Journal of Inequalities in Pure and

 Applied MathematicsVolume 4, Issue 5, Article 98, 2003

ASYMPTOTIC BEHAVIOUR OF SOME EQUATIONS IN ORLICZ SPACES

D. MESKINE AND A. ELMAHI
Département de Mathématiques et Informatique
Faculté des Sciences Dhar-Mahraz
B.P 1796 Atlas-Fès,FÈs Maroc.
meskinedriss@hotmail.com

C.P.R DE FÈS, B.P 49, FÈS, MAROC.

Received 26 March, 2003; accepted 05 August, 2003
Communicated by A. Fiorenza

AbSTRACT. In this paper, we prove an existence and uniqueness result for solutions of some bilateral problems of the form

$$
\left\{\begin{array}{l}
\langle A u, v-u\rangle \geq\langle f, v-u\rangle, \forall v \in K \\
u \in K
\end{array}\right.
$$

where A is a standard Leray-Lions operator defined on $W_{0}^{1} L_{M}(\Omega)$, with M an N -function which satisfies the Δ_{2}-condition, and where K is a convex subset of $W_{0}^{1} L_{M}(\Omega)$ with obstacles depending on some Carathéodory function $g(x, u)$. We consider first, the case $f \in$ $W^{-1} E_{\bar{M}}(\Omega)$ and secondly where $f \in L^{1}(\Omega)$. Our method deals with the study of the limit of the sequence of solutions u_{n} of some approximate problem with nonlinearity term of the form $\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right) \times M\left(\left|\nabla u_{n}\right|\right)$.

Key words and phrases: Strongly nonlinear elliptic equations, Natural growth, Truncations, Variational inequalities, Bilateral problems.

2000 Mathematics Subject Classification. 35J25, 35J60.

1. Introduction

Let Ω be an open bounded subset of $\mathbb{R}^{N}, N \geq 2$, with the segment property. Consider the following obstacle problem:

$$
\left\{\begin{array}{l}
\langle A u, v-u\rangle \geq\langle f, v-u\rangle, \forall v \in K, \tag{P}\\
u \in K,
\end{array}\right.
$$

where $A(u)=-\operatorname{div}(a(x, u, \nabla u))$ is a Leray-Lions operator defined on $W_{0}^{1} L_{M}(\Omega)$, with M being an N-function which satisfies the Δ_{2}-condition and where K is a convex subset of $W_{0}^{1} L_{M}(\Omega)$.

[^0]In the variational case (i.e. where $f \in W^{-1} E_{\bar{M}}(\Omega)$), it is well known that problem \mathcal{P} has been already studied by Gossez and Mustonen in [10].

In this paper, we consider a recent approach of penalization in order to prove an existence theorem for solutions of some bilateral problems of $(\overline{\mathcal{P}}\rangle$ type.

We recall that L. Boccardo and F. Murat, see [6], have approximated the model variational inequality:

$$
\left\{\begin{array}{l}
\left\langle-\Delta_{p} u, v-u\right\rangle \geq\langle f, v-u\rangle, \forall v \in K \\
u \in K=\left\{v \in W_{0}^{1, p}(\Omega):|v(x)| \leq 1 \text { a.e. in } \Omega\right\}
\end{array}\right.
$$

with $f \in W^{-1, p^{\prime}}(\Omega)$ and $-\Delta_{p} u=-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$, by the sequence of problems:

$$
\left\{\begin{array}{l}
-\Delta_{p} u_{n}+\left|u_{n}\right|^{n-1} u_{n}=f \text { in } \mathcal{D}^{\prime}(\Omega) \\
u_{n} \in W_{0}^{1, p}(\Omega) \cap L^{n}(\Omega) .
\end{array}\right.
$$

In [7], A. Dall'aglio and L. Orsina generalized this result by taking increasing powers depending also on some Carathéodory function g satisfying the sign condition and some hypothesis of integrability. Following this idea, we have studied in [5] the sequence of problems:

$$
\left\{\begin{array}{l}
-\Delta_{p} u_{n}+\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right)\left|\nabla u_{n}\right|^{p}=f \text { in } \mathcal{D}^{\prime}(\Omega) \\
u_{n} \in W_{0}^{1, p}(\Omega),\left|g\left(x, u_{n}\right)\right|^{n}\left|\nabla u_{n}\right|^{p} \in L^{1}(\Omega)
\end{array}\right.
$$

Here, we introduce the general sequence of equations in the setting of Orlicz-Sobolev spaces

$$
\left\{\begin{array}{l}
A u_{n}+\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right) M\left(\left|\nabla u_{n}\right|\right)=f \text { in } \mathcal{D}^{\prime}(\Omega) \\
u_{n} \in W_{0}^{1} L_{M}(\Omega),\left|g\left(x, u_{n}\right)\right|^{n} M\left(\left|\nabla u_{n}\right|\right) \in L^{1}(\Omega) .
\end{array}\right.
$$

We are interested throughout the paper in studying the limit of the sequence u_{n}. We prove that this limit satisfies some bilateral problem of the (\mathcal{P}) form under some conditions on g. In the first we take $f \in W^{-1} E_{\bar{M}}(\Omega)$ and next in $L^{1}(\Omega)$.

2. Preliminaries

2.1. N-Functions. Let $M: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be an N-function, i.e. M is continuous, convex, with $M(t)>0$ for $t>0, \frac{M(t)}{t} \rightarrow 0$ as $t \rightarrow 0$ and $\frac{M(t)}{t} \rightarrow \infty$ as $t \rightarrow \infty$.

Equivalently, M admits the representation: $M(t)=\int_{0}^{t} a(s) d s$, where $a: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is nondecreasing, right continuous, with $a(0)=0, a(t)>0$ for $t>0$ and $a(t)$ tends to ∞ as $t \rightarrow \infty$.

The N-function \bar{M} conjugate to M is defined by $\bar{M}(t)=\int_{0}^{t} \bar{a}(s) d s$, where $a: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is given by $\bar{a}(t)=\sup \{s: a(s) \leq t\}$ (see [1]).

