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1. I NTRODUCTION

The following inequality of Grüss type in real or complex linear spaces is known (see [1]).

Theorem 1.1.Let(H; 〈·, ·〉) be an inner product space overK (K = C, R) ande ∈ H, ‖e‖ = 1.
If φ, γ, Φ, Γ are real or complex numbers andx, y are vectors inH such that the condition

(1.1) Re 〈Φe− x, x− φe〉 ≥ 0 and Re 〈Γe− y, y − γe〉 ≥ 0

or, equivalently (see[3]),

(1.2)

∥∥∥∥x− φ + Φ

2
e

∥∥∥∥ ≤ 1

2
|Φ− φ| and

∥∥∥∥y − γ + Γ

2
e

∥∥∥∥ ≤ 1

2
|Γ− γ|

holds, then we have the inequality

(1.3) |〈x, y〉 − 〈x, e〉 〈e, y〉| ≤ 1

4
|Φ− φ| |Γ− γ| .

The constant1
4

is best possible in the sense that it cannot be replaced by a smaller constant.

Remark 1.2. The case forK = R for the above theorem has been published by the author in
[2].
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2 S.S. DRAGOMIR

The following particular instances for integrals and means are useful in applications.

Corollary 1.3. Let f, g : [a, b] → K (K = C, R) be Lebesgue measurable and such that there
exists the constantsφ, γ, Φ, Γ ∈ K with the property

(1.4) Re
[
(Φ− f (x))

(
f (x)− φ

)]
≥ 0, Re

[
(Γ− g (x))

(
g (x)− γ

)]
≥ 0

for a.e.x ∈ [a, b] , or, equivalently

(1.5)

∣∣∣∣f (x)− φ + Φ

2

∣∣∣∣ ≤ 1

2
|Φ− φ| and

∣∣∣∣g (x)− γ + Γ

2

∣∣∣∣ ≤ 1

2
|Γ− γ|

for a.e.x ∈ [a, b] .
Then we have the inequality

(1.6)

∣∣∣∣ 1

b− a

∫ b

a

f (x) g (x)dx− 1

b− a

∫ b

a

f (x) dx · 1

b− a

∫ b

a

g (x)dx

∣∣∣∣
≤ 1

4
|Φ− φ| |Γ− γ| .

The constant1
4

is best possible.

The discrete case is incorporated in

Corollary 1.4. Letx,y ∈ Kn, with x = (x1, . . . , xn) andy = (y1, . . . , yn) andφ, γ, Φ, Γ ∈ K
be such that

(1.7) Re
[
(Φ− xi)

(
xi − φ

)]
≥ 0 and Re [(Γ− yi) (yi − γ)] ≥ 0,

for eachi ∈ {1, . . . , n} , or, equivalently,

(1.8)

∣∣∣∣xi −
φ + Φ

2

∣∣∣∣ ≤ 1

2
|Φ− φ| and

∣∣∣∣yi −
γ + Γ

2

∣∣∣∣ ≤ 1

2
|Γ− γ| ,

for eachi ∈ {1, . . . , n} .
Then we have the inequality

(1.9)

∣∣∣∣∣ 1n
n∑

i=1

xiyi −
1

n

n∑
i=1

xi ·
1

n

n∑
i=1

yi

∣∣∣∣∣ ≤ 1

4
|Φ− φ| |Γ− γ| .

The constant1
4

is best possible in (1.9).

For some recent results related to Grüss type inequalities in inner product spaces, see [3].
More applications of Theorem 1.1 for integral and discrete inequalities may be found in [4].

The main aim of this paper is to provide other inequalities of Grüss type in the general setting
of inner product spaces over the real or complex number fieldK. Applications for Lebesgue
integrals are pointed out as well.

2. A GRÜSSTYPE I NEQUALITY

The following Grüss type inequality in inner product spaces holds.

