
volume 5, issue 4, article 102,
2004.

Received 23 February, 2004;
accepted 11 November, 2004.

Communicated by: C.E.M. Pearce

Abstract

Contents

JJ II

J I

Home Page

Go Back

Close

Quit

Journal of Inequalities in Pure and
Applied Mathematics

ESTIMATORS, ESCORT PROBABILITIES, AND φ-EXPONENTIAL
FAMILIES IN STATISTICAL PHYSICS

JAN NAUDTS
Departement Natuurkunde
Universiteit Antwerpen
Universiteitsplein 1
2610 Antwerpen, Belgium.

EMail : Jan.Naudts@ua.ac.be

c©2000Victoria University
ISSN (electronic): 1443-5756
038-04

Please quote this number (038-04) in correspondence regarding this paper with the Editorial Office.

mailto:cpearce@maths.adelaide.edu.au
http://jipam.vu.edu.au/
mailto:Jan.Naudts@ua.ac.be
http://www.vu.edu.au/


Estimators, Escort
Probabilities, and φ-Exponential
Families in Statistical Physics

Jan Naudts

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 2 of 35

J. Ineq. Pure and Appl. Math. 5(4) Art. 102, 2004

http://jipam.vu.edu.au

Abstract

The lower bound of Cramér and Rao is generalized to pairs of families of prob-
ability distributions, one of which is escort to the other. This bound is optimal
for certain families, called φ-exponential in the paper. Their dual structure is
explored. They satisfy a variational principle with respect to an appropriately
chosen entropy functional, which is the dual of a free energy functional.

2000 Mathematics Subject Classification: 82B30, 62H12
Key words: Escort probability, Lower bound of Cramér and Rao, Generalized expo-

nential family, Statistical manifold, Nonextensive thermostatistics.
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1. Introduction
The aim of this paper is to translate some new results of statistical physics into
the language of statistics. It is well-known that the exponential family of prob-
ability distribution functions (pdfs) plays a central role in statistical physics.
When Gibbs [6] introduced the canonical ensemble in 1901 he postulated a dis-
tribution of energiesE of the form

(1.1) p(E) = exp(G− βE),

whereG is a normalization constant and where the control parameterβ is the
inverse temperature. Only recently [17], a proposal was made to replace (1.1)
by a more general family of pdfs. The resulting domain of research is known
under the name of Tsallis’ thermostatistics. Some of the pdfs of Tsallis’ ther-
mostatistics are known in statistics under the name of Amari’sα-family [3].
The latter have been introduced in the context of geometry of statistical man-
ifolds [8]. The appearance of the same family of pdfs in both domains is not
accidental. The apparent link between both domains is clarified in the present
paper.

The new notion introduced in Tsallis’ thermostatistics is that of pairs of fam-
ilies of pdfs, one of which is theescort of the other [4]. Some basic concepts
of statistics can be generalized by replacing at well-chosen places the pdf by its
escort. In particular, we show in the next section how to generalize Fisher’s in-
formation and, correspondingly, how to generalize the well-known lower bound
of Cramér and Rao. Section3 studies the statistical manifold of a family for
which there exists an escort family satisfying the condition under which the
generalized Cramér-Rao bound is optimal. This optimizing family has an affine
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geometry. Since this is usually the characteristic property of an exponential
family a generalization of the latter seems indicated.

Section4 shows how a strictly positive non-decreasing functionφ of R+

determines a function which shares some properties with the natural logarithm
and therefore is called below aφ-logarithm. The inverse function is called the
φ-exponential. In Section5 it is used to define theφ-exponential family in the
obvious way, by replacing the exponential functionexp by theφ-exponential
function. The standard exponential family is then recovered by the choice
φ(x) = x, theα-family of Amari by φ(x) = x(1+α)/2, the equilibrium pdfs
of Tsallis’ thermostatistics by the choiceφ(x) = xq.

The next three sections are used to establish the dual parametrization of the
φ-exponential family and to discover the role of entropy functionals. Section6
introduces a divergence of the Bregman type. In Section7 it is used to prove
the existence of an information function (or entropy functional) which is max-
imized by theφ-exponential pdfs. Section8 introduces dual parameters — in
statistical physics these are energy and temperature. The paper ends with a short
discussion in Section9.