The N-function is said to satisfy the Δ_{2} condition, denoted by $M \in \Delta_{2}$, if for some $k>0$:

$$
\begin{equation*}
M(2 t) \leq k M(t) \quad \forall t \geq 0 \tag{2.1}
\end{equation*}
$$

when (2.1) holds only for $t \geq$ some $t_{0}>0$ then M is said to satisfy the Δ_{2} condition near infinity.
We will extend these N-functions into even functions on all \mathbb{R}.
Let P and Q be two N-functions. $P \ll Q$ means that P grows essentially less rapidly than Q, i.e. for each $\epsilon>0, \frac{P(t)}{Q(\epsilon t)} \rightarrow 0$ as $t \rightarrow \infty$. This is the case if and only if $\lim _{t \rightarrow \infty} \frac{Q^{-1}(t)}{P^{-1}(t)}=0$.
2.2. Orlicz spaces. Let Ω be an open subset of \mathbb{R}^{N}. The Orlicz class $K_{M}(\Omega)$ (resp. the Orlicz space $L_{M}(\Omega)$) is defined as the set of (equivalence classes of) real valued measurable functions u on Ω such that:

$$
\int_{\Omega} M(u(x)) d x<+\infty \quad\left(\text { resp. } \int_{\Omega} M\left(\frac{u(x)}{\lambda}\right) d x<+\infty \text { for some } \lambda>0\right) .
$$

$L_{M}(\Omega)$ is a Banach space under the norm

$$
\|u\|_{M, \Omega}=\inf \left\{\lambda>0: \int_{\Omega} M\left(\frac{u(x)}{\lambda}\right) d x \leq 1\right\}
$$

and $K_{M}(\Omega)$ is a convex subset of $L_{M}(\Omega)$.
The closure in $L_{M}(\Omega)$ of the set of bounded measurable functions with compact support in $\bar{\Omega}$ is denoted by $E_{M}(\Omega)$.

The equality $E_{M}(\Omega)=L_{M}(\Omega)$ holds if only if M satisfies the Δ_{2} condition, for all t or for t large according to whether Ω has infinite measure or not.

The dual of $E_{M}(\Omega)$ can be identified with $L_{\bar{M}}(\Omega)$ by means of the pairing $\int_{\Omega} u v d x$, and the dual norm of $L_{\bar{M}}(\Omega)$ is equivalent to $\|\cdot\|_{\bar{M}, \Omega}$.

The space $L_{M}(\Omega)$ is reflexive if and only if M and \bar{M} satisfy the Δ_{2} condition, for all t or for t large, according to whether Ω has infinite measure or not.
2.3. Orlicz-Sobolev spaces. We now turn to the Orlicz-Sobolev space, $W^{1} L_{M}(\Omega)$ (resp. $\left.W^{1} E_{M}(\Omega)\right)$ is the space of all functions u such that u and its distributional derivatives up to order 1 lie in $L_{M}(\Omega)$ (resp. $E_{M}(\Omega)$). It is a Banach space under the norm

$$
\|u\|_{1, M}=\sum_{|\alpha| \leq 1}\left\|D^{\alpha} u\right\|_{M} .
$$

Thus, $W^{1} L_{M}(\Omega)$ and $W^{1} E_{M}(\Omega)$ can be identified with subspaces of product of $N+1$ copies of $L_{M}(\Omega)$. Denoting this product by $\prod L_{M}$, we will use the weak topologies $\sigma\left(\prod L_{M}, \prod E_{\bar{M}}\right)$ and $\sigma\left(\prod L_{M}, \prod L_{\bar{M}}\right)$.
The space $W_{0}^{1} E_{M}(\Omega)$ is defined as the (norm) closure of the Schwarz space $D(\Omega)$ in $W^{1} E_{M}(\Omega)$ and the space $W_{0}^{1} L_{M}(\Omega)$ as the $\sigma\left(\prod L_{M}, \prod E_{\bar{M}}\right)$ closure of $D(\Omega)$ in $W^{1} L_{M}(\Omega)$.

We say that u_{n} converges to u for the modular convergence in $W^{1} L_{M}(\Omega)$ if for some $\lambda>0$

$$
\int_{\Omega} M\left(\frac{D^{\alpha} u_{n}-D^{\alpha} u}{\lambda}\right) d x \rightarrow 0 \text { for all }|\alpha| \leq 1
$$

This implies convergence for $\sigma\left(\prod L_{M}, \prod L_{\bar{M}}\right)$.
If M satisfies the Δ_{2}-condition on \mathbb{R}^{+}, then modular convergence coincides with norm convergence.
2.4. The spaces $W^{-1} L_{\bar{M}}(\Omega)$ and $W^{-1} E_{\bar{M}}(\Omega)$. Let $W^{-1} L_{\bar{M}}(\Omega)$ (resp. $W^{-1} E_{\bar{M}}(\Omega)$) denote the space of distributions on Ω which can be written as sums of derivatives of order ≤ 1 of functions in $L_{\bar{M}}$ (resp. $E_{\bar{M}}(\Omega)$). It is a Banach space under the usual quotient norm.
If the open set Ω has the segment property then the space $D(\Omega)$ is dense in $W_{0}^{1} L_{M}(\Omega)$ for the modular convergence and thus for the topology $\sigma\left(\prod_{M}, \prod_{\bar{M}}\right)$ (cf. [8, 9]). Consequently, the action of a distribution in $W^{-1} L_{\bar{M}}(\Omega)$ on an element of $W_{0}^{1} L_{M}(\Omega)$ is well defined.
2.5. Lemmas related to the Nemytskii operators in Orlicz spaces. We recall some lemmas introduced in [3] which will be used in this paper.

Lemma 2.1. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be uniformly Lipschitzian, with $F(0)=0$. Let M be an N-function and let $u \in W^{1} L_{M}(\Omega)$ (resp. $W^{1} E_{M}(\Omega)$). Then $F(u) \in W^{1} L_{M}(\Omega)$ (resp. $W^{1} E_{M}(\Omega)$). Moreover, if the set D of discontinuity points of F^{\prime} is finite, then

$$
\frac{\partial}{\partial x_{i}} F(u)= \begin{cases}F^{\prime}(u) \frac{\partial}{\partial x_{i}} u & \text { a.e. in }\{x \in \Omega: u(x) \notin D\} \\ 0 & \text { a.e. in }\{x \in \Omega: u(x) \notin D\}\end{cases}
$$

Lemma 2.2. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be uniformly Lipschitzian, with $F(0)=0$. We suppose that the set of discontinuity points of F^{\prime} is finite. Let M be an N-function, then the mapping $F: W^{1} L_{M}(\Omega) \rightarrow W^{1} L_{M}(\Omega)$ is sequentially continuous with respect to the weak* topology $\sigma\left(\prod L_{M}, \prod E_{\bar{M}}\right)$.
2.6. Abstract lemma applied to the truncation operators. We now give the following lemma which concerns operators of the Nemytskii type in Orlicz spaces (see [3]).

