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ABSTRACT. An interpolation theorem of Donoghue is extended to interpolation of tensor prod-
ucts. The result is related to Koranyi's work on monotone matrix functions of several variables.
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1. STATEMENT AND PROOF OF THE MAIN RESULT

Recall the definition of an interpolation function (of one variable). et M, (C) := L({5)
be a positive definite matrix. A real functidndefined ons(A) is said to belong to the clags,
of interpolation functions with respect té if

(1.2) TeM,(C), T"T' <1, TrAT<A
imply
(1.2) T*h(A)T < h(A).

(Here A < B means that3 — A is positive semidefinite). By Donoghue’s theorem (c¢fl [4,
Theorem 1], see alsol[1, Theorem 7.1]), the function€'inare precisely those representable
in the form

(146N
1.3 h(A) = ———dp(t A A
13) W= [ S, Aeol),
for some positive Radon measysen the compactified half-lin), co]. Thus, by Léwner’s
theorem (see [6] of [3])('4 is precisely the set of restrictions ¢4 A) of the positivematrix
monotondunctions onR , in the sense that, B € M,,(C) positive definite andl < B imply
h(A) < h(B). Before we proceed, it is important to note that

(1.4) heC, implies hz e Oy
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2 Y. AMEUR

because the functioh — )2 is matrix monotone and the class of matrix monotone functions
is a semi-group under composition.

Given two positive definite matriced; € M,, (C), define the clasé’s, 4, of interpolation
functions with respect td,, A, as the set of functions defined oro(A;) x o(A;y) having the
following property:

(1.5) T, e M, (C) T/T,<1 TIAT, <A, i=1.2
imply
(1.6) (Th @ Ty)*h(Ay, A))(Ty @ T) < h(Ay, Ay).

(Here (cf. [8])
h(Ala AZ) = Z h()\l, )\Q)E/\l & F)\Q,
(/\1,)\2)€U(A1)><0'(A2)

whereF, F' are the spectral resolutions df, A,).
Note that ifh = hy ® hy is an elementary tensor whelige Cy,, thenh € Cy4, 4,, because

then [1.5) yields
(Th @ To)"h(Ay, A)(Th @ T) = (TTha(A1)Th) ® (T5 ho(A2)T5)
< hi(Ar) ® ho(Az) = h(Ay, Ag),
i.e. (1.6) holds. Since by (1.3) each function
@A
L +1tA

isin 4 for any A, and since the clags,, 4, is a convex cone, closed under pointwise conver-
gence, it follows that functions of the type

(1 + tl))\l (1 + t2)>\2
1.7 h(A1, A2) =
(L7 (A, %2) /[[),00]2 T+ th 1+t

dp(th t2)7

wherep is a positive Radon measure @ oo]? are inCy, 4, for all A;, A;. We have thus
proved the easy part of our main theorem:

Theorem 1.1. Let h be a real function defined om(A;) x o(A2). Thenh € Cy, 4, iff his
representable in the form (1.7) for some positive Radon measure

It remains to prove=". Let us make some preliminary observations:

(i) ([2) Lemma 2.2]) The clas€'4, 4, is unitarily invariantin the sense that ift; and A,
are unitarily equivalent tol} and A; respectively, theh € C4, 4, impliesh € Cy; 4, .
(Indeed,

WU AU, U AsUs) = (U, @ Us)*h(Ay, As)(Uy @ Us)

for all unitariestU;, Us).

(i) ([2] Lemma 2.1]) The clas€'y, 4, respects compressions to invariant subspacehe
sense thatif € C4, 4, andA}, A, are compressions of;, A, respectively to invariant
subspaces, thene Cy, 4,. (Indeed,

(E® F)h(Ay, A)(E® F) = (E® F)h(EAE, FA,F)(E® F)

wheneverE, F are orthogonal projections commuting with, A, respectively).
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(iii) If A3 is any (fixed) eigenvalue ofl, and the functiorh,; : o(A;) — R is defined by
h)\;()\l) = h()\l, )\5), then

WAL N F) = > k(M A3)(Ey, ® Fyy)

A1 EO’(Al)

= Z has(A)Ey, | @ Fyy
A€Ea(Ar)

= hy; (A1) @ Py
(iv) By symmetry, of course (with fixed; in o(A;) andhy:(\2) = h(A], A2)),
h(XN Ey:, Ag) = Ex: @ hyr(Ay).
Lemma 1.2.Leth € C4, 4, and leth], X5 be fixed eigenvalues df; and A, respectively. Then
hi. € Ca, andhi, € Ci,.

Proof. By symmetry of the problem, it suffices to prove the statement afoiguﬂf h € Ca, 4y,
then by (iii),
h(Al, )\ZFAE) = h)\s (Al) ® FA;

Let f; be a fixed non-zero vector in the range i6f; and putc = (F); f;, f5) > 0. Put
Ty = Fy; and let7; be any matrix fulfillingZ;7; < 1 and77 ATy < A;; then plainlyT;, T,
satisfy condition@S). Thus, sindec Cy, x;r,., We get from EP)

(e T2)*h(A1>)‘;F/\§)(T1 @) (1® f3), [Li®f3) - (h(Ab)‘;F)\;)(fl ®f5), 1 ®f3)
= c((TThay (A1) T f1, f1) — (hag (A1) f1, f1)) <0, f1 € M, (C).
This yieldST; s (A)T1 < hag(A), Ty € My, (C), i, hag € Ciay. In view of (L), 13, €
Ca,. O

Let h be a fixed function in the clasS,, 4,. Replacing the matriced,, A; by ¢1 45, 2 As
for suitable constants, ¢, > 0, we can assume without loss of generality that

(1.8) (1,1) € 0(A;) x o(Ay).