Theorem 2.1. Let x, y, e ∈ H with ‖e‖ = 1, and the scalarsa, A, b, B ∈ K (K = C, R) such
thatRe (āA) > 0 andRe

(
b̄B
)

> 0. If

(2.1) Re 〈Ae− x, x− ae〉 ≥ 0 and Re 〈Be− y, y − be〉 ≥ 0
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GRÜSSTYPE INEQUALITIES 3

or, equivalently (see[3]),

(2.2)

∥∥∥∥x− a + A

2
e

∥∥∥∥ ≤ 1

2
|A− a| and

∥∥∥∥y − b + B

2
e

∥∥∥∥ ≤ 1

2
|B − b| ,

then we have the inequality

(2.3) |〈x, y〉 − 〈x, e〉 〈e, y〉| ≤ 1

4
· |A− a| |B − b|√

Re (āA) Re
(
b̄B
) |〈x, e〉 〈e, y〉| .

The constant1
4

is best possible in the sense that it cannot be replaced by a smaller constant.

Proof. Apply Schwartz’s inequality in(H; 〈·, ·〉) for the vectorsx− 〈x, e〉 e andy − 〈y, e〉 e, to
get (see also [1])

(2.4) |〈x, y〉 − 〈x, e〉 〈e, y〉|2 ≤
(
‖x‖2 − |〈x, e〉|2

) (
‖y‖2 − |〈y, e〉|2

)
.

Now, assume thatu, v ∈ H, andc, C ∈ K with Re (c̄C) > 0 andRe 〈Cv − u, u− cv〉 ≥ 0.
This last inequality is equivalent to

‖u‖2 + Re (c̄C) ‖v‖2 ≤ Re
[
C〈u, v〉+ c̄ 〈u, v〉

]
(2.5)

= Re
[(

C̄ + c̄
)
〈u, v〉

]
,

since
Re
[
C〈u, v〉

]
= Re

[
C̄ 〈u, v〉

]
.

Dividing this inequality by[Re (Cc̄)]
1
2 > 0, we deduce

(2.6)
1

[Re (c̄C)]
1
2

‖u‖2 + [Re (c̄C)]
1
2 ‖v‖2 ≤

Re
[(

C̄ + c̄
)
〈u, v〉

]
[Re (c̄C)]

1
2

.

On the other hand, by the elementary inequality

αp2 +
1

α
q2 ≥ 2pq, α > 0, p, q ≥ 0,

we deduce

(2.7) 2 ‖u‖ ‖v‖ ≤ 1

[Re (c̄C)]
1
2

‖u‖2 + [Re (c̄C)]
1
2 ‖v‖2 .

Making use of (2.6) and (2.7) and the fact that for anyz ∈ C, Re (z) ≤ |z| , we get

‖u‖ ‖v‖ ≤
Re
[(

C̄ + c̄
)
〈u, v〉

]
2 [Re (c̄C)]

1
2

≤ |C + c|
2 [Re (c̄C)]

1
2

|〈u, v〉| .

Consequently

‖u‖2 ‖v‖2 − |〈u, v〉|2 ≤

[
|C + c|2

4 [Re (c̄C)]
− 1

]
|〈u, v〉|2(2.8)

=
1

4
· |C − c|2

Re (c̄C)
|〈u, v〉|2 .

Now, if we write (2.8) for the choicesu = x, v = e andu = y, v = e respectively and use
(2.4), we deduce the desired result (2.2). The sharpness of the constant will be proved in the
case whereH is a real inner product space. �

The following corollary which provides a simpler Grüss type inequality for real constants
(and in particular, for real inner product spaces) holds.
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4 S.S. DRAGOMIR

Corollary 2.2. With the assumptions of Theorem 2.1 and ifa, b, A,B ∈ R are such thatA >
a > 0, B > b > 0 and

(2.9)

∥∥∥∥x− a + A

2
e

∥∥∥∥ ≤ 1

2
(A− a) and

∥∥∥∥y − b + B

2
e

∥∥∥∥ ≤ 1

2
(B − b) ,

then we have the inequality

(2.10) |〈x, y〉 − 〈x, e〉 〈e, y〉| ≤ 1

4
· (A− a) (B − b)√

abAB
|〈x, e〉 〈e, y〉| .

The constant1
4

is best possible.

Proof. The prove the sharpness of the constant1
4

assume that the inequality (2.10) holds in real
inner product spaces withx = y and for a constantk > 0, i.e.,

(2.11) ‖x‖2 − |〈x, e〉|2 ≤ k · (A− a)2

aA
|〈x, e〉|2 (A > a > 0) ,

provided
∥∥x− a+A

2
e
∥∥ ≤ 1

2
(A− a) , or equivalently,〈Ae− x, x− ae〉 ≥ 0.

