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1. INTRODUCTION
The following inequality of Griss type in real or complex linear spaces is known[(see [1]).

Theorem 1.1.Let(H; (-,-)) be aninner product space ov&r(K = C,R) ande € H, ||e]| = 1.
If ¢,~,®, I are real or complex numbers andy are vectors inH such that the condition

(1.2) Re (Pe —x,x — ¢e) > 0 and Re(T'e —y,y —ve) >0
or, equivalently (se3]),

(12) r =222 < Zj@ -] and Hy—””e <3 Ir =]
holds, then we have the inequality

(13) 2,9} — ) (e, )] < 71 — 6] T —].

The constang Is best possible in the sense that it cannot be replaced by a smaller constant.

Remark 1.2. The case folK = R for the above theorem has been published by the author in
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2 S.S. RAGOMIR

The following particular instances for integrals and means are useful in applications.

Corollary 1.3. Let f,g : [a,b] — K (K = C,R) be Lebesgue measurable and such that there
exists the constants v, ®, ' € K with the property

(14 Re[(@-f@) (7] -3)] 20, Re[("—g(@) (s()—7)] >0

fora.e.z € [a,b], or, equivalently

+ @ 1 +I 1
@9 |rw- 25 <Gl and fol) - 15 < S -l
fora.e.z € [a,b].
Then we have the inequality
(1.6) / f(z dx — —/ f(z)dx - g

—_

<Z|d—¢|lT -
_4 ST =~

The constant is best possible.

The discrete case is incorporated in

Corollary 1.4. Letx,y € K", withx = (x1,...,2,) andy = (y1,...,y,) ande,~v, &, T € K
be such that

(1.7) Re [(® —z;) (7 — ¢)] > 0 and Re[(I'—y;) (7 —7)] = 0,
for eachi € {1,...,n}, or, equivalently,
o+ 1 v+ T 1
. R S g _ L < = _
(1.8) ri— S| <@ -0l and |y~ o= <SP —,

foreachi € {1,...,n}.
Then we have the inequality

e 1< le— | 1

The constant is best possible irf (1.9).

(1.9) @ — ¢l =]

For some recent results related to Gruss type inequalities in inner product spaces, see [3].
More applications of Theoremn 1.1 for integral and discrete inequalities may be found in [4].

The main aim of this paper is to provide other inequalities of Griuss type in the general setting
of inner product spaces over the real or complex number Keldhpplications for Lebesgue
integrals are pointed out as well.

2. A GRUSSTYPE INEQUALITY

The following Griiss type inequality in inner product spaces holds.

Theorem 2.1.Letz,y,e € H with || = 1, and the scalars, 4,0, B € K (K = C,R) such
thatRe (aA) > 0 andRe (bB) > 0. If

(2.1) Re (Ae — z,2 —ae) >0 and Re(Be —y,y —be) >0
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GRUSSTYPE INEQUALITIES 3

or, equivalently (sefg]),
a+ A b+ Be

2

2.2) . <%]B—b[,

§%|A—ay and H

then we have the inequality

23) .99 — {6 (e )] < 7 %‘ZJ})‘?{ ‘(;'B)Kx,@ (e,

The constan§ is best possible in the sense that it cannot be replaced by a smaller constant.

Proof. Apply Schwartz’s inequality ifH; (-, -)) for the vectorse — (z, e) e andy — (y, e) e, to
get (see alsa [1])

(2.4) [, y) = (2, e) (e ml” < (l=” = 1)) (lyll” = [{ys e)]) -
Now, assume that,v € H, andc,C € K with Re (¢C) > 0 andRe (Cv — u,u — cv) > 0.
This last inequality is equivalent to

(2.5) Jull® + Re (eC) |[o]]* < Re | Cu v) + & (u,0)]
=Re[(C+e) (uv)],

since L
Re [C’(u, v}} =Re [C (u,v)].