Lemma 2.3. Let Ω be an open subset of \mathbb{R}^{N} with finite measure.
Let M, P and Q be N-functions such that $Q \ll P$, and let $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéodory function such that a.e. $x \in \Omega$ and all $s \in \mathbb{R}$:

$$
|f(x, s)| \leq c(x)+k_{1} P^{-1} M\left(k_{2}|s|\right),
$$

where k_{1}, k_{2} are real constants and $c(x) \in E_{Q}(\Omega)$.
Then the Nemytskii operator N_{f} defined by $N_{f}(u)(x)=f(x, u(x))$ is strongly continuous from

$$
\mathcal{P}\left(E_{M}(\Omega), \frac{1}{k_{2}}\right)=\left\{u \in L_{M}(\Omega): d\left(u, E_{M}(\Omega)\right)<\frac{1}{k_{2}}\right\}
$$

into $E_{Q}(\Omega)$.

3. The Main Result

Let Ω be an open bounded subset of $\mathbb{R}^{N}, N \geq 2$, with the segment property.
Let M be an N-function satisfying the Δ_{2}-condition near infinity.
Let $A(u)=-\operatorname{div}(a(x, \nabla u))$ be a Leray-Lions operator defined on $W_{0}^{1} L_{M}(\Omega)$ into $W^{-1} L_{\bar{M}}(\Omega)$, where $a: \Omega \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a Carathéodory function satisfying for a.e. $x \in \Omega$ and for all $\zeta, \zeta^{\prime} \in \mathbb{R}^{N},\left(\zeta \neq \zeta^{\prime}\right)$:

$$
\begin{gather*}
|a(x, \zeta)| \leq h(x)+\bar{M}^{-1} M\left(k_{1}|\zeta|\right) \tag{3.1}\\
\left(a(x, \zeta)-a\left(x, \zeta^{\prime}\right)\right)\left(\zeta-\zeta^{\prime}\right)>0 \tag{3.2}\\
a(x, \zeta) \zeta \geq \alpha M\left(\frac{|\zeta|}{\lambda}\right) \tag{3.3}
\end{gather*}
$$

with $\alpha, \lambda>0, k_{1} \geq 0, h \in E_{\bar{M}}(\Omega)$.
Furthermore, let $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéodory function such that for a.e. $x \in \Omega$ and for all $s \in \mathbb{R}$:

$$
\begin{equation*}
g(x, s) s \geq 0 \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
|g(x, s)| \leq b(|s|) \tag{3.5}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
\text { for almost } x \in \Omega \backslash \Omega_{+}^{\infty} \text { there exists } \epsilon=\epsilon(x)>0 \text { such that: } \tag{3.6}\\
g(x, s)>1, \forall s \in] q_{+}(x), q_{+}(x)+\epsilon[; \\
\text { for almost } x \in \Omega \backslash \Omega_{-}^{\infty} \text { there exists } \epsilon=\epsilon(x)>0 \text { such that: } \\
g(x, s)<-1, \forall s \in] q_{-}(x)-\epsilon, q_{-}(x)[
\end{array}\right.
$$

where $b: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a continuous and nondecreasing function, with $b(0)=0$ and where

$$
\begin{aligned}
q_{+}(x) & =\inf \{s>0: g(x, s) \geq 1\} \\
q_{-}(x) & =\sup \{s<0: g(x, s) \leq-1\} \\
\Omega_{+}^{\infty} & =\left\{x \in \Omega: q_{+}(x)=+\infty\right\} \\
\Omega_{-}^{\infty} & =\left\{x \in \Omega: q_{-}(x)=-\infty\right\}
\end{aligned}
$$

We define for s and k in $\mathbb{R}, k \geq 0, T_{k}(s)=\max (-k, \min (k, s))$.
Theorem 3.1. Let $f \in W^{-1} E_{\bar{M}}(\Omega)$. Assume that $(3.1)-(3.6)$ hold true and that the function $s \rightarrow g(x, s)$ is nondecreasing for a.e. $x \in \Omega$. Then, for any real number $\mu>0$, the problem

$$
\left\{\begin{array}{l}
A\left(u_{n}\right)+\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right) M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right)=f \text { in } \mathcal{D}^{\prime}(\Omega) \tag{n}\\
u_{n} \in W_{0}^{1} L_{M}(\Omega),\left|g\left(x, u_{n}\right)\right|^{n} M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) \in L^{1}(\Omega)
\end{array}\right.
$$

admits at least one solution u_{n} such that:

$$
\begin{equation*}
\forall k>0 \quad T_{k}\left(u_{n}\right) \rightarrow T_{k}(u) \text { for modular convergence in } W_{0}^{1} L_{M}(\Omega) \tag{3.7}
\end{equation*}
$$

where u is the unique solution of the following bilateral problem

$$
\left\{\begin{array}{l}
\langle A u, v-u\rangle \geq\langle f, v-u\rangle, \forall v \in K \tag{P}\\
u \in K=\left\{v \in W_{0}^{1} L_{M}(\Omega): q_{-} \leq v \leq q_{+} \text {a.e. }\right\}
\end{array}\right.
$$

Remark 3.2. If the function $s \rightarrow g(x, s)$ is strictly nondecreasing for a.e. $x \in \Omega$ then the assumption (3.6) holds true.

Proof. Step 1: A priori estimates.
The existence of u_{n} is given by Theorem 3.1 of [3]. Choosing $v=u_{n}$ as a test function in $\left(\overline{P_{n}}\right)$, and using the sign condition (3.4), we get

$$
\left\langle A u_{n}, u_{n}\right\rangle \leq\left\langle f, u_{n}\right\rangle
$$

By Proposition 5 of [11] one has:

$$
\begin{equation*}
\int_{\Omega} M\left(\frac{\left|\nabla u_{n}\right|}{\lambda}\right) d x \leq C, \text { and } \int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} d x \leq C \tag{3.8}
\end{equation*}
$$

$$
\begin{gather*}
\left(a\left(x, u_{n}, \nabla u_{n}\right)\right) \text { is bounded in }\left(L_{\bar{M}}(\Omega)\right)^{N} \tag{3.9}\\
\int_{\Omega}\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right) M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) u_{n} d x \leq C . \tag{3.10}
\end{gather*}
$$

We then deduce

$$
\int_{\left\{\left|u_{n}\right|>k\right\}}\left|g\left(x, u_{n}\right)\right|^{n} M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) d x \leq C, \text { for all } k>0 .
$$

Since b is continuous and since $b(0)=0$ there exists $\delta>0$ such that

$$
b(|s|) \leq 1 \text { for all }|s| \leq \delta
$$

On the other hand, by the Δ_{2} condition there exist two positive constants K and K^{\prime} such that

$$
M\left(\frac{t}{\mu}\right) \leq K M\left(\frac{t}{\lambda}\right)+K^{\prime} \text { for all } t \geq 0
$$

which implies

$$
\int_{\left\{\left|u_{n}\right| \leq \delta\right\}}\left|g\left(x, u_{n}\right)\right|^{n} M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) d x \leq \int_{\left\{\left|u_{n}\right| \leq \delta\right\}}\left(K^{\prime}+K M\left(\frac{\left|\nabla u_{n}\right|}{\lambda}\right)\right) d x
$$

