z)
− γ

)
> k

∣∣∣∣z(Jcf(z))′

Jcf(z)
− 1

∣∣∣∣ , z ∈ U

}
,

whereJc is a Bernardi operator [3] defined by

Jcf(z) :=
c + 1

zc

∫ z

0

tc−1f(t)dt ≡ H2
1 (c + 1, 1; c + 2)f(z).

Note that the operatorJ1 was studied earlier by Libera [10] and Livingston [12].
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Example 1.5. If l = 2 andm = 1 with α1 = a (a > 0), α2 = 1, β1 = c (c > 0), then

TS2
1(0, γ, k) ≡ LT a

c (γ, k)

:=

{
f ∈ T : Re

(
z(L(a, c)f(z))′

L(a, c)f(z)
− γ

)
> k

∣∣∣∣z(L(a, c)f(z))′

L(a, c)f(z)
− 1

∣∣∣∣ , z ∈ U

}
,

whereL(a, c) is a well-known Carlson-Shaffer linear operator [6] defined by

L(a, c)f(z) :=

(
∞∑

k=0

(a)k

(c)k

zk+1

)
∗ f(z) ≡ H2

1 (a, 1; c)f(z).

The classLT a
c (γ, k) was introduced in [13].

We can construct similar examples for the casel = 3 and m = 2 with appropriate real
values of the parameters by using the operatorH3

2 [α1, β1], that isH(α1, α2, α3; β1, β2) studied
by Ponnusamy and Sabapathy [16].

We remark that the classes of uniformly convex and uniformly starlike functions were intro-
duced by Goodman [8, 9] and later generalized by Ronning [18, 19] and others.

In [24], Silverman found that the functionf2(z) = z− z2

2
is often extremal over the familyT.

He applied this function to resolve his integral means inequality, conjectured in [25] and settled
in [26], that ∫ 2π

0

∣∣f(reiθ)
∣∣η dθ ≤

∫ 2π

0

∣∣f2(re
iθ)
∣∣η dθ,

for all f ∈ T, η > 0 and0 < r < 1. In [26], he also proved his conjecture for the subclasses
T ∗(γ) andC(γ) of T.

In this note, we prove Silverman’s conjecture for the functions in the familyTSl
m(λ, γ, k).

By taking appropriate choices of the parametersl,m, α1, . . . , αl, β1, . . . , βm, λ, γ, k, we obtain
the integral means inequalities for several known as well as new subclasses of uniformly convex
and uniformly starlike functions inU. In fact, these results also settle the Silverman’s conjecture
for several other subclasses ofT.

2. L EMMAS AND THEIR PROOFS

To prove our main results, we need the following lemmas.

Lemma 2.1. If γ is a real number andw is a complex number , thenRe(w) ≥ γ ⇔ |w + (1−
γ)| − |w − (1 + γ)| ≥ 0.

Lemma 2.2. If w is a complex number andγ, k are real numbers, then

Re(w) ≥ k|w − 1|+ γ ⇔ Re{w(1 + keiθ)− keiθ} ≥ γ, −π ≤ θ ≤ π.

The proofs of Lemmas 2.1 and 2.2 are straight forward and so are omitted.
The basic tool of our investigation is the following lemma.

Lemma 2.3. Let0 ≤ λ < 1, 0 ≤ γ < 1, k ≥ 0 and suppose that the parametersα1, . . . , αl and
β1, . . . , βm are positive real numbers. Then a functionf belongs to the familyTSl

m(λ, γ, k) if
and only if

(2.1)
∞∑

n=2

(1 + nλ− λ)(n(1 + k)− (γ + k))Γn |an| ≤ 1− γ,

where

(2.2) Γn =
(α1)n−1 . . . (αl)n−1

(β1)n−1 . . . (βm)n−1(n− 1)!
.
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Proof. Let a functionf of the formf(z) = z −
∑∞

n=2 |an|zn in T satisfy the condition (2.1).
We will show that (1.7) is satisfied and sof ∈ TSl

m(λ, γ, k). Using Lemma 2.2, it is enough to
show that

Re

{
z(H l

m[α1, β1]f(z))′ + λz2(H l
m[α1, β1]f(z))′′

(1− λ)H l
m[α1, β1]f(z) + λz(H l

m[α1, β1]f(z))′
(1 + keiθ)− keiθ

}
> γ,(2.3)

−π ≤ θ ≤ π.