N

Dividing this inequality by[Re (C'¢)]2 > 0, we deduce

Re [(CY + E) (u, v)} ‘

lull” + [Re (C))2 [Jo]f* <
[Re ()]

(2.6)

N[
=

[Re (eC)]
On the other hand, by the elementary inequality
1
Oép2+anEQPQ7 C(>O7 paqzov
we deduce

1 PN
(2.7) 2|l flofl € ———— [lull* + [Re (€C)]2 [[o]|*.
[Re (cC)]2
Making use of[(2.6) and (2.7) and the fact that for any C, Re (z) < |z|, we get

Re [(C +¢) (u,v)] - |C + ¢

[[ul[ lv]] < ———— < — 1 [(w, )]
2 [Re (cC)]? 2 [Re (cC)]?
Consequently
29 Jull ol ~ I, 03 < %—1} (w00
1|0~ c?
~ 1 Re(eC) [, "

Now, if we write (2.8) for the choices = z, v = e andu = y, v = e respectively and use
(2.4), we deduce the desired resfilt [2.2). The sharpness of the constant will be proved in the
case wherd{ is a real inner product space. O

The following corollary which provides a simpler Gruss type inequality for real constants
(and in particular, for real inner product spaces) holds.
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Corollary 2.2. With the assumptions of Theorém|2.1 and, i, A, B € R are such that4 >
a>0, B>b>0and

(2.9) x—a+Ae S%(A—a) and "y—b+Be §%(B—b),
then we have the inequality

1 (A—a)(B-0)
2.10 - < = .
(2.10) (2,9} = (e} (e} < - Zme @ e (o)

The constang is best possible.
Proof. The prove the sharpness of the cons@assume that the inequali 10) holds in real
inner product spaces with= y and for a constart > 0, i.e.,

(A—a)’
aA
provided||z — “t4¢|| < 1 (A — a), or equivalently(Ae — z,z — ae) > 0.
We choosed = R?, & = (11, 22) € R?, e = (\/%, \%) . Then we have

(2.11) l]l* = [z, e)* < k- (. e)]”  (A>a>0),

2 2
T+ r1—
o~ (o, e) = a3 - T (2
2 (Il + ZL'Q)
|<x7 6>| - 2 Y
and by [2.1]L) we get
2 2 2
(2.12) o= m) A a) (@t o)

2 = aAd 2

Now, if we letx; = A > a > 0),then obviously

a _ A
VB =

2
(Ae —z,z — ae) :; <%—xz> (xz—%) =0,
which shows that the conditiop (2.9) is fulfilled, and py (2.12) we get

2 2 2
(A—a) <k‘(A—a) (a+A)
4 - aA 4
forany A > a > 0. This implies
(2.13) (A+a)’k > aA

forany A > a > 0.
Finally, leta =1 —¢, A=1+¢q,q € (0,1). Then from (2.18) we getk > 1 — ¢* for any
¢ € (0,1) which produces: > 1. O

Remark 2.3. If (z,¢), (y, e) are assumed not to be zero, then the inequality (2.3) is equivalent
to

(z,y) ' 1 JA—qf|B-)
(2.14) — 1] < = :
(. €) (e, y) +\/Re (@A) Re (bB)
while the inequality[(2.7]0) is equivalent to
(z,y) 1 (A—a)(B-))
(2.15) z.e) (e.9) 1‘ < 1 A5 .
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The constang is best possible in both inequalities.

3. SOME RELATED RESULTS
The following result holds.

Theorem 3.1. Let (H;(-,-)) be an inner product space ovét (K=C,R). If v,T" € K,
e,x,y € Hwith |le] = 1and\ € (0,1) are such that

(3.1) Re(Te— A+ (1—=N)y), A+ (1—XN)y)—ve) >0,
or, equivalently,

(32) Nt (1= 0y = 1Tl < -,
then we have the inequality
1 1 N
: — <. —— I —9°.
(33) Re ({2, 9) = {,€) (e:9)] < 35— T

The constan% is the best possible constant @3.3) in the sense that it cannot be replaced by
a smaller one.

Proof. We know that for any, u € H one has
1
Re(z,u) < 7=+ ull .
Then for anya,b € H and € (0,1) one has

(3.4) Re (a, b) |Aa+ (1= \)b|°.