Consequently from (3.8)

$$
\begin{equation*}
\int_{\Omega}\left|g\left(x, u_{n}\right)\right|^{n} M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) d x \leq C, \text { for all } n . \tag{3.11}
\end{equation*}
$$

Step 2: Almost everywhere convergence of the gradients.
Since $\left(u_{n}\right)$ is a bounded sequence in $W_{0}^{1} L_{M}(\Omega)$ there exist some $u \in W_{0}^{1} L_{M}(\Omega)$ such that (for a subsequence still denoted by u_{n})

$$
\begin{equation*}
u_{n} \rightharpoonup u \text { weakly in } W_{0}^{1} L_{M}(\Omega) \text { for } \sigma\left(\prod L_{M}, \prod E_{\bar{M}}\right), \text { strongly in } E_{M}(\Omega), \tag{3.12}
\end{equation*}
$$ and a.e. in Ω.

Furthermore, if we have

$$
A u_{n}=f-\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right) M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right)
$$

with $\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right) M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right)$ being bounded in $L^{1}(\Omega)$ then as in [2], one can show that

$$
\begin{equation*}
\nabla u_{n} \rightarrow \nabla u \text { a.e. in } \Omega . \tag{3.13}
\end{equation*}
$$

Step 3: $u \in K=\left\{v \in W_{0}^{1} L_{M}(\Omega): q_{-} \leq v \leq q_{+}\right.$a.e. in $\left.\Omega\right\}$.
Since $s \rightarrow g(x, s)$ is nondecreasing, then in view of 3.6, we have:

$$
\{s \in \mathbb{R}:|g(x, s)| \leq 1 \text { a.e. in } \Omega\}=\left\{s \in \mathbb{R}: q_{-} \leq s \leq q_{+} \text {a.e. in } \Omega\right\}
$$

It suffices to verify that $|g(x, u)| \leq 1$ a.e.
We have

$$
\int_{\Omega}\left|g\left(x, u_{n}\right)\right|^{n} M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) d x \leq C
$$

which gives

$$
\left.\int_{\left\{\left|g\left(x, u_{n}\right)\right|>k\right\}}\left|g\left(x, u_{n}\right)\right|^{n} M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) \right\rvert\, d x \leq C
$$

and

$$
\int_{\left\{\left|g\left(x, u_{n}\right)\right|>k\right\}} M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) d x \leq \frac{C}{k^{n}}
$$

where $k>1$. Letting $n \rightarrow+\infty$ for k fixed, we deduce by using Fatou's lemma

$$
\int_{\{|g(x, u)|>k\}} M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) d x=0
$$

and so that,

$$
|g(x, u)| \leq 1 \text { a.e. in } \Omega .
$$

Step 4: Strong convergence of the truncations.
Let $\phi(s)=s \exp \left(\gamma s^{2}\right)$, where γ is chosen such that $\gamma \geq\left(\frac{1}{\alpha}\right)^{2}$.
It is well known that $\phi^{\prime}(s)-\frac{2 K}{\alpha}|\phi(s)| \geq \frac{1}{2}, \forall s \in \mathbb{R}$, where K is a constant which will be used later. The use of the test function $v_{n}=\phi\left(z_{n}\right)$ in \bar{P}_{n} where $z_{n}=T_{k}\left(u_{n}\right)-T_{k}(u)$ gives

$$
\left\langle A u_{n}, \phi\left(z_{n}\right)\right\rangle+\int_{\Omega}\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right) M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) \phi\left(z_{n}\right) d x=\left\langle f, \phi\left(z_{n}\right)\right\rangle
$$

which implies, by using the fact that $g\left(x, u_{n}\right) \phi\left(z_{n}\right) \geq 0$ on $\left\{x \in \Omega:\left|u_{n}\right|>k\right\}$,

$$
\begin{aligned}
& \left\langle A u_{n}, \phi\left(z_{n}\right)\right\rangle+\int_{\left\{0 \leq u_{n} \leq T_{k}(u)\right\} \cap\left\{\left|u_{n}\right| \leq k\right\}}\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right) M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) \phi\left(z_{n}\right) d x \\
& \quad+\int_{\left\{T_{k}(u) \leq u_{n} \leq 0\right\} \cap\left\{\left|u_{n}\right| \leq k\right\}}\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right) M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) \phi\left(z_{n}\right) d x \leq\left\langle f, \phi\left(z_{n}\right)\right\rangle .
\end{aligned}
$$

The second and the third terms of the last inequality will be denoted respectively by $I_{n, k}^{1}$ and $I_{n, k}^{2}$ and $\epsilon_{i}(n)$ denote various sequences of real numbers which tend to 0 as $n \rightarrow+\infty$.
On the one hand we have

$$
\begin{aligned}
\left|I_{n, k}^{1}\right| & \leq \int_{\left\{0 \leq u_{n} \leq T_{k}(u)\right\} \cap\left\{\left|u_{n}\right| \leq k\right\}}\left|g\left(x, u_{n}\right)\right|^{n} M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right)\left|\phi\left(z_{n}\right)\right| d x \\
& \leq \int_{\left\{0 \leq u_{n} \leq u\right\} \cap\left\{\left|u_{n}\right| \leq k\right\}}\left|g\left(x, u_{n}\right)\right|^{n} M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right)\left|\phi\left(z_{n}\right)\right| d x,
\end{aligned}
$$

but since $\left|g\left(x, u_{n}\right)\right| \leq 1$ on $\left\{x \in \Omega: 0 \leq u_{n} \leq u\right\}$, then we have

$$
\left|I_{n, k}^{1}\right| \leq \int_{\left\{\left|u_{n}\right| \leq k\right\}} M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right)\left|\phi\left(z_{n}\right)\right| d x .
$$

By using the fact that

$$
M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) \leq K^{\prime}+K M\left(\frac{\left|\nabla u_{n}\right|}{\lambda}\right)
$$

we obtain

$$
\left|I_{n, k}^{1}\right| \leq \int_{\Omega} K^{\prime}\left|\phi\left(z_{n}\right)\right| d x+\frac{K}{\alpha} \int_{\Omega} a\left(x, \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right)\left|\phi\left(z_{n}\right)\right| d x,
$$

which gives

$$
\begin{equation*}
\left|I_{n, k}^{1}\right| \leq \epsilon_{1}(n)+\frac{K}{\alpha} \int_{\Omega} a\left(x, \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right)\left|\phi\left(z_{n}\right)\right| d x . \tag{3.14}
\end{equation*}
$$

