Journal of Inequalities in Pure and Applied Mathematics http://jipam.vu.edu.au/

Volume 4, Issue 5, Article 102, 2003

CONVEX FUNCTIONS IN A HALF-PLANE
NICOLAE N. PASCU AND NICOLAE R. PASCU
"Transilvania" University of Braşov
Str. Iuliu Maniu Nr. 50
Braşov - Cod 2200, Romania.
n.pascu@unitbv.ro
Green Mountain College
One College Circle
Poultney, VT 05764, U.S.A.
pascun@greenmtn.edu

Received 24 March, 2003; accepted 16 August, 2003
Communicated by H.M. Srivastava

Abstract

The class of convex hydrodynamically normalized functions in a half-plane was introduced by J. Stankiewicz. In this paper we introduce the general class of convex functions in the upper half-plane D (not necessarily hydrodynamically normalized) and we obtain necessary and sufficient conditions for an analytic function in D, to be convex univalent in D.

Key words and phrases: Univalent function, Convex function, Half-plane.
2000 Mathematics Subject Classification. 30C45.

1. Introduction

We denote by D the upper half-plane $\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$, by \mathcal{H} the class of analytic functions in D, and by \mathcal{H}_{1} the class of functions $f \in \mathcal{H}$ satisfying:

$$
\begin{equation*}
\lim _{D \ni z \rightarrow \infty}[f(z)-z]=0 . \tag{1.1}
\end{equation*}
$$

The normalization (1.1) is known in the literature as hydrodynamic normalization, being related to fluid flows in Mechanics.

The notion of convexity for functions belonging to the class \mathcal{H}_{1} was introduced by J. Stankiewicz and Z. Stankiewicz ([4], [5]) as follows:

Definition 1.1. The function $f \in \mathcal{H}_{1}$ is said to be convex if f is univalent in D and $f(D)$ is a convex domain.

[^0]We denote by $C_{\mathcal{H}_{1}}(D)$ the class of convex functions satisfying the hydrodynamic normalization (1.1).
J. Stankiewicz and Z. Stankiewicz obtained ([4], [5]) the following sufficient conditions for a function $f \in \mathcal{H}_{1}$ to be a convex function:

Theorem 1.1. If the function $f \in \mathcal{H}_{1}$ satisfies:

$$
f^{\prime}(z) \neq 0, \text { for all } z \in D
$$

and

$$
\begin{equation*}
\operatorname{Im} \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}>0, \text { for all } z \in D \tag{1.2}
\end{equation*}
$$

then f is a convex function.
The class of analytic univalent functions in a half-plane has been studied by F.G. Avhadiev [1] starting from the 1970's. He examined the class of convex and univalent functions in a half plane that are not hydrodynamically normalized, obtaining the following theorem:
Theorem 1.2. ([1]) The function $f: D \rightarrow \mathbb{C}$, analytic in D, is convex and univalent in D if and only if $f^{\prime}(i) \neq 0$ and for any $z \in D$ the following inequality holds:

$$
\operatorname{Im}\left(2 z+\left(z^{2}+1\right) \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0
$$

Another result that characterizes the convexity property for univalent functions in the half plane that are not hydrodynamically normalized was obtained by the second author in [2].

After 1974, the year when Avhadiev's paper was published, the only classes of univalent functions in the half-plane that had been studied were the univalent functions hydrodynamically normalized. We make the remark that the analytic representation of a geometric property (in this case the convexity property) is not unique.

2. Main Results

The function $\varphi: U \rightarrow D$ given by

$$
\varphi(u)=i \frac{1-u}{1+u}
$$

is a conformal mapping of the unit disk U onto the upper half-plane D.
For $0<r<1$, the image of the disk $U_{r}=\{z \in \mathbb{C}:|z|<r\}$ under φ is the disk $D_{r}=$ $\left\{z \in \mathbb{C}:\left|z-z_{r}\right|<R_{r}\right\}$, where:

$$
\left\{\begin{array}{l}
z_{r}=i \frac{1+r^{2}}{1-r^{2}} \tag{2.1}\\
R_{r}=\frac{2 r}{1-r^{2}}
\end{array}\right.
$$