DefineC' to be theC*-algebra of continuous functiong, co] — C with the supremum norm,
and denote (for fixed € R ) by e, the function

(1 +)A
) =T
Let two finite-dimensional subspacesg V; be defined by

Vi =span{ey, : \; € 0(4;)} CC, i=1,2.

Then [1.8) yields that the unit= ¢,(¢) € C belongs toV; N V,. For fixed\; € o(4;), define
two linear functionals

eC, tel0,00].

o Vo= C, gy V1= C
by

¢>q Z Ax€xg | = Z axgh,\;()\z)%,

Ao€o(A2) Ao€o(A2)
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and

Pz Z ayer | = Z axlh,\;(/\l)%

A€o(Ar) A €o(Ar)
respectively. We then have the following lemma:

Lemma 1.3. The functionalp,: is positive onl; in the sense that it € V; satisfiesu(t) > 0
forall t > 0, theng,: (u) > 0. Similarly, ¢, is a positive functional o;.

Proof of Lemma 1]3This follows from Lemmé 1]2 and Lemma 7.1 bf [1]. O
Proof of Theorerm 1]1Consider now the bilinear form

¢o:VixVy—C
defined by
(19) ¢ Z OV Z AXy €,

)\160'(.41) )\QEO'(AQ)
= Z Pr; Z A€ | Or Z ax €
(A’{,/\%)GO’(Al)XO'(AQ) )\QEO'(AQ) )\160'(.41)

By Lemm4 1.B¢ is positiveon V; x V; in the sense that; € V;, u; > 0 implies¢(uy, us) > 0.
Hence (since th&;’s contain the function),
(1.10) 16]] = sup{|p(ur, u)| : i € Vi, Juilloo < 1,4 =1,2} = (1, 1).
Now ¢ lifts to a linear functional .
¢p:Vi®V, —C,

which is positive on/; ® V,, because

191l = lloll = ¢(1,1) = (1).
The Hahn-Banach theorem yields an extendiarC' @ C' = C([0, oc]*) — C of ¢ of the same
norm. Thus the positivity op yields

o]l = [l¢]l = (1) = @(1),
i.e. @ is a positive functional od’([0, oo]?). Hence, the Riesz representation theorem provides
us with a positive Radon measyren [0, o] such that

(1.11) @(u>:4 Lt )dpli o), e C(0,00P).

A simple rewriting yields tha{ (I]9) equals

* )% * 1 %\ L
> axashNL )+ Y ananh(A, Ae)2h(A, A2
(A A3)Ea (A1) xo(As) (A1 A2) (V. 5)

Inserting the latter expression info (1].11) yields
h(AT A2) = 9(A1, As)
= <I>(e)\»{ (024 6)\3)

1T4+t0)A] (1 +t2)A5
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Since\}, A} are arbitrary, the theorem is proved. O

Remark 1.4. It is easy to modify the above proof to obtain a representation theorem for in-
terpolation functions of more than two matrix variables (where the latter set of functions is
interpreted in the obvious way).

2. KORANY!I'STHEOREM

Consider the class of functions which am®notoneaccording to the definition of Koranyi
8] | 41 < A} andA, < A} imply
(2.1) h(AY, Ay) — h(AY, Az) — h(Ay, A)) — h(Ar, Ag) > 0.
The functions (14 0

+
hi(A) = ———

W=7 + 1A

are monotone of one variablé < ¢t < co), whence with, ;, = hy, @ hy, (cf. [8, p. 544]),

ht1t2 (A/h AIZ) - ht1t2 (Allv AQ) - ht1t2 (Ah AIQ) - htltz (Alv AQ)

= (e, (A7) = hey (A1) ® (e (A3) — hey (A2)) 20,

i.e. hy 1, IS monotone. Since the class of monotone functions of two variables is closed under
pointwise convergence, the latter inequality can be integrated, which yields that all functions of
the form [1.7) are monotone. Hence we have proved the easy half of the following theorem of
A. Koranyi, cf. [8, Theorem 4], cf. also [9].

Theorem 2.1. Let be a positive function oR? . Assume thata) the first partial derivatives
and the mixed second partial derivativeshoéxist and are continuous. Theéns monotone iff
h is representable in the for.7) for some positive Radon measamé0, oo?.

Remark 2.2. According to Koranyi the differentiability conditiofu) was imposed “in order to
avoid lengthy computations which are of no interest for the main course of our investigation”
([8, bottom of p. 541]).

Let us denote a functioh defined onRi aninterpolation functionf A € Cjy, 4, for any
positive matrices4;, A,. Theoren 1]l and Theorem R.1 then yield the following corollary,
which nicely generalizes the one-variable case.

Corollary 2.3. The set of interpolation functions coincides with the set of monotone functions
satisfying(a).
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