That is,Re
{

A(z)
B(z)

}
≥ γ, where

A(z) := [z(H l
m[α1, β1]f(z))′ + λz2(H l

m[α1, β1]f(z))′′)](1 + keiθ)

− keiθ[(1− λ)H l
m[α1, β1]f(z) + λz(H l

m[α1, β1]f(z))′]

= z +
∞∑

n=2

(1 + λn− λ)(keiθ(n− 1) + n)Γn|an|zn,

B(z) := (1− λ)H l
m[α1, β1]f(z) + λz(H l

m[α1, β1]f(z))′

= z +
∞∑

n=2

(1 + λn− λ)Γn|an|zn.

In view of Lemma 2.1, we only need to prove that

|A(z) + (1− γ)B(z)| − |A(z)− (1 + γ)B(z)| ≥ 0.

It is now easy to show that

|A(z) + (1− γ)B(z)| − |A(z)− (1 + γ)B(z)|

≥

[
2(1− γ)− 2

∞∑
n=2

(1 + nλ− λ)[n(1 + k)− (γ + k)]Γn|an|

]
|z|

≥ 0,

by the given condition (2.1). Conversely, supposef ∈ TSl
m(λ, γ, k). Then by Lemma 2.2, we

have (2.3).
Choosing the values ofz on the positive real axis the inequality (2.3) reduces to

Re

 (1−γ)−
∞∑

n=2
(1+nλ−λ)(n−γ)Γnanzn−1−keiθ

∞∑
n=2

(1+nλ−λ)(n−1)Γnanzn−1

1−
∞∑

n=2
(1+nλ−λ)Γnanzn−1

 ≥ 0.

SinceRe(−eiθ) ≥ −ei0 = −1, the above inequality reduces to

Re


(1− γ)−

∞∑
n=2

(1 + nλ− λ)[n(k + 1)− (γ + k)]Γnanr
n−1

1−
∞∑

n=2

(1 + nλ− λ)Γnanrn−1

 ≥ 0.

Letting r → 1−, by the mean value theorem we have desired inequality (2.1). �

Corollary 2.4. If f ∈ TSl
m(λ, γ, k), then

|an| ≤
1− γ

Φ(λ, γ, k, n)
, 0 ≤ λ ≤ 1, 0 ≤ γ < 1, k ≥ 0,
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whereΦ(λ, γ, k, n) = (1 + nλ− λ)[n(1 + k)− (γ + k)]Γn and whereΓn is given by (2.2).
Equality holds for the function

f(z) = z − (1− γ)

Φ(λ, γ, k, n)
zn.

Lemma 2.5. The extreme points ofTSl
m(λ, γ, k) are

(2.4) f1(z) = z and fn(z) = z − (1− γ)

Φ(λ, γ, k, n)
zn, for n = 2, 3, 4, . . . .,

whereΦ(λ, γ, k, n) is defined in Corollary 2.4.

The proof of the Lemma 2.5 is similar to the proof of the theorem on extreme points given in
[24].

For analytic functionsg andh with g(0) = h(0), g is said to be subordinate toh, denoted
by g ≺ h, if there exists an analytic functionw such thatw(0) = 0, |w(z)| < 1 andg(z) =
h(w(z)), for all z ∈ U.

In 1925, Littlewood [11] proved the following subordination theorem.

Lemma 2.6. If the functionsf and g are analytic inU with g ≺ f, then for η > 0, and
0 < r < 1,

(2.5)
∫ 2π

0

∣∣g(reiθ)
∣∣η dθ ≤

∫ 2π

0

∣∣f(reiθ)
∣∣η dθ.