To see this, note that in polar coordinates $u=r e^{i t}$, using the identity:

$$
\left|1+r e^{-i t}\right|=\left|1+r e^{i t}\right|
$$

we obtain:

$$
\left|i \frac{1-r e^{i t}}{1+r e^{i t}}-i \frac{1+r^{2}}{1-r^{2}}\right|=\left|\frac{2 r\left(1+r e^{-i t}\right)}{\left(1+r e^{i t}\right)\left(1-r^{2}\right)}\right|=\frac{2 r}{1-r^{2}},
$$

for any $r \in(0,1)$ and any $t \in[0,2 \pi)$, which shows that the image under φ of the boundary of the disk U_{r} is the boundary of the disk D_{r}. Since $\varphi(0)=i \in D_{r}$, it follows that $\varphi\left(U_{r}\right)=D_{r}$.

Lemma 2.1. ([3])The family of domains $\left\{D_{r}\right\}_{r \in(0,1)}$ has the following properties:
i) for any positive real numbers $0<r<s<1$ we have $D_{r} \subset D_{s}$;
ii) for any complex number $z \in D$ there exists $r_{z} \in(0,1)$ such that $z \in D_{r}$, for any $r \in\left(r_{z}, 1\right)$;
iii) for any $z \in D$ and $r \in\left(r_{z}, 1\right)$ arbitrarily fixed, there exists $u_{r} \in U$ such that

$$
z=z_{r}+R_{r} u_{r} .
$$

Moreover, we have the following equalities:

$$
\left\{\begin{array}{l}
\lim _{r \rightarrow 1} u_{r}=-i \\
\lim _{r \rightarrow 1} R_{r}\left(1-\left|u_{r}\right|\right)=\operatorname{Im} z
\end{array}\right.
$$

Proof. i) For any $0<r<s<1$ we have:

$$
D_{r}=\varphi\left(U_{r}\right) \subset \varphi\left(U_{s}\right)=D_{s}
$$

ii) For $z \in D$ we have $\varphi^{-1}(z) \in U$, hence considering $r_{z}=\left|\varphi^{-1}(z)\right|$ we have $r_{z} \in(0,1)$, and for any $r \in\left(r_{z}, 1\right)$ we obtain $z \in \varphi\left(U_{r}\right)=D_{r}$.
iii) If $z=X+i Y$ is an arbitrarily fixed point in $D_{r}, r \in\left(r_{z}, 1\right)$, then the complex number $u_{r}=x_{r}+i y_{r}$ given by:

$$
u_{r}=\frac{z-z_{r}}{R_{r}}
$$

has the property that $\left|u_{r}\right|<1$. Using the relations (2.1) we get:

$$
X+i Y=\frac{2 r}{1-r^{2}} x_{r}+i\left(\frac{1+r^{2}}{1-r^{2}}+\frac{2 r}{1-r^{2}} y_{r}\right)
$$

and therefore:

$$
\left\{\begin{array}{l}
x_{r}=\frac{1-r^{2}}{2 r} X \\
y_{r}=\frac{\left(1-r^{2}\right) Y-\left(1+r^{2}\right)}{2 r}
\end{array}\right.
$$

hence it follows:

$$
\begin{aligned}
\lim _{r \rightarrow 1} u_{r} & =\lim _{r \rightarrow 1} \frac{\left(1-r^{2}\right)}{2 r} X+i \frac{\left(1-r^{2}\right) Y-\left(1+r^{2}\right)}{2 r} \\
& =-i,
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{r \rightarrow 1} R_{r}\left(1-\left|u_{r}\right|^{2}\right) & =\lim _{r \rightarrow 1} \frac{2 r}{1-r^{2}} \cdot \frac{4 r^{2}-|z|^{2}\left(1-r^{2}\right)^{2}+2\left(1-r^{4}\right) Y-\left(1+r^{2}\right)^{2}}{4 r^{2}} \\
& =\lim _{r \rightarrow 1}-\frac{|z|^{2}\left(1-r^{2}\right)}{2 r}+Y\left(1+r^{2}\right)-\frac{1-r^{2}}{2 r} \\
& =2 Y \\
& =2 \operatorname{Im} z .
\end{aligned}
$$

As $\lim _{r \rightarrow 1} 1+\left|u_{r}\right|=2$, follows from the previous inequality, the final result follows from the second part of iii), completing the proof.

