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ABSTRACT. An interpolation theorem of Donoghue is extended to interpolation of tensor prod-
ucts. The result is related to Korányi’s work on monotone matrix functions of several variables.
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1. STATEMENT AND PROOF OF THE M AIN RESULT

Recall the definition of an interpolation function (of one variable). LetA ∈ Mn(C) := L(`n
2 )

be a positive definite matrix. A real functionh defined onσ(A) is said to belong to the classCA

of interpolation functions with respect toA if

(1.1) T ∈ Mn(C), T ∗T ≤ 1, T ∗AT ≤ A

imply

(1.2) T ∗h(A)T ≤ h(A).

(HereA ≤ B means thatB − A is positive semidefinite). By Donoghue’s theorem (cf. [4,
Theorem 1], see also [1, Theorem 7.1]), the functions inCA are precisely those representable
in the form

(1.3) h(λ) =

∫
[0,∞]

(1 + t)λ

1 + tλ
dρ(t), λ ∈ σ(A),

for some positive Radon measureρ on the compactified half-line[0,∞]. Thus, by Löwner’s
theorem (see [6] or [3]),CA is precisely the set of restrictions toσ(A) of the positivematrix
monotonefunctions onR+, in the sense thatA, B ∈ Mn(C) positive definite andA ≤ B imply
h(A) ≤ h(B). Before we proceed, it is important to note that

(1.4) h ∈ CA implies h
1
2 ∈ CA
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2 Y. AMEUR

because the functionλ 7→ λ
1
2 is matrix monotone and the class of matrix monotone functions

is a semi-group under composition.
Given two positive definite matricesAi ∈ Mni

(C), define the classCA1,A2 of interpolation
functions with respect toA1, A2 as the set of functionsh defined onσ(A1)× σ(A2) having the
following property:

(1.5) Ti ∈ Mni
(C) T ∗

i Ti ≤ 1 T ∗
i AiTi ≤ Ai, i = 1, 2

imply

(1.6) (T1 ⊗ T2)
∗h(A1, A2)(T1 ⊗ T2) ≤ h(A1, A2).

(Here (cf. [8])

h(A1, A2) =
∑

(λ1,λ2)∈σ(A1)×σ(A2)

h(λ1, λ2)Eλ1 ⊗ Fλ2 ,

whereE, F are the spectral resolutions ofA1, A2).
Note that ifh = h1 ⊗ h2 is an elementary tensor wherehi ∈ CAi

, thenh ∈ CA1,A2, because
then (1.5) yields

(T1 ⊗ T2)
∗h(A1, A2)(T1 ⊗ T2) = (T ∗

1 h1(A1)T1)⊗ (T ∗
2 h2(A2)T2)

≤ h1(A1)⊗ h2(A2) = h(A1, A2),

i.e. (1.6) holds. Since by (1.3) each function

λ 7→ (1 + t)λ

1 + tλ

is in CA for anyA, and since the classCA1,A2 is a convex cone, closed under pointwise conver-
gence, it follows that functions of the type

(1.7) h(λ1, λ2) =

∫
[0,∞]2

(1 + t1)λ1

1 + t1λ1

(1 + t2)λ2

1 + t2λ2

dρ(t1, t2),

whereρ is a positive Radon measure on[0,∞]2 are inCA1,A2 for all A1, A2. We have thus
proved the easy part of our main theorem:

Theorem 1.1. Let h be a real function defined onσ(A1) × σ(A2). Thenh ∈ CA1,A2 iff h is
representable in the form (1.7) for some positive Radon measureρ.

It remains to prove “⇒”. Let us make some preliminary observations:

(i) ([2, Lemma 2.2]) The classCA1,A2 is unitarily invariant in the sense that ifA1 andA2

are unitarily equivalent toA′
1 andA′

2 respectively, thenh ∈ CA1,A2 impliesh ∈ CA′
1,A′

2
.

(Indeed,

h(U∗
1 A1U1, U

∗
2 A2U2) = (U1 ⊗ U2)

∗h(A1, A2)(U1 ⊗ U2)

for all unitariesU1, U2).
(ii) ([2, Lemma 2.1]) The classCA1,A2 respects compressions to invariant subspacesin the

sense that iff ∈ CA1,A2 andA′
1, A

′
2 are compressions ofA1, A2 respectively to invariant

subspaces, thenh ∈ CA′
1,A′

2
. (Indeed,

(E ⊗ F )h(A1, A2)(E ⊗ F ) = (E ⊗ F )h(EA1E, FA2F )(E ⊗ F )

wheneverE, F are orthogonal projections commuting withA1, A2 respectively).
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(iii) If λ∗2 is any (fixed) eigenvalue ofA2 and the functionhλ∗
2

: σ(A1) → R is defined by
hλ∗

2
(λ1) = h(λ1, λ

∗
2), then

h(A1, λ
∗
2Fλ∗

2
) =

∑
λ1∈σ(A1)

h(λ1, λ
∗
2)(Eλ1 ⊗ Fλ∗

2
)

=

 ∑
λ1∈σ(A1)

hλ∗
2
(λ1)Eλ1

⊗ Fλ∗
2

= hλ∗
2
(A1)⊗ Fλ∗

2
.