We chooseH = R2, x = (x1, x2) ∈ R2, e =
(

1√
2
, 1√

2

)
. Then we have

‖x‖2 − |〈x, e〉|2 = x2
1 + x2

2 −
(x1 + x2)

2

2
=

(x1 − x2)
2

2
,

|〈x, e〉|2 =
(x1 + x2)

2

2
,

and by (2.11) we get

(2.12)
(x1 − x2)

2

2
≤ k · (A− a)2

aA
· (x1 + x2)

2

2
.

Now, if we letx1 = a√
2
, x2 = A√

2
(A > a > 0) , then obviously

〈Ae− x, x− ae〉 =
2∑

i=1

(
A√
2
− xi

)(
xi −

a√
2

)
= 0,

which shows that the condition (2.9) is fulfilled, and by (2.12) we get

(A− a)2

4
≤ k · (A− a)2

aA
· (a + A)2

4
for anyA > a > 0. This implies

(2.13) (A + a)2 k ≥ aA

for anyA > a > 0.
Finally, leta = 1 − q, A = 1 + q, q ∈ (0, 1) . Then from (2.13) we get4k ≥ 1 − q2 for any

q ∈ (0, 1) which producesk ≥ 1
4
. �

Remark 2.3. If 〈x, e〉 , 〈y, e〉 are assumed not to be zero, then the inequality (2.3) is equivalent
to

(2.14)

∣∣∣∣ 〈x, y〉
〈x, e〉 〈e, y〉

− 1

∣∣∣∣ ≤ 1

4
· |A− a| |B − b|√

Re (āA) Re
(
b̄B
) ,

while the inequality (2.10) is equivalent to

(2.15)

∣∣∣∣ 〈x, y〉
〈x, e〉 〈e, y〉

− 1

∣∣∣∣ ≤ 1

4
· (A− a) (B − b)√

abAB
.
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GRÜSSTYPE INEQUALITIES 5

The constant1
4

is best possible in both inequalities.

3. SOME RELATED RESULTS

The following result holds.

Theorem 3.1. Let (H; 〈·, ·〉) be an inner product space overK (K = C, R) . If γ, Γ ∈ K,
e, x, y ∈ H with ‖e‖ = 1 andλ ∈ (0, 1) are such that

(3.1) Re 〈Γe− (λx + (1− λ) y) , (λx + (1− λ) y)− γe〉 ≥ 0,

or, equivalently,

(3.2)

∥∥∥∥λx + (1− λ) y − γ + Γ

2
e

∥∥∥∥ ≤ 1

2
|Γ− γ| ,

then we have the inequality

(3.3) Re [〈x, y〉 − 〈x, e〉 〈e, y〉] ≤ 1

16
· 1

λ (1− λ)
|Γ− γ|2 .

The constant1
16

is the best possible constant in (3.3) in the sense that it cannot be replaced by
a smaller one.

Proof. We know that for anyz, u ∈ H one has

Re 〈z, u〉 ≤ 1

4
‖z + u‖2 .

Then for anya, b ∈ H andλ ∈ (0, 1) one has

(3.4) Re 〈a, b〉 ≤ 1

4λ (1− λ)
‖λa + (1− λ) b‖2 .

Since
〈x, y〉 − 〈x, e〉 〈e, y〉 = 〈x− 〈x, e〉 e, y − 〈y, e〉 e〉 (as ‖e‖ = 1),

using (3.4), we have

Re [〈x, y〉 − 〈x, e〉 〈e, y〉](3.5)

= Re [〈x− 〈x, e〉 e, y − 〈y, e〉 e〉]

≤ 1

4λ (1− λ)
‖λ (x− 〈x, e〉 e) + (1− λ) (y − 〈y, e〉 e)‖2

=
1

4λ (1− λ)
‖λx + (1− λ) y − 〈λx + (1− λ) y, e〉 e‖2 .