The next theorem is obtained as a consequence of "the second coefficient inequality" for univalent functions in the unit disk, due to Bieberbach:

Theorem 2.2. If $g: U \rightarrow \mathbb{C}$ is analytic and univalent in U, then for any $z \in U$ the following inequality holds:

$$
\left.\left.|-2| z\right|^{2}+\left(1-|z|^{2}\right) \frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}|\leq 4| z \right\rvert\,
$$

Using Lemma 2.1 we obtain the following result, which corresponds to the previous theorem in the case of univalent functions in the half-plane:

Theorem 2.3. ([3]) If the function $f: D \rightarrow \mathbb{C}$ is analytic and univalent in the half-plane D, then for any $z \in D$ we have the inequality

$$
\begin{equation*}
\left|i-\operatorname{Im}(z) \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 2 \tag{2.2}
\end{equation*}
$$

The equality is satisfied for the function given by

$$
f(z)=z^{2}
$$

at the point $z=i$.
We make the observation that a simple function such as $f: D \rightarrow \mathbb{C}$ defined by

$$
f(z)=\sqrt{z},
$$

(where we consider a fixed branch of the logarithm for the square root) is univalent in the domain $D, f(D)$ is a convex domain, yet the function f is not considered to be convex in the sense of Definition 1.1 since it does not belong to the class \mathcal{H}_{1} (f does not satisfy the hydrodynamic normalization (1.1)).

This observation suggested the idea that it is necessary to give up the hydrodynamic normalization condition, a much too restrictive normalization. In this sense we propose a new definition of convexity for analytic functions in D, to include a larger class of analytic functions in D, not necessarily hydrodynamically normalized:

Definition 2.1. A function $f \in \mathcal{H}$ is said to be convex in D if f is univalent in D and $f(D)$ is a convex domain.

We will denote by $C(D)$ the class of convex functions (in the sense of Definition 2.1). The next theorem gives necessary and sufficient conditions for a function $f \in \mathcal{H}$ to belong to the class $C(D)$:

Theorem 2.4. For an analytic function $f: D \rightarrow \mathbb{C}$, the following are equivalent:
i) $f \in C(D)$;
ii) $f^{\prime}(i y) \neq 0$ for any $y>1$, and for any $r \in(0,1)$ and $z \in D_{r}$ the following inequality holds:

$$
\begin{equation*}
\operatorname{Re} \frac{\left(z-z_{r}\right) f^{\prime \prime}(z)}{f^{\prime}(z)}+1>0 \tag{2.3}
\end{equation*}
$$

where D_{r} is the disk $\left\{z \in \mathbb{C}:\left|z-z_{r}\right|<R_{r}\right\}$ and

$$
\left\{\begin{array}{l}
z_{r}=i \frac{1+r^{2}}{1-r^{2}} \tag{2.4}\\
R_{r}=\frac{2 r}{1-r^{2}}
\end{array}\right.
$$

Proof. Given the function $f \in C(D)$, denote by Δ the convex domain $f(D)$. The function $\varphi: U \rightarrow D$ given by

$$
\varphi(u)=i \frac{1-u}{1+u}
$$

represents conformally the disk U to the half-plane D, and for any $r \in(0,1)$ we have $\varphi\left(U_{r}\right)=$ D_{r}.