<t
TAN(1-N)
Since
(r,y) = (z,e) {e,y) = (x = (r,e) ey = (y,e)e)  (@s]e]| = 1),
using [3.4), we have
(3.5) Re(z,y) = (z,¢) {¢,y)]
=Re[{z —(z,¢) e,y = (y, ) €)]
1

- . o _ 2
< oy e a0 =)= @l
BESYEESY) e+ (1=XNy— Qe+ (1-=XNuy,e)e| .
Since, form, e € H with ||e|]| = 1, one has the equality
(3.6) lm = (m, e} el|* = [|m]* = [(m, )],
then by [3.5) we deduce the inequality
(37) Re [(IL‘,y> - <I7€> <67y>]
1 2 2
< — - - - .
< vty D (=l = 1+ (=0 g, el

Now, if we apply Gruss’ inequality

1
0 < [lal* = [{a.e)]” < i v/
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provided
Re (T'e — a,a — ve) > 0,
fora = Az + (1 — \)y, we have

1
(3.8) A+ (1 =N yl* = [+ (1 =Ny e)ff < LT =9

Utilising (3.7) and|[(3.B) we deduce the desired inequdity] (3.3). To prove the sharpness of the
constant;, assume thaf (3.3) holds with a constant- 0, provided [3.1) is valid, i.e.,

(3.9) Re [(z,y) — (z,€) (e,y)] < C- T .

b
A(1=N)
If in (B.9) we choose: = y, provided [3.1) holds with: = y andX € (0, 1), then

(3.10) |]* = |(z, e} < C - T -,

1
A1=2)
provided

Re (T'e — x,x — ve) > 0.
Since we know, in Griss’ inequality, the constéris best possible, then 10), one has

< for A€ (0,1),

1
4= N1 =N\

giving, forA = 3, C' > .
The theorem is completely proved. 0J

The following corollary is a natural consequence of the above result.
Corollary 3.2. Assume that, I, e, z, y and A are as in Theorern 3/1. If
(3.11) Re(Te— (A £ (1-=XNy),( Azt (1—-Ny)—ve) >0,

or, equivalently,

r 1
(3.12) /\a:j:(l—)\)y—fy—i_ e §§|F—7|2,
then we have the inequality
1 1 )
A — < — . —— ' —7|".
(3.13) Re (2, ) = {z.) (el < 15 577 =3 17—

The constamf—6 is best possible i3).
Proof. Using Theorem 3]1 fof—y) instead ofy, we have that
Re(Te — (Az = (1= A)y),(Az — (1 = A)y) —ve) =0,
which implies that
1 1

Re [—(z,y) + (z,e) (e, 9)] < 6 N1=N T — )
giving
(3.14) Re(z,9) — (r.) {e.)] 2 0 - - [0 = 4.
16 A(1-—2MX)
Consequently, by (33) and (3]14) we deduce the desired inequality (3.13). O
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Remark 3.3. If M, m € Rwith M > m and, for\ € (0,1),

M 1
(3.15) ‘ A+ (1—=N)y— §(M m)
then

(@9) = (@) ) < 7o ﬁw—m)?

If (B.15) holds with “+” instead of “+” , then

1 1 )

1 _ < (M —m)?.
(3.16) [(z,y) — (z,e) (e, y)| < 6 N1\ ( m)
Remark 3.4. If A =} in (3.1) or [3.2), then we obtain the result from [3], i.e.,
(3.17) Re<Fe—I;—y,x;y—’ye>ZO
or, equivalently

r+y ~y+T 1

. — < 2T —
(3.18) 5 5 eH <50 =1l
implies

1

(3.19) Re [(z,y) — (z,e) (e,y)] < 2 I — 7\2.

The constant is best possible iff (3.19).

For\ = 1, Corollary[3.2 and Remafk 3.3 will produce the corresponding results obtained in
[3]. We omit the details.

4. INTEGRAL INEQUALITIES

Let (Q2,X, 1) be a measure space consisting of a(debt. a oc—algebra of parts ang a
countably additive and positive measureXwith values inRU {occ} . Denote byL? (2, K) the
Hilbert space of all real or complex valued functiofislefined on(2 and2—integrable ort?,

i.e.,
L1 @R <o
The following proposition holds

Proposition 4.1.1f f,g,h € L? (2, K) andy, ®,v,T € K, are so thaRRe (Pp) > 0, Re (I'7) >
0, [, |h (s)]*dp (s) = 1 and

(4.1) | e [(@nes) =) (
/Q Re [(Th (s) — g (s)) (905) —75.(9)) ] doa(5) > 0

—
—~
»
~—
|
©l

=
—
»
—
N——
—
U
=
=
V
@)

or, equivalently

(4.2) (/Qﬂs)—?h() du(8)> <zle gl
(/ﬂgcs) S Ths) du(S)) <3Ir=l,
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then we have the following Gruss type integral inequality

/f /h()ﬂduu

<1 @ — [T —1

4 /Re(®p) Re (I'y)

The constan§ is best possible.