Since, form, e ∈ H with ‖e‖ = 1, one has the equality

(3.6) ‖m− 〈m, e〉 e‖2 = ‖m‖2 − |〈m, e〉|2 ,

then by (3.5) we deduce the inequality

(3.7) Re [〈x, y〉 − 〈x, e〉 〈e, y〉]

≤ 1

4λ (1− λ)

[
‖λx + (1− λ) y‖2 − |〈λx + (1− λ) y, e〉|2

]
.

Now, if we apply Grüss’ inequality

0 ≤ ‖a‖2 − |〈a, e〉|2 ≤ 1

4
|Γ− γ|2
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6 S.S. DRAGOMIR

provided
Re 〈Γe− a, a− γe〉 ≥ 0,

for a = λx + (1− λ) y, we have

(3.8) ‖λx + (1− λ) y‖2 − |〈λx + (1− λ) y, e〉|2 ≤ 1

4
|Γ− γ|2 .

Utilising (3.7) and (3.8) we deduce the desired inequality (3.3). To prove the sharpness of the
constant1

16
, assume that (3.3) holds with a constantC > 0, provided (3.1) is valid, i.e.,

(3.9) Re [〈x, y〉 − 〈x, e〉 〈e, y〉] ≤ C · 1

λ (1− λ)
|Γ− γ|2 .

If in (3.9) we choosex = y, provided (3.1) holds withx = y andλ ∈ (0, 1) , then

(3.10) ‖x‖2 − |〈x, e〉|2 ≤ C · 1

λ (1− λ)
|Γ− γ|2 ,

provided
Re 〈Γe− x, x− γe〉 ≥ 0.

Since we know, in Grüss’ inequality, the constant1
4

is best possible, then by (3.10), one has

1

4
≤ C

λ (1− λ)
for λ ∈ (0, 1) ,

giving, for λ = 1
2
, C ≥ 1

16
.

The theorem is completely proved. �

The following corollary is a natural consequence of the above result.

Corollary 3.2. Assume thatγ, Γ, e, x, y andλ are as in Theorem 3.1. If

(3.11) Re 〈Γe− (λx± (1− λ) y) , (λx± (1− λ) y)− γe〉 ≥ 0,

or, equivalently,

(3.12)

∥∥∥∥λx± (1− λ) y − γ + Γ

2
e

∥∥∥∥ ≤ 1

2
|Γ− γ|2 ,

then we have the inequality

(3.13) |Re [〈x, y〉 − 〈x, e〉 〈e, y〉]| ≤ 1

16
· 1

λ (1− λ)
|Γ− γ|2 .

The constant1
16

is best possible in (3.13).

Proof. Using Theorem 3.1 for(−y) instead ofy, we have that

Re 〈Γe− (λx− (1− λ) y) , (λx− (1− λ) y)− γe〉 ≥ 0,

which implies that

Re [−〈x, y〉+ 〈x, e〉 〈e, y〉] ≤ 1

16
· 1

λ (1− λ)
|Γ− γ|2

giving

(3.14) Re [〈x, y〉 − 〈x, e〉 〈e, y〉] ≥ − 1

16
· 1

λ (1− λ)
|Γ− γ|2 .

Consequently, by (3.3) and (3.14) we deduce the desired inequality (3.13). �
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Remark 3.3. If M, m ∈ R with M > m and, forλ ∈ (0, 1) ,

(3.15)

∥∥∥∥λx + (1− λ) y − M + m

2
e

∥∥∥∥ ≤ 1

2
(M −m)

then

〈x, y〉 − 〈x, e〉 〈e, y〉 ≤ 1

16
· 1

λ (1− λ)
(M −m)2 .

If (3.15) holds with “±” instead of “+” , then

(3.16) |〈x, y〉 − 〈x, e〉 〈e, y〉| ≤ 1

16
· 1

λ (1− λ)
(M −m)2 .

Remark 3.4. If λ = 1
2

in (3.1) or (3.2), then we obtain the result from [3], i.e.,

(3.17) Re

〈
Γe− x + y

2
,
x + y

2
− γe

〉
≥ 0

or, equivalently

(3.18)

∥∥∥∥x + y

2
− γ + Γ

2
e

∥∥∥∥ ≤ 1

2
|Γ− γ|

implies

(3.19) Re [〈x, y〉 − 〈x, e〉 〈e, y〉] ≤ 1

4
|Γ− γ|2 .