The function $f \circ \varphi: U \rightarrow \mathbb{C}$ represents conformally the unit disk U onto $\Delta=f(D)$. Since the domain Δ is convex, it follows that the function $f \circ \varphi$ is convex and univalent in the unit disk U, and hence represents conformally any disk $U_{r}(0<r<1)$, onto a convex domain. Since $\varphi\left(U_{r}\right)=D_{r}$, it follows that for any $r \in(0,1)$ the domain $\Delta_{r}=f\left(D_{r}\right)$ is convex. For $r \in(0,1)$ arbitrarily fixed, the function $g_{r}: U \rightarrow \mathbb{C}$ given by

$$
\begin{equation*}
g_{r}(u)=f\left(z_{r}+R_{r} u\right) \tag{2.5}
\end{equation*}
$$

where z_{r}, R_{r} are given by (2.4), represents conformally the disk U onto the convex domain Δ_{r}. Using the results for convex and univalent functions in the unit disk, it follows that the domain Δ_{r} is convex if and only if

$$
\begin{equation*}
g_{r}^{\prime}(0)=R_{r} f^{\prime}\left(z_{r}\right) \neq 0 \tag{2.6}
\end{equation*}
$$

and for any $u \in U$ the following inequality holds:

$$
\begin{equation*}
\operatorname{Re} \frac{z g_{r}^{\prime \prime}(u)}{g_{r}^{\prime}(u)}+1=\operatorname{Re} \frac{z R_{r} f^{\prime \prime}\left(z_{r}+R_{r} u\right)}{f^{\prime}\left(z_{r}+R_{r} u\right)}+1>0 \tag{2.7}
\end{equation*}
$$

Denoting $z=z_{r}+R_{r} u$, and observing that $u \in U$ if and only if $z \in D_{r}$, the previous inequality can be written as

$$
\begin{equation*}
\operatorname{Re} \frac{\left(z-z_{r}\right) f^{\prime \prime}(z)}{f^{\prime}(z)}+1>0 \tag{2.8}
\end{equation*}
$$

for any $z \in D_{r}$, proving the necessity for condition (2.3).
Since $z_{r}=i \frac{1+r^{2}}{1-r^{2}}$, for $r \in(0,1)$ we have:

$$
\left|z_{r}\right|=\frac{1+r^{2}}{1-r^{2}}>1
$$

for any $r \in(0,1)$ and thus the condition (2.6) is equivalent to $f^{\prime}(i y) \neq 0$ for any $y>1$.
Conversely, if ii) holds, then for any arbitrarily fixed $r \in(0,1)$ the function $g_{r}(u)=f\left(z_{r}+\right.$ $\left.R_{r} u\right)$ is convex and univalent in the disk U. It follows that for any $r \in(0,1)$ the domain $\Delta_{r}=g_{r}(U)$ is convex, and since $\Delta_{r}=f\left(D_{r}\right)$, it follows that the function f is convex and univalent in the domain D_{r}, for any $r \in(0,1)$. Since $\bigcup_{r \in(0,1)} D_{r}=D$, it follows that the function f is convex and univalent in the half-plane D, completing the proof.

In the previous proof we obtained the following result:
Corollary 2.5. If the function $f: D \rightarrow \mathbb{C}$ is convex and univalent in D, then $\Delta_{r}=f\left(D_{r}\right)$ is a convex domain for any $r \in(0,1)$.

Remark 2.6. In [2] the second author introduced the subclass $C_{1}(D)$ of the class of convex univalent functions as follows:

Definition 2.2. ([2]) We say that the analytic function $f: D \rightarrow \mathbb{C}$ belongs to the class $C_{1}(D)$ if for any $z \in D$ we have:

$$
\begin{equation*}
f^{\prime}(z) \neq 0 \tag{2.9}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
\operatorname{Re} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1>0 \tag{2.10}\\
\operatorname{Im} \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}>0
\end{array}\right.
$$

It is known that if the function $g: U \rightarrow \mathbb{C}$ is convex and univalent in the unit disk U, with the Taylor series expansion:

$$
g(z)=z+a_{2} z^{2}+\cdots,
$$

then $\left|a_{2}\right| \leq 1$. The class of convex and univalent functions in the unit disk, normalized by $f(0)=f^{\prime}(0)-1=0$ is denoted by C.