(4.3)

/Q h(s) 9 (3)du (s)]

The proof follows by Theorein 3.1 on choosiflg= L? (Q2, K) with the inner product
) i= [ £05n )

Remark 4.2. It is obvious that a sufficient condition f@d. 1)) to hold is

Re |(@h(s) - £ (s)) (F(5) - 7h(9))] = 0.

We omit the details.

and
Re |(Th(s) = 9(s)) (9(5) =70 ()] 2 0.

for u—a.e.s € Q, or equivalently,

F(s) = T En )| < 10— gl (s and
o) - S50 < T =l o,

for y—a.e.s € Q.
The following result may be stated as well.

Corollary 4.3. If 2, Z,t,T € K, withRe (22) , Re (tT) > 0, 4 (Q) < oo and f, g € L? (Q,K)
are such that:
(4.4) Re[(Z = f(s) (F(5)-2)] 0.

Re [(T—g(s)) (M—tﬂ >0 fora.e.s € 0

or, equivalently

(4.5 ‘f(s)—z+22|§%|2—zl,
g(s)—# 1\T—t] fora.e.s € )
then we have the inequality
1 _
49 |- [ 10700 ~ s [ 1@ i) [ GG

1

|Z—z||T—t] 1 TS du (s
< M(Q)/Qﬂs)du(s) — [ 36|,

1
=4 \/Re(22) Re (IT)
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Remark 4.4. The case of real functions incorporates the following interesting inequality

fQ u() L1 @@y

providedy (€2) < oo,
2<f(s)<Zt<g(s)<T

for u —a.e. s € Q, wherez,t, Z,T are real numbers and the integrals at the denominator are
not zero. Here the constaﬁﬂis best possible in the sense mentioned above.

Using Theorem 3]1 we may state the following result as well.

Proposition 4.5.1f f, g, h € L? (2, K) and~,T € K are such that/,, | (s)|” du (s) = 1 and

4.8) / {Re[Th(s) — (M () + (1 ) g (5))]
() + (1= N g (s) = 3R (s)| f du(s) = 0

or, equivalently,

(4.9) (
Q

then we have the inequality

(4.10) I:= /QRe [f (5)@] dp(s)

Re UQf(S)h(S)du(s

T =

1

vy+T |
du(S)) <5 IP=l,

Af(s) + (L1 =A)g(s) = —5—h(s)

< 1 1
=16 A (1)

The constamf—6 is best possible.
If (¢.8) and [4.9) hold with “+ " instead of “ + " (see Corollary[3.2), then

1 1
< ——
1= 75 A(1—A)

Remark 4.6. It is obvious that a sufficient condition fdr (4.8) to hold is
(412) Re{[Th(s) = A\ (s)+ (1= N g ()] - DT () + (1= N g () = 7h(s)| } 2 0

for a.e.s € ), or equivalently

(4.11) T — )%

v+T

M () (1= 0 9(5) = T n(s)| < 50—l (e)

(4.13) ;

fora.e.s € Q.
Finally, the following corollary holds.
Corollary 4.7. If Z,z e K, 1 () < oo and f, g € L? (2, KK) are such that

(4.14) Re |[(Z = (Af(s)+ (1= N g () (A5 + (1= N g (5) = %) ] = 0
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for a.e.s € 2, or, equivalently

Af(s)+(1=XN)g(s) -

for a.e.s € (2, then we have the inequality

J = ﬁ/f{ (£ (5)7T)] dn(s)
~te | [ 1) o [ 3G

2+ Z
2

(4.15)

1
2

1 ($2) 1 ()
1 1 )
< — —|Z -2
%6 xa-nZ
If @.14) and [(4.1b) hold with “+ " instead of “ 4+ " | then
1 1

(4.16) |Z — 2.

JI< = —
= 16 A(1—2X)
Remark 4.8. It is obvious that if one chooses the discrete measure above, then all the inequal-
ities in this section may be written for sequences of real or complex numbers. We omit the
details.
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