The constant1
4

is best possible in (3.19).

Forλ = 1
2
, Corollary 3.2 and Remark 3.3 will produce the corresponding results obtained in

[3]. We omit the details.

4. I NTEGRAL I NEQUALITIES

Let (Ω, Σ, µ) be a measure space consisting of a setΩ, Σ a σ−algebra of parts andµ a
countably additive and positive measure onΣ with values inR∪{∞} . Denote byL2 (Ω, K) the
Hilbert space of all real or complex valued functionsf defined onΩ and2−integrable onΩ,
i.e., ∫

Ω

|f (s)|2 dµ (s) < ∞.

The following proposition holds

Proposition 4.1. If f, g, h ∈ L2 (Ω, K) andϕ, Φ, γ, Γ ∈ K, are so thatRe (Φϕ) > 0, Re (Γγ) >
0,
∫

Ω
|h (s)|2 dµ (s) = 1 and∫

Ω

Re
[
(Φh (s)− f (s))

(
f (s)− ϕh (s)

)]
dµ (s) ≥ 0(4.1) ∫

Ω

Re
[
(Γh (s)− g (s))

(
g (s)− γh (s)

)]
dµ (s) ≥ 0

or, equivalently (∫
Ω

∣∣∣∣f (s)− Φ + ϕ

2
h (s)

∣∣∣∣2 dµ (s)

) 1
2

≤ 1

2
|Φ− ϕ| ,(4.2)

(∫
Ω

∣∣∣∣g (s)− Γ + γ

2
h (s)

∣∣∣∣2 dµ (s)

) 1
2

≤ 1

2
|Γ− γ| ,
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8 S.S. DRAGOMIR

then we have the following Grüss type integral inequality

(4.3)

∣∣∣∣∫
Ω

f (s) g (s)dµ (s)−
∫

Ω

f (s) h (s)dµ (s)

∫
Ω

h (s) g (s)dµ (s)

∣∣∣∣
≤ 1

4
· |Φ− ϕ| |Γ− γ|√

Re (Φϕ̄) Re (Γγ̄)

∣∣∣∣∫
Ω

f (s) h (s)dµ (s)

∫
Ω

h (s) g (s)dµ (s)

∣∣∣∣ .
The constant1

4
is best possible.

The proof follows by Theorem 3.1 on choosingH = L2 (Ω, K) with the inner product

〈f, g〉 :=

∫
Ω

f (s) g (s)dµ (s) .

We omit the details.

Remark 4.2. It is obvious that a sufficient condition for(4.1) to hold is

Re
[
(Φh (s)− f (s))

(
f (s)− ϕh (s)

)]
≥ 0,

and

Re
[
(Γh (s)− g (s))

(
g (s)− γh (s)

)]
≥ 0,

for µ−a.e.s ∈ Ω, or equivalently,∣∣∣∣f (s)− Φ + ϕ

2
h (s)

∣∣∣∣ ≤ 1

2
|Φ− ϕ| |h (s)| and∣∣∣∣g (s)− Γ + γ

2
h (s)

∣∣∣∣ ≤ 1

2
|Γ− γ| |h (s)| ,

for µ−a.e.s ∈ Ω.

The following result may be stated as well.

Corollary 4.3. If z, Z, t, T ∈ K, with Re (z̄Z) , Re (t̄T ) > 0, µ (Ω) < ∞ andf, g ∈ L2 (Ω, K)
are such that:

Re
[
(Z − f (s))

(
f (s)− z̄

)]
≥ 0,(4.4)

Re
[
(T − g (s))

(
g (s)− t̄

)]
≥ 0 for a.e.s ∈ Ω

or, equivalently ∣∣∣∣f (s)− z + Z

2

∣∣∣∣ ≤ 1

2
|Z − z| ,(4.5) ∣∣∣∣g (s)− t + T

2

∣∣∣∣ ≤ 1

2
|T − t| for a.e.s ∈ Ω;

then we have the inequality

(4.6)

∣∣∣∣ 1

µ (Ω)

∫
Ω

f (s) g (s)dµ (s) − 1

µ (Ω)

∫
Ω

f (s) dµ (s) · 1

µ (Ω)