The above property for functions belonging to the class C has the following important consequence:

Theorem 2.7. If the function $g: U \rightarrow \mathbb{C}$ belongs to the class C, then for any $z \in U$ the following inequality holds:

$$
\left.\left.|-2| z\right|^{2}+\left(1-|z|^{2}\right) \frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}|\leq 2| z \right\rvert\,
$$

Using this result we obtain a differential characterization of the class $C(D)$ of convex and univalent functions in the half-plane D :

Theorem 2.8. If the function $f: D \rightarrow \mathbb{C}$ belongs to the class $C(D)$, then for any $z \in D$ we have the inequality:

$$
\begin{equation*}
\left|i-\operatorname{Im}(z) \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1 \tag{2.11}
\end{equation*}
$$

Proof. If the function f belongs to $C(D)$, by Corollary 2.5 it follows that $\Delta_{r}=f\left(D_{r}\right)$ is a convex domain for any $r \in(0,1)$.

The function g_{r} given by formula (2.5) represents conformally the unit disk U onto $g_{r}(U)=$ Δ_{r}, and since Δ_{r} is a convex domain, it follows that the function g_{r} is convex and univalent. The function

$$
\frac{g_{r}(u)-g_{r}(0)}{g_{r}^{\prime}(0)}=\frac{f\left(z_{r}+R_{r} u\right)-f\left(z_{r}\right)}{R_{r} f^{\prime}\left(z_{r}\right)}
$$

is therefore convex and univalent in $u \in U$, normalized by $g_{r}(0)=g_{r}^{\prime}(0)-1=0$ for any $r \in(0,1)$. By Theorem 2.7 it follows that for any $r \in(0,1)$ and any $u \in U$ the following inequality holds:

$$
\begin{equation*}
\left.\left.|-2| u\right|^{2}+\left(1-|u|^{2}\right) \frac{u R_{r} f^{\prime \prime}\left(z_{r}+R_{r} u\right)}{f^{\prime}\left(z_{r}+R_{r} u\right)}|\leq 2| u \right\rvert\, . \tag{2.12}
\end{equation*}
$$

Given $z \in D$, by Lemma 2.1 there exists $r_{z} \in(0,1)$ such that for any fixed $r \in\left(r_{z}, 1\right)$, there is $u_{r} \in U$ such that $z=z_{r}+R_{r} u_{r} \in D_{r}$ and

$$
\left\{\begin{array}{l}
\lim _{r \rightarrow 1} u_{r}=-i, \\
\lim _{r \rightarrow 1}\left(1-\left|u_{r}\right|\right) R_{r}=\operatorname{Im} z
\end{array}\right.
$$

Considering $u=u_{r}$ in the inequality (2.12) and passing to the limit with $r \rightarrow 1$, we obtain:

$$
\left|-2+2 \operatorname{Im}(z) \frac{-i f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 2
$$

Since $z \in D$ was arbitrarily chosen, we have shown that for any $z \in D$ the following inequality holds:

$$
\left|i-\operatorname{Im}(z) \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1,
$$

and the theorem is proved.
The next result is an important consequence of Theorem 2.8:
Corollary 2.9. If the function $f: D \rightarrow \mathbb{C}$ is convex and univalent in the half-plane D, then for any $z \in D$ we have the inequality:

$$
\begin{equation*}
\operatorname{Im} \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}>0 . \tag{2.13}
\end{equation*}
$$

Proof. If the function f is convex and univalent in the half-plane D, by the inequality (2.11) given by Theorem 2.8 . it follows that for any $z \in D$, the point $w=\operatorname{Im}(z) \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}$ belongs to the disk centered at i with radius 1 . Since this disk belongs to the upper half-plane, it follows that for any $z \in D$ the inequality (2.13) holds.
Remark 2.10. The result in the previous corollary was obtained, using different methods, by F.G. Avhadiev [1].

Example 2.1. The function $f: D \rightarrow \mathbb{C}$ given by

$$
f(z)=z^{a}
$$

is convex and univalent for any $a \in[-1,0) \cup(0,1]$, since the function f is analytic and univalent in D, and the domains: $f(D)=\{z \in \mathbb{C}: \arg (z) \in(0, a \pi)\}$, for $a \in(0,1)$, and $f(D)=$ $\{z \in \mathbb{C}: \arg (z) \in(a \pi, 0)\}$, for $a \in(-1,0)$, are convex.