There have been already some attempts to study Tsallis’ thermostatistics
from a geometrical point of view. Trasarti-Battistoni [15] conjectured a deep
connection between non-extensivity and geometry. He also gives general ref-
erences to the use of geometric ideas in statistical physics. Several authors
[1, 16, 14] have introduced a divergence belonging to Csiszár’s class off -
divergences, which leads to a generalization of the Fisher information metric
adapted to the context of Tsallis’ thermostatistics. The relation with the present
work is unclear since here the geometry is determined by a divergence of the
Bregman type. Also the recent work of Abe [2] seems to be unrelated.
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2. Estimators and Escort pdfs
Fix a measure spaceΩ, µ. LetM1(µ) denote the convex set of all probability
distribution functions (pdfs)p normalized w.r.t.µ

(2.1)
∫

Ω

dµ(x) p(x) = 1.

Expectations w.r.t.p are denoted byEp

Epf =

∫
Ω

dµ(x) p(x)f(x).

Fix an open domainD of Rn. Consider a family of pdfspθ, parametrized
with θ in D. The notationEθ will be used instead ofEpθ

. Simultaneously, a
second family of pdfs(Pθ)θ∈D is considered. It is called theescort family. The
notationFθ will be used instead ofEPθ

.
Recall that the Fisher information is given by

Ikl(θ) = Eθ

(
∂

∂θk
log(pθ)

) (
∂

∂θl
log(pθ)

)
(2.2)

=

∫
Ω

dµ(x)
1

pθ(x)

∂pθ

∂θk

∂pθ

∂θl
.

A generalization, involving the two families of pdfs, is

(2.3) gkl(θ) =

∫
Ω

dµ(x)
1

Pθ(x)

∂pθ

∂θk

∂pθ

∂θl
.
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Clearly, the expression coincides with (2.2) if Pθ = pθ.
The following definition is a slight generalization of the usual definition of

an unbiased estimator.

Definition 2.1. An estimator of the family(pθ)θ∈D is a vector of random vari-
ablesck with the property that there exists a functionF such that

Eθck =
∂

∂θk
F (θ), k = 1, . . . , n.

The functionF will be called thescale function of the estimator.

The estimator is unbiased ifF (θ) = 1
2
θkθ

k so thatEθck = θk. The well-
known lower bound of Cramér and Rao can be written as

ukul
[
Eθckcl −

(
Eθck

)(
Eθcl

)][
ukvl ∂2F

∂θk∂θl

]2 ≥ 1

vkvlIkl(θ)
,

for arbitraryu andv in Rn.
A similar lower bound, involving the information matrixgkl instead of Fisher’s

Ikl, is now formulated.

Theorem 2.1. Let be given two families of pdfs(pθ)θ∈D and(Pθ)θ∈D and cor-
responding expectationsEθ andFθ. Letc be an estimator of(pθ)θ∈D, with scale
functionF . Assume that the regularity condition

(2.4) Fθ
1

Pθ(x)

∂

∂θk
pθ(x) = 0
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holds. Letgkl(θ) be the information matrix introduced before. Then, for allu
andv in Rn is

(2.5)
ukul

[
Fθckcl −

(
Fθck

)(
Fθcl

)][
ukvl ∂2

∂θl∂θkF (θ)
]2 ≥ 1

vkvlgkl(θ)
.

The bound is optimal (in the sense that equality holds wheneveru = v) if there
exist a normalization functionZ > 0 and a functionG such that

(2.6)
∂

∂θk
pθ(x) = Z(θ)Pθ(x)

∂

∂θk

[
G(θ)− θlcl(x)

]
holds for allk in [1, . . . ,m], for all θ ∈ D, and forµ-almost allx. In that case,
c is an estimator of(Pθ)θ∈D with scale functionG

Fθck =
∂G

∂θk
.

Proof. Let

Xk =
1

Pθ

∂

∂θk
pθ and Yk = ck − Fθck.

From Schwartz’s inequality follows(
Fθu

kYkv
lXl

)2 ≤
(
Fθu

kYku
lYl

) (
Fθv

kXkv
lXl

)
.

The l.h.s. equals, using (2.4),(
Fθu

kYkv
lXl

)2
=

(
ukvl ∂

∂θl
Eθck

)2

=

(
ukvl ∂2

∂θl∂θk
F (θ)

)2

.
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The first factor of the r.h.s. equals

Fθu
kYku

lYl = ukul
[
Fθckcl −

(
Fθck

)(
Fθcl

)]
.