Similarly,

$$
\begin{align*}
\left|I_{n, k}^{2}\right| & \leq \int_{\left\{\left|u_{n}\right| \leq k\right\}} M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right)\left|\phi\left(z_{n}\right)\right| d x \tag{3.15}\\
& \leq \epsilon_{1}(n)+\frac{K}{\alpha} \int_{\Omega} a\left(x, \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right)\left|\phi\left(z_{n}\right)\right| d x .
\end{align*}
$$

The first term on the left hand side of the last inequality can be written as:

$$
\begin{align*}
\int_{\Omega} a\left(x, \nabla u_{n}\right)\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] \phi^{\prime}\left(z_{n}\right) d x & \tag{3.16}\\
=\int_{\left\{\left|u_{n}\right| \leq k\right\}} a\left(x, \nabla u_{n}\right)\left[\nabla T_{k}\left(u_{n}\right)\right. & \left.-\nabla T_{k}(u)\right] \phi^{\prime}\left(z_{n}\right) d x \\
& -\int_{\left\{\left|u_{n}\right|>k\right\}} a\left(x, \nabla u_{n}\right) \nabla T_{k}(u) \phi^{\prime}\left(z_{n}\right) d x
\end{align*}
$$

For the second term on the right hand side of the last equality, we have

$$
\left|\int_{\left\{\left|u_{n}\right|>k\right\}} a\left(x, \nabla u_{n}\right) \nabla T_{k}(u) \phi^{\prime}\left(z_{n}\right) d x\right| \leq C_{k} \int_{\Omega}\left|a\left(x, \nabla u_{n}\right)\right|\left|\nabla T_{k}(u)\right| \chi_{\left\{\left|u_{n}\right|>k\right\}} d x .
$$

The right hand side of the last inequality tends to 0 as n tends to infinity. Indeed, the sequence $\left(a\left(x, \nabla u_{n}\right)\right)_{n}$ is bounded in $\left(L_{\bar{M}}(\Omega)\right)^{N}$ while $\nabla T_{k}(u) \chi_{\left\{\left|u_{n}\right|>k\right\}}$ tends to 0 strongly in $\left(E_{M}(\Omega)\right)^{N}$.
We define for every $s>0, \Omega_{s}=\left\{x \in \Omega:\left|\nabla T_{k}(u(x))\right| \leq s\right\}$ and we denote by χ_{s} its characteristic function. For the first term of the right hand side of (3.16), we can write

$$
\begin{align*}
& \int_{\left\{\left|u_{n}\right| \leq k\right\}} a\left(x, \nabla u_{n}\right)\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] \phi^{\prime}\left(z_{n}\right) d x \tag{3.17}\\
& =\int_{\Omega}\left[a\left(x, \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, \nabla T_{k}(u) \chi_{s}\right)\right]\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}\right] \phi^{\prime}\left(z_{n}\right) d x \\
& \quad+\int_{\Omega} a\left(x, \nabla T_{k}(u) \chi_{s}\right)\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}\right] \phi^{\prime}\left(z_{n}\right) d x \\
& \quad-\int_{\Omega} a\left(x, \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}(u) \chi_{\Omega \backslash \Omega_{s}} \phi^{\prime}\left(z_{n}\right) d x .
\end{align*}
$$

The second term of the right hand side of (3.17) tends to 0 since

$$
a\left(x, \nabla T_{k}\left(u_{n}\right) \chi_{s}\right) \phi^{\prime}\left(z_{n}\right) \rightarrow a\left(x, \nabla T_{k}(u) \chi_{s}\right) \text { strongly in }\left(E_{\bar{M}}(\Omega)\right)^{N}
$$

by Lemma 2.3 and

$$
\nabla T_{k}\left(u_{n}\right) \rightharpoonup \nabla T_{k}(u) \text { weakly in }\left(L_{M}(\Omega)\right)^{N} \text { for } \sigma\left(\prod L_{M}(\Omega), \prod E_{\bar{M}}(\Omega)\right)
$$

The third term of 3.17 tends to $-\int_{\Omega} a\left(x, \nabla T_{k}(u)\right) \nabla T_{k}(u) \chi_{\Omega \backslash \Omega_{s}} d x$ as $n \rightarrow \infty$ since

$$
a\left(x, \nabla T_{k}\left(u_{n}\right)\right) \rightharpoonup a\left(x, \nabla T_{k}(u)\right) \text { weakly for } \sigma\left(\prod E_{\bar{M}}(\Omega), \prod L_{M}(\Omega)\right)
$$

Consequently, from (3.16) we have

$$
\begin{align*}
& \int_{\Omega} a\left(x, \nabla u_{n}\right)\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] \phi^{\prime}\left(z_{n}\right) d x \tag{3.18}\\
&=\int_{\Omega}\left[a\left(x, \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, \nabla T_{k}(u) \chi_{s}\right)\right] \\
& \times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}\right] \phi^{\prime}\left(z_{n}\right) d x+\epsilon_{2}(n)
\end{align*}
$$

We deduce that, in view of 3.17) and 3.18,

$$
\begin{aligned}
& \int_{\Omega}\left[a\left(x, \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, \nabla T_{k}(u) \chi_{s}\right)\right] \\
& \qquad \begin{aligned}
\times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}\right] & \left(\phi^{\prime}\left(z_{n}\right)-\frac{2 K}{\alpha}\left|\phi\left(z_{n}\right)\right|\right) d x \\
& \leq \epsilon_{3}(n)+\int_{\Omega} a\left(x, \nabla T_{k}(u)\right) \nabla T_{k}(u) \chi_{\Omega \backslash \Omega_{s}} d x,
\end{aligned}
\end{aligned}
$$

and so

$$
\begin{aligned}
& \int_{\Omega}\left[a\left(x, \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, \nabla T_{k}(u) \chi_{s}\right)\right]\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}\right] d x \\
& \leq 2 \epsilon_{3}(n)+2 \int_{\Omega} a\left(x, \nabla T_{k}(u)\right) \nabla T_{k}(u) \chi_{\Omega \backslash \Omega_{s}} d x .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \int_{\Omega} a\left(x, \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right) d x \\
& \qquad \begin{aligned}
\leq \int_{\Omega} a\left(x, \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}(u) \chi_{s} d x+ & \int_{\Omega} a\left(x, \nabla T_{k}(u) \chi_{s}\right)\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}\right] d x \\
& +2 \epsilon_{3}(n)+2 \int_{\Omega} a\left(x, \nabla T_{k}(u)\right) \nabla T_{k}(u) \chi_{\Omega \backslash \Omega_{s}} d x .
\end{aligned}
\end{aligned}
$$