The following inequalities hold:

$$
\begin{aligned}
\operatorname{Re} \frac{\left(z-z_{r}\right) f^{\prime \prime}(z)}{f^{\prime}(z)}+1 & =(a-1) \operatorname{Re} \frac{z-z_{r}}{z}+1 \\
& =\frac{a\left|z^{2}\right|-\left|z_{r}\right|(a-1) \operatorname{Im} z}{|z|^{2}} \\
& =\frac{a}{|z|^{2}}\left[(\operatorname{Re} z)^{2}+(\operatorname{Im} z)^{2}-\frac{a-1}{a}\left|z_{r}\right| \operatorname{Im} z\right] .
\end{aligned}
$$

Let us observe that if $a \in[-1,0)$, then for any $r \in(0,1)$, we have the following inequality:

$$
(\operatorname{Re} z)^{2}+(\operatorname{Im} z)^{2}-\frac{a-1}{a}\left|z_{r}\right| \operatorname{Im} z<0
$$

for any z in the disk centered at $\frac{i(a-1)\left|z_{r}\right|}{2 a}$ with radius $\frac{(a-1)\left|z_{r}\right|}{2 a}$. Since

$$
\frac{a-1}{2 a}\left|z_{r}\right| \geq\left|z_{r}\right|
$$

this disk is contained in the disk D_{r}, and hence by Theorem 2.4 it follows that for $a \in[-1,0)$ we have $f \in C(D)$.

For $a \in(0,1]$ we have:

$$
\operatorname{Re} \frac{\left(z-z_{r}\right) f^{\prime \prime}(z)}{f^{\prime}(z)}+1=a-(a-1)\left|z_{r}\right| \frac{\operatorname{Im} z}{\left|z^{2}\right|}>0
$$

for any $r \in(0,1)$ and for any $z \in D$, and therefore by Theorem 2.4 the function f belongs to the class $C(D)$ for $a \in(0,1]$ as well.

Applying Theorem 1.2 to the same function f, we obtain:

$$
\begin{aligned}
\operatorname{Im}\left[2 z+\frac{\left(z^{2}+1\right) f^{\prime \prime}(z)}{f^{\prime}(z)}\right] & =2 y+\operatorname{Im} \frac{\left(z^{2}+1\right)(a-1)}{z} \\
& =|z|^{-2} y\left[(a+1)|z|^{2}-(a-1)\right]>0
\end{aligned}
$$

for any $z \in D$, if and only if $a \in[-1,1]$. The condition $f^{\prime}(i)$ is satisfied for $a \neq 0$, hence it follows that $f \in C(D)$ for any $a \in[-1,0) \cup(0,1]$.

Trying to apply the result due to J. Stankiewicz, we can see that $f \notin C_{\mathcal{H}_{1}}(D)$ for any value of $a \in[-1,0) \cup(0,1]$ since the considered function f satisfies the hydrodynamic normalization just for $a=1$, but in this case

$$
\operatorname{Im} \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=0
$$

and the condition obtained by J. Stankiewicz is not satisfied. We therefore have the inclusion $C_{\mathcal{H}_{1}}(D) \subsetneq C(D)$.

References

[1] F.G. AVHADIEV, O nekotorah odnolistnostâh otobrajeniah poluploskosti, Trudâ Seminara po kraevâm zadaciam, 11 (1974).
[2] N.R. PASCU, On a class of convex functions in a half-plane, General Mathematics, 8(1-2) (2000).
[3] N.N. PASCU, On univalent functions in a half-plane, Studia Univ. "Babes-Bolyai", Math., XLVI(2) (2001).
[4] J. STANKIEWICZ and Z. STANKIEWICZ, On the classes of functions regular in a half-plane I, Bull. Pollisch Acad. Sci. Math., 39(1-2) (1991), 49-56.
[5] J. STANKIEWICZ, Geometric properties of functions regular in a half-plane, Current Topics in Analytic Function Theory, World Sci. Publishing, River Edge NJ (1992), pp. 349-362.

[^0]: ISSN (electronic): 1443-5756
 (c) 2003 Victoria University. All rights reserved.

 038-03