The second factor of the r.h.s. equals

Fθv
kXkv

lXl = vkvlgkl(θ).

This proves (2.5).
Assume now that (2.6) holds. Combining it with the regularity condition

(2.4) shows thatc is an estimator for the escort family, with scaling functionG.
This makes it possible to write (2.6) as

(2.7)
1

Z(θ)Pθ(x)

∂

∂θk
pθ(x) = Fθck − ck(x).

In this way one obtains

(2.8) ukul
[
Fθckcl −

(
Fθck

)(
Fθcl

)]
=
ukulgkl(θ)

Z(θ)2
.

On the other hand we have

∂2

∂θl∂θk
F (θ) =

∂

∂θl
Eθck

=

∫
Ω

dµ(x)
∂pθ

∂θl
(x)ck(x)

= Z(θ)

∫
Ω

dµ(x)Pθ(x)ck(x)
∂

∂θk

[
G(θ)− θlcl(x)

]
= −Z(θ)

[
Fθckcl −

(
Fθck

)(
Fθcl

)]
.(2.9)

Together with (2.8) this shows equality in (2.5) wheneveru = v.
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It has not been investigated whether (2.6) is a necessary condition. For prac-
tical application of the lower bound one has to assume thatc is also an estimator
of the escort family(Pθ)θ∈D, with scale functionG. The previous proposition
shows that this is automatically the case when (2.6) is satisfied.

Example 1

Let µ be the Lebesgue measure restricted to[0,+∞) and let

(2.10) pθ(x) =
2

θ

[
1− x

θ

]
+

with θ > 0 and [u]+ = max{u, 0}. The Fisher informationI(θ) is divergent.
Hence, the usual lower bound of Cramér and Rao is useless.

Consider now the escort family

(2.11) Pθ(x) =
1

θ
e−x/θ.

Then one calculates

(2.12) g(θ) =
4

θ2
(5e− 13).

This fixes the r.h.s. of the inequality (2.5).
Let us estimateθ via its first moment, withc(x) = 3x. One hasEθc = θ,

Eθc
2 = (3/2)θ2, F (θ) = θ2/2, Fc = 3θ andFc2 = 18θ2. Then (2.5) boils down

to

(2.13) Fc2 −
(
Fc

)2
= 9θ2 ≥ 1

4(5e− 13)
θ2 ' 0.4 θ2.
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3. Statistical Manifold
The well-known example of a family with optimal estimator is the exponential
family

(3.1) pθ(x) = exp
(
G(θ)− θkck(x)

)
with

(3.2) G(θ) = − log

∫
Ω

dµ(x) e−θkck(x).

One sees immediately that

(3.3)
∂

∂θk
pθ(x) = pθ(x)

(
∂

∂θk
G(θ)− ck(x)

)
,

which is (2.7) with Z(θ) identically 1 and the escort pdfPθ equal topθ. This
example motivates also the geometric interpretation of (2.6), in the form (2.7),
as a linear map between tangent planes. The score variables∂ log pθ/∂θ

k of the
standard statistical manifold are replaced by the variables

(3.4)
1

Pθ(x)

∂

∂θk
pθ(x).

They are tangent vectors of the concave functionG(θ)− θlcl. The metric tensor
of the latter function is a constant random variable. The geometry of the mani-
fold of random variables

(
G(θ)− θlcl

)
θ∈D

is transferred onto the family of pdfs(
pθ

)
θ∈D

.
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Note that the score variables have vanishing expectationFθ. It is now obvi-
ous to define an inner product of random variables by

〈A,B〉θ = FθAB.

Then one has 〈
1

Pθ

∂pθ

∂θk
,

1

Pθ

∂pθ

∂θl

〉
θ

= gkl(θ).

Let gkl(θ) denote the inverse ofgkl(θ) (assume it exists). Then a projection
operatorπθ onto the orthogonal complement of the tangent plane is defined by

πθA = A− gkl

〈
1

Pθ

∂pθ

∂θk
, A

〉
θ

1

Pθ

∂pθ

∂θl
− FθA.