Now considering the limit sup over n, one has
(3.19) $\limsup _{n \rightarrow+\infty} \int_{\Omega} a\left(x, \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right) d x$

$$
\begin{aligned}
& \leq \limsup _{n \rightarrow+\infty} \int_{\Omega} a\left(x, \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}(u) \chi_{s} d x+\limsup _{n \rightarrow+\infty} \int_{\Omega} a\left(x, \nabla T_{k}(u) \chi_{s}\right) \\
& \times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}\right] d x+2 \int_{\Omega} a\left(x, \nabla T_{k}(u)\right) \nabla T_{k}(u) \chi_{\Omega \backslash \Omega_{s}} d x
\end{aligned}
$$

The second term of the right hand side of the inequality (3.19) tends to 0 , since

$$
a\left(x, \nabla T_{k}\left(u_{n}\right) \chi_{s}\right) \rightarrow a\left(x, \nabla T_{k}(u) \chi_{s}\right) \text { strongly in } E_{\bar{M}}(\Omega)
$$

while $\nabla T_{k}\left(u_{n}\right)$ tends weakly to $\nabla T_{k}(u)$.
The first term of the right hand side of 3.19 tends to $\int_{\Omega} a\left(x, \nabla T_{k}(u)\right) \nabla T_{k}(u) \chi_{s} d x$ since

$$
a\left(x, \nabla T_{k}\left(u_{n}\right)\right) \rightharpoonup a\left(x, \nabla T_{k}(u)\right) \text { weakly in }\left(L_{\bar{M}}(\Omega)\right)^{N}
$$

for $\sigma\left(\prod L_{\bar{M}}, \prod E_{M}\right)$ while $\nabla T_{k}(u) \chi_{s} \in E_{M}(\Omega)$. We deduce then

$$
\begin{aligned}
& \limsup _{n \rightarrow+\infty} \int_{\Omega} a\left(x, \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right) d x \leq \int_{\Omega} a\left(x, \nabla T_{k}(u)\right) \nabla T_{k}(u) \chi_{s} d x \\
&+2 \int_{\Omega} a\left(x, \nabla T_{k}(u)\right) \nabla T_{k}(u) \chi_{\Omega \backslash \Omega_{s}} d x,
\end{aligned}
$$

by using the fact that $a\left(x, \nabla T_{k}(u)\right) \nabla T_{k}(u) \in L^{1}(\Omega)$ and letting $s \rightarrow \infty$ we get, since $\operatorname{meas}\left(\Omega \backslash \Omega_{s}\right) \rightarrow 0$

$$
\limsup _{n \rightarrow+\infty} \int_{\Omega} a\left(x, \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right) d x \leq \int_{\Omega} a\left(x, \nabla T_{k}(u)\right) \nabla T_{k}(u) d x
$$

which gives, by using Fatou's lemma,

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{\Omega} a\left(x, \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right) d x=\int_{\Omega} a\left(x, \nabla T_{k}(u)\right) \nabla T_{k}(u) d x . \tag{3.20}
\end{equation*}
$$

On the other hand, we have

$$
M\left(\frac{\left|\nabla T_{k}\left(u_{n}\right)\right|}{\mu}\right) \leq K^{\prime}+\frac{K}{\alpha} \int_{\Omega} a\left(x, \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right) d x
$$

then by using (3.20) and Vitali's theorem, one easily has

$$
\begin{equation*}
M\left(\frac{\left|\nabla T_{k}\left(u_{n}\right)\right|}{\mu}\right) \rightarrow M\left(\frac{\left|\nabla T_{k}(u)\right|}{\mu}\right) \text { strongly in } L^{1}(\Omega) . \tag{3.21}
\end{equation*}
$$

By writing

$$
\begin{equation*}
M\left(\frac{\left|\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right|}{2 \mu}\right) \leq \frac{M\left(\frac{\left|\nabla T_{k}\left(u_{n}\right)\right|}{\mu}\right)}{2}+\frac{M\left(\frac{\left|\nabla T_{k}\left(u_{n}\right)\right|}{\mu}\right)}{2} \tag{3.22}
\end{equation*}
$$

one has, by (3.21) and Vitali's theorem again,

$$
\begin{equation*}
T_{k}\left(u_{n}\right) \rightarrow T_{k}(u) \text { for modular convergence in } W_{0}^{1} L_{M}(\Omega) . \tag{3.23}
\end{equation*}
$$

Step 5: u is the solution of the variational inequality (P).
Choosing $w=T_{k}\left(u_{n}-\theta T_{m}(v)\right)$ as a test function in $\left(\overline{P_{n}}\right)$, where $v \in K$ and $0<\theta<1$, gives

$$
\begin{aligned}
\left\langle A u_{n}, T_{k}\left(u_{n}-\theta T_{m}(v)\right)\right\rangle+\int_{\Omega}\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right) M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) & T_{k}\left(u_{n}-\theta T_{m}(v)\right) d x \\
& =\left\langle f, T_{k}\left(u_{n}-\theta T_{m}(v)\right)\right\rangle
\end{aligned}
$$

since $g\left(x, u_{n}\right) T_{k}\left(u_{n}-\theta T_{m}(v)\right) \geq 0$ on

$$
\left\{x \in \Omega: u_{n} \geq 0 \text { and } u_{n} \geq \theta T_{m}(v)\right\} \cup\left\{x \in \Omega: u_{n} \leq 0 \text { and } u_{n} \leq \theta T_{m}(v)\right\}
$$

we have

$$
\begin{aligned}
& \int_{\Omega}\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right) M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) T_{k}\left(u_{n}-\theta T_{m}(v)\right) d x \\
& \quad \geq \int_{\left\{0 \leq u_{n} \leq \theta T_{m}(v)\right\}}\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right) M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) T_{k}\left(u_{n}-\theta T_{m}(v)\right) d x \\
& \quad \quad \quad \int_{\left\{\theta T_{m}(v) \leq u_{n} \leq 0\right\}}\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right) M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) T_{k}\left(u_{n}-\theta T_{m}(v)\right) d x .
\end{aligned}
$$

The first and the second terms in the right hand side of the last inequality will be denoted respectively by $J_{n, m}^{1}$ and $J_{n, m}^{2}$.
Defining

$$
\delta_{1, m}(x)=\sup _{0 \leq s \leq \theta T_{m}(v)} g(x, s)
$$

we get $0 \leq \delta_{1, m}(x)<1$ a.e. and

$$
\left|J_{n, m}^{1}\right| \leq k \int_{\left\{0 \leq u_{n} \leq \theta T_{m}(v)\right\}}\left(\delta_{1, m}(x)\right)^{n} M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) d x
$$