3. M AIN THEOREM

Applying Lemma 2.6, Lemma 2.3 and Lemma 2.5, we prove the following result.

Theorem 3.1. Supposef ∈ TSl
m(λ, γ, k), η > 0, 0 ≤ λ < 1, 0 ≤ γ < 1, k ≥ 0 andf2(z) is

defined by

f2(z) = z − 1− γ

Φ(λ, γ, k, 2)
z2,

whereΦ(λ, γ, k, n) is defined in Corollary 2.4. Then forz = reiθ, 0 < r < 1, we have

(3.1)
∫ 2π

0

|f(z)|η dθ ≤
∫ 2π

0

|f2(z)|η dθ.

Proof. Forf(z) = z −
∑∞

n=2 |an|zn, (3.1) is equivalent to proving that∫ 2π

0

∣∣∣∣∣1−
∞∑

n=2

|an|zn−1

∣∣∣∣∣
η

dθ ≤
∫ 2π

0

∣∣∣∣1− (1− γ)

Φ(λ, γ, k, 2)
z

∣∣∣∣η dθ.

By Lemma 2.6, it suffices to show that

1−
∞∑

n=2

|an|zn−1 ≺ 1− 1− γ

Φ(λ, γ, k, 2)
z.

Setting

(3.2) 1−
∞∑

n=2

|an|zn−1 = 1− 1− γ

Φ(λ, γ, k, 2)
w(z),
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and using (2.1), we obtain

|w(z)| =

∣∣∣∣∣
∞∑

n=2

Φ(λ, γ, k, n)

1− γ
|an|zn−1

∣∣∣∣∣
≤ |z|

∞∑
n=2

Φ(λ, γ, k, n)

1− γ
|an|

≤ |z|.
This completes the proof by Lemma 2.3. �

By taking different choices ofl, m, α1, α2, . . . , αl, β1, β2, . . . , βm, λ, γ andk in the above
theorem, we can state the following integral means results for various subclasses studied earlier
by several researchers.

In view of the Examples 1.1 to 1.5 in Section 1 and Theorem 3.1, we have following corol-
laries for the classes defined in these examples.

Corollary 3.2. If f ∈ UST (γ, k), 0 ≤ γ < 1, k ≥ 0 andη > 0, then the assertion (3.1) holds
true where

f2(z) = z − 1− γ

k + 2− γ
z2.

Remark 3.3. Fixing k = 0, Corollary 3.2 gives the integral means inequality for the class
T ∗(γ) obtained in [26].

Corollary 3.4. If f ∈ UCT (γ, k), 0 ≤ γ < 1, k ≥ 0 andη > 0, then the assertion (3.1) holds
true where

f2(z) = z − 1− γ

2(k + 2− γ)
z2.

Remark 3.5. Fixing k = 0, Corollary 3.4 gives the integral means inequality for the class
C(γ) obtained in [26]. Also, fork = 1, Corollary 3.4 yields the integral means inequality for
the classUCT, studied in [28].

Corollary 3.6. If f ∈ Rδ(γ, k), δ ≥ −1, 0 ≤ γ < 1, k ≥ 0 andη > 0, then the assertion (3.1)
holds true where

f2(z) = z − (1− γ)

(δ + 1)(k + 2− γ)
z2 .

Corollary 3.7. If f ∈ BTc(γ, k), c > −1, 0 ≤ γ < 1, k ≥ 0 andη > 0, then the assertion
(3.1) holds true where

f2(z) = z − (1− γ)(c + 2)

(c + 1)(k + 2− γ)
z2 .

Corollary 3.8. If f ∈ LT a
c (γ, k), a > 0, c > 0, 0 ≤ γ < 1, k ≥ 0 andη > 0, then the assertion

(3.1) holds true where

f2(z) = z − c(1− γ)

a(k + 2− γ)
z2.
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