If (2.6) is satisfied, then

πθ
∂

∂θl

1

Pθ

∂pθ

∂θk
= πθ

[
∂Z

∂θl
(Fθck − ck) + Z(θ)

∂2G

∂θk∂θl

]
=
∂Z

∂θl

[
Fθck − ck + glm(θ)〈 1

Pθ

∂pθ

∂θl
, ck〉θ

1

Pθ

∂pθ

∂θm

]
=
∂Z

∂θl

[
Fθck − ck −

1

Z(θ)Pθ

∂pθ

∂θk

]
= 0.

This follows also immediately from

∂

∂θl

1

Pθ

∂pθ

∂θk
=

1

Z(θ)

∂Z

∂θl

1

Pθ

∂pθ

∂θk
+ Z(θ)

∂2G

∂θkθl
.
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That the derivatives of the score variables are linear combinations of the score
variables and the constant random variable is usually the characteristic feature
of the exponential family. This is a motivation to introduce a generalized notion
of exponential family.
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4. φ-logarithms and φ-exponentials
In the next section the notion of exponential family is generalized to a rather
large class of families of pdfs. This is done by replacing the exponential func-
tion by some other function satisfying a minimal number of requirements. The
latter function will be called a deformed exponential and will be denotedexpφ.
This has the advantage that the resulting expressions look very familiar, resem-
bling those of the exponential family.

Fix an increasing functionφ of [0,+∞), strictly positive on(0,+∞). It is
used to define theφ-logarithmlnφ by

(4.1) lnφ(u) =

∫ u

1

dv
1

φ(v)
, u > 0.

Clearly, lnφ is a concave function which is negative on(0, 1) and positive on
(1,+∞). The inverse of the functionlnφ is denotedexpφ. It is defined on the
range oflnφ. The definition can be extended to all ofR by puttingexpφ(u) = 0
if u is too small andexpφ = +∞ if u is too large. In caseφ(u) = u for all
u then lnφ coincides with the natural logarithm andexpφ coincides with the
exponential function.

Givenφ, introduce a functionψ of R by

ψ(u) = φ
(
expφ(u)

)
if u is in the range oflnφ

= 0 if u is too small

= +∞ if u is too large.(4.2)

Clearly isφ(u) = ψ(lnφ(u)) for all u > 0.
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Proposition 4.1. One has for allu in R

0 ≤ expφ(u) = 1 +

∫ u

0

dvψ(v)

=

∫ u

−∞
dvψ(v) ≤ +∞.(4.3)

Proof. First consider the case that[0, u) belongs to the range oflnφ. Then a
substitution of integration variablesv = lnφ(w) is possible. One finds, using
dv/dw = 1/φ(w) andψ(v) = φ

(
expφ(v)

)
= φ(w),∫ u

0

dvψ(v) =

∫ expφ(u)

1

dw

= expφ(u)− 1.

Usingexpφ(−∞) = 0 one concludes (4.3).
In caseM = supv lnφ(v) is finite andu ≥ M thenψ(v) = +∞ for v ∈

[M,u]. One has ∫ u

0

dvψ(v) ≥
∫ M

0

dvψ(v)

=

∫ +∞

1

dw

= +∞.

But also the l.h.s. of (4.3) is infinite. Hence the equality holds.
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Finally, if m = infv lnφ(v) is finite andu ≤ m thenψ(v) = 0 holds for
v ≤ m. Hence ∫ u

0

dv ψ(v) =

∫ m

0

dv ψ(v) =

∫ 0

1

dw = −1.

This ends the proof.

Proposition 4.2. The functionexpφ is continuous on the open interval of points
where it does not diverge.

Proof. Letm andM be as in the proof of the previous proposition. Thenexpφ

is differentiable on(m,M). If m = −∞ this ends the proof. Ifm is finite
then it suffices to verify thatexpφ(u) is continuous inu = m. But this is
straightforward.

Example 2

Let φ(u) = uq with q > 0. This function is increasing and strictly positive on
(0,+∞). Hence, it defines aφ-logarithm which will be denotedlnq and is given
by

lnq(u) =

∫ u

1

dv
1

vq

=
u1−q − 1

1− q
if q 6= 1

= log(u) if q = 1.

http://jipam.vu.edu.au/
mailto:Jan.Naudts@ua.ac.be
http://jipam.vu.edu.au/


Estimators, Escort
Probabilities, and φ-Exponential
Families in Statistical Physics

Jan Naudts

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 16 of 35

J. Ineq. Pure and Appl. Math. 5(4) Art. 102, 2004

http://jipam.vu.edu.au

This deformed logarithm has been introduced in the context of nonextensive
statistical physics in [18]. The inverse function is denotedexpq and is given by

expq(u) =
[
1 + (1− q)u]

1/(1−q)
+ .