Since

$$
\left|\left(\delta_{1, m}(x)\right)^{n} M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) \chi_{\left\{\left|u_{n}\right| \leq m\right\}}\right| \leq M\left(\frac{\left|\nabla T_{m}\left(u_{n}\right)\right|}{\mu}\right)
$$

we have then by using (3.23) and Lebesgue's theorem

$$
J_{n, m}^{1} \longrightarrow 0 \text { as } n \rightarrow+\infty
$$

Similarly

$$
\left|J_{n, m}^{2}\right| \leq k \int_{\left\{\left|u_{n}\right| \leq m\right\}}\left|\delta_{2, m}(x)\right|^{n} M\left(\frac{\left|\nabla T_{m}\left(u_{n}\right)\right|}{\mu}\right) d x \rightarrow 0 \text { as } n \rightarrow+\infty
$$

where

$$
\delta_{2, m}(x)=\inf _{\theta T_{m}(v) \leq s \leq 0} g(x, s)
$$

On the other hand, by using Fatou's lemma and the fact that

$$
a\left(x, \nabla u_{n}\right) \rightarrow a(x, \nabla u) \text { weakly in }\left(L_{\bar{M}}(\Omega)\right)^{N} \text { for } \sigma\left(\Pi L_{\bar{M}}, \Pi E_{M}\right)
$$

one easily has

$$
\liminf _{n \rightarrow+\infty}\left\langle A u_{n}, T_{k}\left(u_{n}-\theta T_{m}(v)\right)\right\rangle \leq\left\langle A u, T_{k}\left(u-\theta T_{m}(v)\right)\right\rangle
$$

Consequently

$$
\left\langle A u, T_{k}\left(u-\theta T_{m}(v)\right)\right\rangle \leq\left\langle f, T_{k}\left(u-\theta T_{m}(v)\right)\right\rangle
$$

this implies that by letting $k \rightarrow+\infty$, since $T_{k}\left(u-\theta T_{m}(v)\right) \rightarrow u-\theta T_{m}(v)$ for modular convergence in $W_{0}^{1} L_{M}(\Omega)$,

$$
\left\langle A u, u-\theta T_{m}(v)\right\rangle \leq\left\langle f, u-\theta T_{m}(v)\right\rangle
$$

in which we can easily pass to the limit as $\theta \rightarrow 1$ and $m \rightarrow+\infty$ to obtain

$$
\langle A u, u-v\rangle\rangle \leq\langle f, u-v\rangle
$$

4. The L^{1} Case

In this section, we study the same problems as before but we assume that q_{-}and q_{+}are bounded.

Theorem 4.1. Let $f \in L^{1}(\Omega)$. Assume that the hypotheses are as in Theorem 3.1. q_{-}and q_{+} belong to $L^{\infty}(\Omega)$. Then the problem $\left(P_{n}\right)$ admits at least one solution u_{n} such that:

$$
u_{n} \rightarrow u \text { for modular convergence in } W_{0}^{1} L_{M}(\Omega)
$$

where u is the unique solution of the bilateral problem:

$$
\left\{\begin{array}{l}
\langle A u, v-u\rangle \geq \int_{\Omega} f(v-u) d x, \forall v \in K \tag{Q}\\
u \in K=\left\{v \in W_{0}^{1} L_{M}(\Omega): q_{-} \leq v \leq q_{+} \text {a.e. }\right\} .
\end{array}\right.
$$

Proof. We sketch the proof since the steps are similar to those in Section 3 .
The existence of u_{n} is given by Theorem 1 of [4]. Indeed, it is easy to see that $|g(x, s)| \geq 1$ on $\{|s| \geq \gamma\}$, where $\gamma=\max \left\{\right.$ supess $\left.q_{+},-\operatorname{infess} q_{-}\right\}$and so that

$$
|g(x, s)|^{n} M\left(\frac{|\zeta|}{\mu}\right) \geq M\left(\frac{|\zeta|}{\mu}\right) \text { for }|s| \geq \gamma
$$

Step 1: A priori estimates.
Choosing $v=T_{\gamma}\left(u_{n}\right)$, as a test function in $\left(\widehat{P_{n}}\right)$, and using the sign condition (3.4), we obtain

$$
\begin{equation*}
\alpha \int_{\Omega} M\left(\frac{\left|\nabla T_{\gamma}\left(u_{n}\right)\right|}{\lambda}\right) d x \leq \gamma\|f\|_{1} \tag{4.1}
\end{equation*}
$$

and

$$
\int_{\left\{\left|u_{n}\right|>\gamma\right\}}\left|g\left(x, u_{n}\right)\right|^{n} M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) d x \leq\|f\|_{1},
$$

which gives

$$
\int_{\left\{\left|u_{n}\right|>\gamma\right\}} M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) d x \leq C
$$

and finally

$$
\begin{equation*}
\int_{\Omega} M\left(\frac{\left|\nabla u_{n}\right|}{\max \{\lambda, \mu\}}\right) d x \leq C . \tag{4.2}
\end{equation*}
$$

On the other hand, as in Section 3, we have

$$
\begin{equation*}
\int_{\Omega}\left|g\left(x, u_{n}\right)\right|^{n} M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) d x \leq C . \tag{4.3}
\end{equation*}
$$

Step 2: Almost everywhere convergence of the gradients.
Due to (4.2), there exists some $u \in W_{0}^{1} L_{M}(\Omega)$ such that (for a subsequence)

$$
u_{n} \rightharpoonup u \text { weakly in } W_{0}^{1} L_{M}(\Omega) \text { for } \sigma\left(\Pi L_{M}, \Pi E_{\bar{M}}\right) .
$$

Write

$$
A u_{n}=f-\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right) M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right)
$$

and remark that, by 4.2 , the second hand side is uniformly bounded in $L^{1}(\Omega)$. Then as in Section 3

$$
\nabla u_{n} \rightarrow \nabla u \text { a.e. in } \Omega .
$$

Step 3: $u \in K=\left\{v \in W_{0}^{1} L_{M}(\Omega): q_{-} \leq v \leq q_{+}\right.$a.e. in $\left.\Omega\right\}$.
Similarly, as in the proof of Theorem 3.1, one can prove this step with the aid of property (4.3).

Step 4: Strong convergence of the truncations.
It is easy to see that the proof is the same as in Section 3.