(iv) By symmetry, of course (with fixedλ∗1 in σ(A1) andhλ∗
1
(λ2) = h(λ∗1, λ2)),

h(λ∗1Eλ∗
1
, A2) = Eλ∗

1
⊗ hλ∗

1
(A2).

Lemma 1.2. Leth ∈ CA1,A2 and letλ∗1, λ
∗
2 be fixed eigenvalues ofA1 andA2 respectively. Then

h
1
2
λ∗
1
∈ CA2 andh

1
2
λ∗
2
∈ CA1 .

Proof. By symmetry of the problem, it suffices to prove the statement abouth
1
2
λ∗
2
. If h ∈ CA1,A2 ,

then by (iii),
h(A1, λ

∗
2Fλ∗

2
) = hλ∗

2
(A1)⊗ Fλ∗

2
.

Let f ∗2 be a fixed non-zero vector in the range ofFλ∗
2

and putc = (Fλ∗
2
f ∗2 , f∗2 ) > 0. Put

T2 = Fλ∗
2

and letT1 be any matrix fulfillingT ∗
1 T1 ≤ 1 andT ∗

1 A1T1 ≤ A1; then plainlyT1, T2

satisfy condition (1.5). Thus, sinceh ∈ CA1,λ∗
2Fλ∗

2
, we get from (1.6)

((T1 ⊗ T2)
∗h(A1, λ

∗
2Fλ∗

2
)(T1 ⊗ T2)(f1 ⊗ f ∗2 ), f1 ⊗ f ∗2 )− (h(A1, λ

∗
2Fλ∗

2
)(f1 ⊗ f ∗2 ), f1 ⊗ f ∗2 )

= c((T ∗
1 hλ∗

2
(A1)T1f1, f1)− (hλ∗

2
(A1)f1, f1)) ≤ 0, f1 ∈ Mn1(C).

This yieldsT ∗
1 hλ∗

2
(A1)T1 ≤ hλ∗

2
(A1), T1 ∈ Mn1(C), i.e. hλ∗

2
∈ CA1 . In view of (1.4),h

1
2
λ∗
2
∈

CA1. �

Let h be a fixed function in the classCA1,A2 . Replacing the matricesA1, A2 by c1A1, c2A2

for suitable constantsc1, c2 > 0, we can assume without loss of generality that

(1.8) (1, 1) ∈ σ(A1)× σ(A2).

DefineC to be theC∗-algebra of continuous functions[0,∞] → C with the supremum norm,
and denote (for fixedλ ∈ R+) by eλ the function

eλ(t) =
(1 + t)λ

1 + tλ
∈ C, t ∈ [0,∞].

Let two finite-dimensional subspacesV1, V2 be defined by

Vi = span{eλi
: λi ∈ σ(Ai)} ⊂ C, i = 1, 2.

Then (1.8) yields that the unit1 = e1(t) ∈ C belongs toV1 ∩ V2. For fixedλ∗i ∈ σ(Ai), define
two linear functionals

φλ∗
1

: V2 → C, φλ∗
2

: V1 → C
by

φλ∗
1

 ∑
λ2∈σ(A2)

aλ2eλ2

 =
∑

λ2∈σ(A2)

aλ2hλ∗
1
(λ2)

1
2 ,
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and

φλ∗
2

 ∑
λ1∈σ(A1)

aλ1eλ1

 =
∑

λ1∈σ(A1)

aλ1hλ∗
2
(λ1)

1
2

respectively. We then have the following lemma:

Lemma 1.3. The functionalφλ∗
1

is positive onV2 in the sense that ifu ∈ V2 satisfiesu(t) ≥ 0
for all t > 0, thenφλ∗

1
(u) ≥ 0. Similarly,φλ∗

2
is a positive functional onV1.