The functionψ is then given by

ψ(u) =
[
1 + (1− q)u]

q/(1−q)
+ .

Example 3

Letφ(x) = dxe, the smallest integer not smaller thanx. This piecewise constant
function is increasing and strictly positive on(0,+∞). Hence,lnφ is piecewise
linear. The functionψ is given by

ψ(x) = 0 if x ≤ −1

= φ(1 + x) otherwise.

Theφ-exponentialexpφ is also piecewise linear and satisfies

expφ(x) = 0 if x ≤ −1.
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5. The φ-exponential Family
Let φ be given as in the previous section. Fix a measure spaceΩ, µ and a set of
random variablesck, k = 1, . . . , n. Theφ-exponential family of pdfs

(
pθ

)
θ∈D

is defined by

(5.1) pθ(x) = expφ

(
G(θ)− θkck(x)

)
.

The domainD is an open set ofθ for whichG(θ) exists such that (5.1) is prop-
erly normalized, i.e.pθ ∈ M1(µ). The distributions (5.1) are the equilibrium
pdfs of generalized thermostatistics as introduced in [11, 12].

Proposition 5.1. The functionG(θ) is concave onD.

Proof. Assumeθ, η andλθ + (1 − λ)η in D for someλ in [0, 1]. Then, using
the convexity ofexpφ,

expφ

(
λG(θ) + (1− λ)G(η)−

[
λθk + (1− λ)ηk

]
ck(x)

)
≤ λpθ(x) + (1− λ)pη(x).

Hence∫
Rn

dµ(x) expφ

(
λG(θ) + (1− λ)G(η)−

[
λθk + (1− λ)ηk

]
ck(x)

)
≤ 1.

Compare this with∫
Rn

dµ(x) expφ

(
G(λθ + (1− λ)η)−

[
λθk + (1− λ)ηk

]
ck(x)

)
= 1.
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Sinceexpφ is increasing one concludes that

λG(θ) + (1− λ)G(η) ≤ G(λθ + (1− λ)η).

This means thatG is concave.

Proposition 5.2. Letψ be determined byφ via (4.2). If the integral

Z(θ) =

∫
Ω

dµ(x)ψ
(
G(θ)− θkck(x)

)
converges for allθ ∈ D, then

(
pθ

)
θ∈D

has an escort family
(
Pθ

)
θ∈D

, given by

Pθ(x) =
1

Z(θ)
φ
(
pθ(x)

)
if pθ(x) > 0

= 0 otherwise.

Condition (2.6) is satisfied.

Proof. One has

φ
(
pθ(x)

)
= φ

(
expφ

(
G(θ)− θkck(x)

))
= ψ

(
G(θ)− θkck(x)

)
.

Becauseφ
(
pθ(x)

)
cannot be zero forµ-almost allx one concludes thatZ(θ) >

0 and thatPθ is properly normalized.
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From the properties of the functionexpφ follows immediately that

∂

∂θl
pθ(x) = ψ

(
G(θ)− θkck(x)

) ∂
∂θl

(
G(θ)− θmcm(x)

)
= Z(θ)Pθ(x)

∂

∂θl

(
G(θ)− θmcm(x)

)
.

This proves that
(
Pθ

)
θ∈D

satisfies (2.6).

Example2 continued

Let φ(u) = uq as in Example2 above. The pdfspθ are given by

(5.2) pθ(x) =
[
1 + (1− q)

(
G(θ)− θkck(x)

)]1/(1−q)

+
,

for θ in a suitable domainD. The escort probabilities are

(5.3) Pθ(x) =
1

Z(θ)

[
1 + (1− q)

(
G(θ)− θkck(x)

)]q/(1−q)

+

with

Z(θ) =

∫
Ω

dµ(x)
[
1 + (1− q)

(
G(θ)− θkck(x)

)]q/(1−q)

+

(assuming convergence of these integrals). The family
(
pθ

)
θ∈D

coincides with
Amari’s α-family [3], with α given byα = 2q − 1.
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Example1 continued

Example1 is theq = 0-limit of Example2. Letφ(u) = 1 for all u > 0. Then

lnφ(u) = u− 1

expφ(u) = [1 + u]+

ψ(u) = 1 if u > −1;

= 0 otherwise.