Step 5: u is the solution of the bilateral problem (Q).
Let $v \in K$ and $0<\theta<1$. Taking $v_{n}=T_{k}\left(u_{n}-\theta v\right), k>0$ as a test function in $\left(\overline{P_{n}}\right)$, one can see that the proof is the same by replacing $T_{m}(v)$ with v in Section 3. We remark that $K \subset L^{\infty}(\Omega)$.
Step 6: $u_{n} \rightarrow u$ for modular convergence in $W_{0}^{1} L_{M}(\Omega)$.
We shall prove that $\nabla u_{n} \rightarrow \nabla u$ in $\left(L_{M}(\Omega)\right)^{N}$ for the modular convergence by using Vitali's theorem.
Let E be a measurable subset of Ω, we have for any $k>0$
$\int_{E} M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) d x \leq \int_{E \cap\left\{\left|u_{n}\right| \leq k\right\}} M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) d x+\int_{E \cap\left\{\left|u_{n}\right|>k\right\}} M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) d x$.
Let $\epsilon>0$. By virtue of the modular convergence of the truncates, there exists some $\eta(\epsilon, k)$ such that for any E measurable

$$
\begin{equation*}
|E|<\eta(\epsilon, k) \Rightarrow \int_{E \cap\left\{\left|u_{n}\right| \leq k\right\}} M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) d x<\frac{\epsilon}{2}, \quad \forall n . \tag{4.4}
\end{equation*}
$$

Choosing $T_{1}\left(u_{n}-T_{k}\left(u_{n}\right)\right)$, with $k>0$ a test function in $\left(P_{n}\right)$ we obtain:

$$
\begin{aligned}
\left\langle A u_{n}, T_{1}\left(u_{n}-T_{k}\left(u_{n}\right)\right)\right\rangle+\int_{\Omega}\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right) M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) & T_{1}\left(u_{n}-T_{k}\left(u_{n}\right)\right) d x \\
& =\int_{\Omega} f T_{1}\left(u_{n}-T_{k}\left(u_{n}\right)\right) d x
\end{aligned}
$$

which implies

$$
\int_{\left\{\left|u_{n}\right|>k+1\right\}}\left|g\left(x, u_{n}\right)\right|^{n} M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) d x \leq \int_{\left\{\left|u_{n}\right|>k\right\}}|f| d x .
$$

Note that meas $\left\{x \in \Omega:\left|u_{n}(x)\right|>k\right\} \rightarrow 0$ uniformly on n when $k \rightarrow \infty$. We deduce then that there exists $k=k(\epsilon)$ such that

$$
\int_{\left\{\left|u_{n}\right|>k\right\}}|f| d x<\frac{\epsilon}{2}, \forall n,
$$

which gives

$$
\int_{\left\{\left|u_{n}\right|>k+1\right\}}\left|g\left(x, u_{n}\right)\right|^{n} M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) d x<\frac{\epsilon}{2}, \forall n .
$$

By setting $t(\epsilon)=\max \{k+1, \gamma\}$ we obtain

$$
\int_{\left\{\left|u_{n}\right|>t(\epsilon)\right\}} M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) d x<\frac{\epsilon}{2}, \quad \forall n .
$$

Combining (4.4) and (4.5) we deduce that there exists $\eta>0$ such that

$$
\int_{E} M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right)<\epsilon, \quad \forall n \text { when }|E|<\eta, E \text { measurable, }
$$

which shows the equi-integrability of $M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right)$ in $L^{1}(\Omega)$, and therefore we have

$$
M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) \rightarrow M\left(\frac{|\nabla u|}{\mu}\right) \text { strongly in } L^{1}(\Omega) .
$$

By remarking that

$$
M\left(\frac{\left|\nabla u_{n}-\nabla u\right|}{2 \mu}\right) \leq \frac{1}{2}\left[M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right)+M\left(\frac{|\nabla u|}{\mu}\right)\right]
$$

one easily has, by using the Lebesgue theorem

$$
\int_{\Omega} M\left(\frac{\left|\nabla u_{n}-\nabla u\right|}{2 \mu}\right) d x \rightarrow 0 \text { as } n \rightarrow+\infty,
$$

which completes the proof.

Remark 4.2. The condition $b(0)=0$ is not necessary. Indeed, taking $\theta_{h}\left(u_{n}\right), h>0$, as a test function in $\left(P_{n}\right)$ with

$$
\theta_{h}(s)=\left\{\begin{array}{lll}
h s & \text { if } & |s| \leq \frac{1}{h} \\
\operatorname{sgn}(s) & \text { if } & |s| \geq \frac{1}{h}
\end{array}\right.
$$

we obtain

$$
\int_{\Omega}\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right) M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) \theta_{h}\left(u_{n}\right) d x \leq \int_{\Omega} f \theta_{h}\left(u_{n}\right) d x .
$$

and then, by letting $h \rightarrow+\infty$,

$$
\int_{\Omega}\left|g\left(x, u_{n}\right)\right|^{n} M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) d x \leq C .
$$

References

[1] R. ADAMS, Sobolev Spaces, Academic Press, New York, 1975.
[2] A. BENKIRANE and A. ELMAHI, Almost everywhere convergence of the gradients of solutions to elliptic equations in Orlicz spaces and application, Nonlinear Anal. T.M.A., 28 (11) (1997), 1769-1784.
[3] A. BENKIRANE AND A. ELMAHI, An existence theorem for a strongly nonlinear elliptic problem in Orlicz spaces, Nonlinear Anal. T.M.A., 36 (1999), 11-24.
[4] A. BENKIRANE AND A. ELMAHI, A strongly nonlinear elliptic equation having natural growth terms and L^{1} data, Nonlinear Anal. T.M.A., 39 (2000), 403-411.
[5] A. BENKIRANE, A. ELMAHI AND D. MESKINE, On the limit of some nonlinear elliptic problems, Archives of Inequalities and Applications, 1 (2003), 207-220.
[6] L. BOCCARDO and F. MURAT, Increase of power leads to bilateral problems, in Composite Media and Homogenization Theory, G. Dal Maso and G. F. Dell'Antonio (Eds.), World Scientific, Singapore, 1995, pp. 113-123.
[7] A. DALL'AGLIO and L. ORSINA, On the limit of some nonlinear elliptic equations involving increasing powers, Asympt. Anal., 14 (1997), 49-71.
[8] J.-P. GOSSEZ, Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer. Math. Soc., 190 (1974), 163-205.
[9] J.-P. GOSSEZ, Some approximation properties in Orlicz-Sobolev spaces, Studia Math., 74 (1982), 17-24.
[10] J.-P. GOSSEZ, A strongly nonlinear elliptic problem in Orlicz-Sobolev spaces, Proc. A.M.S. Symp. Pure Math., 45 (1986), 455-462.
[11] J.-P. GOSSEZ AND V. MUSTONEN, Variational inequalities in Orlicz-Sobolev spaces, Nonlinear Anal. T.M.A., 11 (1987), 379-392.

[^0]: ISSN (electronic): 1443-5756
 (c) 2003 Victoria University. All rights reserved.

 040-03