Proof of Lemma 1.3.This follows from Lemma 1.2 and Lemma 7.1 of [1]. �

Proof of Theorem 1.1.Consider now the bilinear form

φ : V1 × V2 → C
defined by

(1.9) φ

 ∑
λ1∈σ(A1)

aλ1eλ1 ,
∑

λ2∈σ(A2)

aλ2eλ2


=

∑
(λ∗

1,λ∗
2)∈σ(A1)×σ(A2)

φλ∗
1

 ∑
λ2∈σ(A2)

aλ2eλ2

 φλ∗
2

 ∑
λ1∈σ(A1)

aλ1eλ1

 .

By Lemma 1.3,φ is positiveonV1× V2 in the sense thatui ∈ Vi, ui ≥ 0 impliesφ(u1, u2) ≥ 0.
Hence (since theVi’s contain the function1),

(1.10) ‖φ‖ = sup{|φ(u1, u2)| : ui ∈ Vi, ‖ui‖∞ ≤ 1, i = 1, 2} = φ(1, 1).

Now φ lifts to a linear functional
φ̃ : V1 ⊗ V2 → C,

which is positive onV1 ⊗ V2, because

‖φ̃‖ = ‖φ‖ = φ(1, 1) = φ̃(1).

The Hahn–Banach theorem yields an extensionΦ : C ⊗C = C([0,∞]2) → C of φ̃ of the same
norm. Thus the positivity of̃φ yields

‖Φ‖ = ‖φ̃‖ = φ̃(1) = Φ(1),

i.e. Φ is a positive functional onC([0,∞]2). Hence, the Riesz representation theorem provides
us with a positive Radon measureρ on [0,∞]2 such that

(1.11) Φ(u) =

∫
[0,∞]2

u(t1, t2)dρ(t1, t2), u ∈ C([0,∞]2).

A simple rewriting yields that (1.9) equals∑
(λ∗

1,λ∗
2)∈σ(A1)×σ(A2)

aλ∗
1
aλ∗

2
h(λ∗1, λ

∗
2) +

∑
(λ1,λ2) 6=(λ∗

1,λ∗
2)

aλ1aλ2h(λ∗1, λ2)
1
2 h(λ1, λ

∗
2)

1
2

 .

Inserting the latter expression into (1.11) yields

h(λ∗1, λ
∗
2) = φ(λ∗1, λ

∗
2)

= Φ(eλ∗
1
⊗ eλ∗

2
)

=

∫
[0,∞]2

(1 + t1)λ
∗
1

1 + t1λ∗1

(1 + t2)λ
∗
2

1 + t2λ∗2
dρ(t1, t2).
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Sinceλ∗1, λ∗2 are arbitrary, the theorem is proved. �

Remark 1.4. It is easy to modify the above proof to obtain a representation theorem for in-
terpolation functions of more than two matrix variables (where the latter set of functions is
interpreted in the obvious way).

2. K ORÁNYI ’ S THEOREM

Consider the class of functions which aremonotoneaccording to the definition of Korányi
[8] 1, A1 ≤ A′

1 andA2 ≤ A′
2 imply

(2.1) h(A′
1, A

′
2)− h(A′

1, A2)− h(A1, A
′
2)− h(A1, A2) ≥ 0.

The functions

ht(λ) =
(1 + t)λ

1 + tλ
are monotone of one variable(0 ≤ t ≤ ∞), whence withht1t2 = ht1 ⊗ ht2 (cf. [8, p. 544]),

ht1t2(A
′
1, A

′
2)− ht1t2(A

′
1, A2)− ht1t2(A1, A

′
2)− ht1t2(A1, A2)

= (ht1(A
′
1)− ht1(A1))⊗ (ht2(A

′
2)− ht2(A2)) ≥ 0,

i.e. ht1t2 is monotone. Since the class of monotone functions of two variables is closed under
pointwise convergence, the latter inequality can be integrated, which yields that all functions of
the form (1.7) are monotone. Hence we have proved the easy half of the following theorem of
A. Korányi, cf. [8, Theorem 4], cf. also [9].

Theorem 2.1. Let h be a positive function onR2
+. Assume that(a) the first partial derivatives

and the mixed second partial derivatives ofh exist and are continuous. Thenh is monotone iff
h is representable in the form (1.7) for some positive Radon measureρ on [0,∞]2.

Remark 2.2. According to Korányi the differentiability condition(a) was imposed “in order to
avoid lengthy computations which are of no interest for the main course of our investigation”
([8, bottom of p. 541]).

Let us denote a functionh defined onR2
+ an interpolation functionif h ∈ CA1,A2 for any

positive matricesA1, A2. Theorem 1.1 and Theorem 2.1 then yield the following corollary,
which nicely generalizes the one-variable case.

Corollary 2.3. The set of interpolation functions coincides with the set of monotone functions
satisfying(a).
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