One has

pθ(x) =
2

θ

[
1− x

θ

]
+

= expφ

(
2

θ
− 1− 2x

θ2

)
.

This is aφ-exponential family with parameterΘ = 1/θ2, estimatorc(x) = 2x
and scale functionG(Θ) = 2

√
Θ. The escort probabilities, making inequality

(2.5) optimally satisfied, are given by

PΘ(x) =
1

θ
I0≤x≤θ.

The information matrixg(Θ) equalsθ4/3. Further isFΘc = θ andFΘc
2 =

4θ2/3 and
∂

∂Θ
F (Θ) = EΘc = 2θ/3 = 2/3

√
Θ.

It is now straightforward to verify that the inequality (2.5) is optimally satisfied.
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6. Divergences
Divergences of the Bregman type are needed for what follows. In the form given
below they have been introduced in [9].

Fix a strictly positive increasing functionφ of [0,+∞). Introduce

(6.1) Dφ(p||p′) =

∫
Ω

dµ(x)

∫ p(x)

p′(x)

du [lnφ(u)− lnφ(p
′(x))] .

Dφ(p||p′) ≥ 0 follows becauselnφ is an increasing function. Also convexity in
the first argument follows becauselnφ is an increasing function.

Let
(
pθ

)
θ∈D

beφ-exponential. Then infinitesimal variation of the divergence
Dφ(p||p′) reproduces the metric tensorgkl(θ), up to a scalar function. Indeed,
one has

∂

∂θk
Dφ(pθ||pη)

∣∣
η=θ

= 0

∂

∂ηk
Dφ(pθ||pη)

∣∣
η=θ

= 0

and

∂2

∂θk∂θl
Dφ(pθ||pη)

∣∣∣∣
η=θ

=
∂

∂θk

∫
Ω

dµ(x)
[
lnφ

(
pθ(x)

)
− lnφ

(
pη(x)

)] ∂

∂θl
pθ(x)

∣∣∣∣
η=θ
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=

∫
Ω

dµ(x)
1

φ
(
pθ(x)

) [
∂

∂θk
pθ(x)

] [
∂

∂θl
pθ(x)

]
=

1

Z(θ)
gkl(θ).

Similar calculations give

− ∂2

∂θk∂ηl
Dφ(pθ||pη)

∣∣∣∣
η=θ

=
∂2

∂ηk∂ηl
Dφ(pθ||pη)

∣∣∣∣
η=θ

=
1

Z(θ)
gkl(θ).
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7. Information Content
In [10] the definition of a deformed logarithm contains the additional condition
that the integral ∫ 0

1

du lnφ(u) =

∫ 1

0

du
u

φ(u)
< +∞

converges. This condition is needed in the definition of entropy functional /
information content based on the deformed logarithm. Introduce another strictly
increasing positive functionχ by

χ(v) =

[∫ 1/v

0

du
u

φ(u)

]−1

The motivation for introducing this function comes from the fact that it satisfies
the following property.

Lemma 7.1.

(7.1)
d

dv
v lnχ(1/v) = − lnφ(v)−

∫ 1

0

du
u

φ(u)
.

Proof.

d

dv
v lnχ(1/v) = lnχ(1/v)− 1

vχ(1/v)

=

∫ 1/v

1

du
1

χ(u)
− 1

v

∫ v

0

du
u

φ(u)

=

∫ 1/v

1

du

∫ 1/u

0

dz
z

φ(z)
− 1

v

∫ v

0

du
u

φ(u)
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= −
∫ v

1

du
1

u2

∫ u

0

dz
z

φ(z)
− 1

v

∫ v

0

du
u

φ(u)

= −
∫ 1

0

dz
z

φ(z)
− lnφ(v),

which is the desired result.