∫
Ω

g (s)dµ (s)

∣∣∣∣
≤ 1

4
· |Z − z| |T − t|√

Re (z̄Z) Re (t̄T )

∣∣∣∣ 1

µ (Ω)

∫
Ω

f (s) dµ (s) · 1

µ (Ω)

∫
Ω

g (s)dµ (s)

∣∣∣∣ .
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Remark 4.4. The case of real functions incorporates the following interesting inequality

(4.7)

∣∣∣∣ µ (Ω)
∫

Ω
f (s) g (s) dµ (s)∫

Ω
f (s) dµ (s)

∫
Ω

g (s) dµ (s)
− 1

∣∣∣∣ ≤ 1

4
· (Z − z) (T − t)√

ztZT

providedµ (Ω) < ∞,

z ≤ f (s) ≤ Z, t ≤ g (s) ≤ T

for µ − a.e. s ∈ Ω, wherez, t, Z, T are real numbers and the integrals at the denominator are
not zero. Here the constant1

4
is best possible in the sense mentioned above.

Using Theorem 3.1 we may state the following result as well.

Proposition 4.5. If f, g, h ∈ L2 (Ω, K) andγ, Γ ∈ K are such that
∫

Ω
|h (s)|2 dµ (s) = 1 and

(4.8)
∫

Ω

{Re [Γh (s)− (λf (s) + (1− λ) g (s))]

×
[
λf (s) + (1− λ) g (s)− γ̄h̄ (s)

]}
dµ (s) ≥ 0

or, equivalently,

(4.9)

(∫
Ω

∣∣∣∣λf (s) + (1− λ) g (s)− γ + Γ

2
h (s)

∣∣∣∣2 dµ (s)

) 1
2

≤ 1

2
|Γ− γ| ,

then we have the inequality

I :=

∫
Ω

Re
[
f (s) g (s)

]
dµ (s)(4.10)

− Re

[∫
Ω

f (s) h (s)dµ (s) ·
∫

Ω

h (s) g (s)dµ (s)

]
≤ 1

16
· 1

λ (1− λ)
|Γ− γ|2 .

The constant1
16

is best possible.
If (4.8) and (4.9) hold with “± ” instead of “ + ” (see Corollary 3.2), then

(4.11) |I| ≤ 1

16
· 1

λ (1− λ)
|Γ− γ|2 .

Remark 4.6. It is obvious that a sufficient condition for (4.8) to hold is

(4.12) Re
{

[Γh (s)− (λf (s) + (1− λ) g (s))] ·
[
λf (s) + (1− λ) g (s)− γ̄h̄ (s)

]}
≥ 0

for a.e.s ∈ Ω, or equivalently

(4.13)

∣∣∣∣λf (s) + (1− λ) g (s)− γ + Γ

2
h (s)

∣∣∣∣ ≤ 1

2
|Γ− γ| |h (s)|

for a.e.s ∈ Ω.

Finally, the following corollary holds.

Corollary 4.7. If Z, z ∈ K, µ (Ω) < ∞ andf, g ∈ L2 (Ω, K) are such that

(4.14) Re
[
(Z − (λf (s) + (1− λ) g (s)))

(
λf (s) + (1− λ) g (s)− z

)]
≥ 0
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for a.e.s ∈ Ω, or, equivalently

(4.15)

∣∣∣∣λf (s) + (1− λ) g (s)− z + Z

2

∣∣∣∣ ≤ 1

2
|Z − z| ,

for a.e.s ∈ Ω, then we have the inequality

J :=
1

µ (Ω)

∫
Ω

Re
[
f (s) g (s)

]
dµ (s)

− Re

[
1

µ (Ω)

∫
Ω

f (s) dµ (s) · 1

µ (Ω)

∫
Ω

g (s)dµ (s)

]
≤ 1

16
· 1

λ (1− λ)
|Z − z|2 .

If (4.14) and (4.15) hold with “± ” instead of “ + ” , then

(4.16) |J | ≤ 1

16
· 1

λ (1− λ)
|Z − z|2 .

Remark 4.8. It is obvious that if one chooses the discrete measure above, then all the inequal-
ities in this section may be written for sequences of real or complex numbers. We omit the
details.
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