Define the information content (also called entropy functional)Iφ(p) of a pdf
p in M1(µ) by

Iφ(p) =

∫
Ω

dµ(x) p(x) lnχ(1/p(x))

whenever the integral converges. Using the lemma one verifies immediately
thatIφ(p) is a concave function ofp. A short calculation gives

Iφ(p) =

∫
Ω

dµ(x) p(x)

∫ 1/p(x)

1

du
1

χ(u)

=

∫
Ω

dµ(x) p(x)

∫ p(x)

1

1

χ(1/v)
d

1

v

=

∫
Ω

dµ(x) p(x)

∫ p(x)

1

[∫ v

0

du
u

φ(u)

]
d

1

v

=

∫
Ω

dµ(x) p(x)

[
1

p(x)χ
(
1/p(x)

) − 1

χ(1)
− lnφ

(
p(x)

)]

= − 1

χ(1)
−

∫
Ω

dµ(x)

∫ p(x)

0

du lnφ(u).
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This implies that

Iφ(p)− Iφ(p
′) = −

∫
Ω

dµ(x)

∫ p(x)

p′(x)

du lnφ(u),

and hence

(7.2) Dφ(p||p′) = Iφ(p
′)− Iφ(p)−

∫
Ω

dµ(x)
(
p(x)− p′(x)

)
lnφ

(
p′(x)

)
.

This relation links the divergenceDφ(p||p′) with the information functionIφ(p).
The following result shows that theφ-exponential family is a conditional

maximizer ofIφ. It also shows that the scale functionF is the Legendre trans-
form of the information contentIφ

Theorem 7.2. Let
(
pθ

)
θ∈D

beφ-exponential, with estimatorc and scale func-
tionsF andG. Then there exists a constantF0 such that

(7.3) F (θ) = F0 + min
p∈M1(µ)

{Epθ
kck − Iφ(p)}.

The minimum is attained forp = pθ. In particular,F (θ) is a concave function
of θ andpθ maximizesIφ(p) under the constraint that

Epθ
kck = Eθθ

kck.

Proof. Let us first show that for any pdfp

(7.4) Epθ
kck − Iφ(p) ≥ Eθθ

kck − Iφ(pθ).
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One has ∫
Ω

dµ(x)
(
p(x)− pθ(x)

)
lnφ

(
pθ(x)

)
=

∫
Ω

dµ(x)
(
p(x)− pθ(x)

) [
G(θ)− θkck

]
= −(Ep − Eθ)θ

kck.

Hence, (7.2) becomes now

Dφ(p||pθ) = Iφ(pθ)− Iφ(p) + (Ep − Eθ)θ
kck.

But one has alwaysDφ(p||pθ) ≥ 0. Therefore, (7.4) follows.
Next calculate, using the lemma,

∂

∂θk
Iφ(pθ) =

∫
dµ(x)

(
− lnφ

(
pθ(x)

)
−

∫ 1

0

du
u

φ(u)

)
∂

∂θk
pθ(x)

=

∫
dµ(x)

(
−G(θ) + θlcl(x)−

∫ 1

0

du
u

φ(u)

)
∂

∂θk
pθ(x)

=

∫
dµ(x)

(
θlcl(x)

) ∂

∂θk
pθ(x)

=
∂

∂θk

(
Eθθ

lcl
)
− Eθck.

Becausec is an estimator with scale functionF one obtains

∂

∂θk

(
Eθθ

lcl − Iφ(pθ)
)

=
∂

∂θk
F (θ).

http://jipam.vu.edu.au/
mailto:Jan.Naudts@ua.ac.be
http://jipam.vu.edu.au/


Estimators, Escort
Probabilities, and φ-Exponential
Families in Statistical Physics

Jan Naudts

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 27 of 35

J. Ineq. Pure and Appl. Math. 5(4) Art. 102, 2004

http://jipam.vu.edu.au

Hence there exists a constantF0 for which

(7.5) F (θ) = F0 + Eθθ
lcl − Iφ(pθ).

In combination with (7.4) this results in (7.3).

Without restriction one can assumeF0 = 0. In statistical physics the function
F (θ) is free energy divided by temperature.

Example 4

Let φ(u) = u2−q/q, with 0 < q < 2. This is of course only a re-parametrization
of Example2, which is done to recover expressions found in the literature. The
deformed logarithm is given by

lnφ(u) =
q

q − 1
(uq−1 − 1) if q 6= 1

= log(u) if q = 1.

One obtainsχ(v) = vq and hence

(7.6) Iφ(p) =

∫
dµ(x) p(x)

1− p(x)q−1

q − 1
.

This is the entropy functional proposed by Tsallis [17] as a basis for nonexten-
sive thermostatistics, and reported earlier in the literature by Havrda and Char-
vat [7] and by Daróczy [5]. The corresponding expression for the divergence
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is

Dφ(p||p′) =
1

q − 1

∫
dµ(x) p(x)

[
p(x)q−1 − p′(x)q−1

]
−

∫
dµ(x) [p(x)− p′(x)] p′(x)q−1.

By Theorem7.2, the pdfpθ minimizes ‘free energy’Epθ
kck − Iφ(p). But

note that, due to the re-parametrization,pθ is not given by (5.2), but equals

pθ =
[
1 + (1− q′)

(
G(θ)− θkck(x)

)]q′/(1−q′)

+

with q′ = 1/q. The latter expression coincides with that of the escort pdf (5.3),
with q replaced byq′ and with incorporation of the normalizationZ(θ) into the
scale functionG(θ). The Tsallis literature [19] associates with each pdfp an
escort pdfP by the relationP ∼ pq. Then, expression (7.6) is optimized under
the constraint thatEP ck have given values. The resulting formalism differs
slightly from the present one.
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8. Dual Coordinates
Introduce dual coordinates

(8.1) ηk = Eθck =
∂F

∂θk
.

Assume (2.6) holds. Then, one obtains from (2.9)

∂ηk

∂θl
=

∂

∂θl
Eθck

=
∂2

∂θl∂θk
F (θ)

= −Z(θ)
[
Fθckcl −

(
Fθck

)(
Fθcl

)]
= − 1

Z(θ)
gkl(θ).

To obtain the last line aφ-exponential family has been assumed. This relation
implies

(8.2)
∂θk

∂ηl

= −Z(θ)gkl(θ).

These are the orthogonality relations between the two sets of coordinatesθ and
η. Next we derive the dual relation of (8.1).

Proposition 8.1. Let
(
pθ

)
θ∈D

beφ-exponential. Assume the regularity condi-
tion (2.4) is satisfied. Then

(8.3) θk =
∂

∂ηk

Iφ(pθ).
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Proof. One calculates (assume integration and partial derivative can be inter-
changed), using Lemma7.1,

∂

∂θk
Iφ(pθ) = −

∫
Ω

dµ(x)

[
lnφ

(
pθ(x)

)
+

∫ 1

0

du
u

φ(u)

]
∂

∂θk
pθ(x)

= −
∫

Ω

dµ(x)

[
G(θ)− θlcl(x) +

∫ 1

0

du
u

φ(u)

]
∂

∂θk
pθ(x)

=

∫
Ω

dµ(x) θlcl(x)
∂

∂θk
pθ(x).

To obtain the last line the regularity condition has been used. Use now thatpθ

satisfies (2.6). One obtains

∂

∂θk
Iφ(pθ) = Z(θ)Fθθ

lcl(Fθck − ck)

= −Z(θ)θlglk(θ).

In combination with (8.2) this gives

∂

∂ηl

Iφ(pθ) =

(
∂

∂θl
Iφ(pθ)

)
∂θk

∂ηl

= (−Z(θ)θmgml(θ))

(
− 1

Z(θ)
gkl(θ)

)
= θl.
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Equation (8.3) is the dual relation of (8.1). Expression (7.5) can now be
written as

(8.4) F (θ) + E(η) = θkηk

with E(η) = Iφ(pθ).
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9. Discussion
The present paper introduces generalized exponential families, and calls them
φ-exponential because they depend on the choice of a strictly positive non-
decreasing functionφ of (0,+∞). Several properties, known to hold for the
exponential family, can be generalized. The paper starts with a generalization of
the well-known lower bound of Cramér and Rao, involving the concept of escort
probability distributions. See Theorem2.1. It is shown that theφ-exponential
family optimizes this generalized lower bound. The metric tensor, which gener-
alizes the Fisher information, depends on both the family of pdfs and the escort
family, and determines the geometry of the statistical manifold.

The final part of the paper deals with the dual structure of the statistical man-
ifold, which survives in the more general context ofφ-exponential families. It
is shown in Theorem7.2 that theφ-exponential family satisfies a variational
principle with respect to a suitably defined entropy functional. The well-known
duality of statistical physics, between energy and temperature and between en-
tropy and free energy, is recovered.

Throughout the paper the number of parametersn has been assumed to be
finite. A non-parametrized approach to statistical manifolds is found in [13].
The extension of the present work to this more abstract context has not been
considered.
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