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Abstract

In this paper we give conditions which assure the coercive solvability of an
abstract differential equation of elliptic type with an operator in the boundary
conditions, and the completeness of generalized eigenfunctions. We apply the
abstract result to show that a non regular boundary value problem for a second
order partial differential equation of an elliptic type in a cylindrical domain is
coercive solvable.
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1. Introduction
Many works are devoted to the study of hyperbolic or parabolic abstract equa-
tions [16, 18, 9]. In [16, 20] regular boundary value problems for elliptic ab-
stract equations are considered. A few works are concerned with non regular
problems.

In this paper we establish conditions guaranteeing that non local boundary
value problem for elliptic abstract differential equation of the second order in an
interval is coercive solvable in the Hilbert spaceL2 (0, 1; H). A coercive esti-
mates, when the problem is regular, was proved in [1, 3]. The considered prob-
lem is not regular, since the boundary conditions are non local, similar problems
have been considered in [4, 5, 7, 22]. Moreover, we prove the completeness of
root functions. The completeness of root functions for regular boundary value
problems are proved in [1, 6, 10, 14] and in the book [22].

The obtained results are then applied to study a non local boundary value
problem for the Laplace equation in a cylinder.
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2. Notations and Definitions
Let H be a Hilbert space,A a linear closed operator inH andD(A) its domain.
We denote byL(H) the space of bounded linear operators acting onH, with
the usual operator norm, and byLp(0, 1; H) the space of strongly measurable
functionsx → u(x) : [0, 1] → H, whosepth−power are summable, with the
norm

‖u‖p
0,p = ‖u‖p

Lp(0,1;H) =

∫ 1

0

‖u(x)‖p
H dx < ∞, p ∈ [1,∞] .

Now, introduce theLp(0, 1; H) vector-valued Sobolev spacesW 2
p (0, 1; H1, H),

whereH1, H are Hilbert spaces such thatH1 ⊂ H with continuous embedding

W 2
p (0, 1; H1, H) = {u : u′′ ∈ Lp(0, 1; H) andu ∈ Lp(0, 1; H1)}

and
‖u‖W 2

p (0,1;H1,H) = ‖u‖Lp(0,1;H1) + ‖u′′‖Lp(0,1;H) < ∞.

Let E0, E1 be two Banach spaces, which are continuously injected in the Ba-
nach spaceE, the pair{E0, E1} is said to be an interpolation couple. Consider
the Banach space

E0 + E1 = {u : u ∈ E, ∃uj ∈ Ej, j = 0, 1, with u = u0 + u1} ,

‖u‖E0+E1
= inf

u=u0+u1;uj∈Ej

(
‖u0‖E0

+ ‖u1‖E1

)
,

and the functional

K(t, u) = inf
u=u0+u1;uj∈Ej

(
‖u0‖E0

+ t ‖u1‖E1

)
.
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The interpolation space for the couple{E0, E1} is defined, by theK-method,
as follows

(E0, E1)θ,p =

{
u : u ∈ E0 + E1, ‖u‖θ,p =

(∫ ∞

0

t−1−θpKp(t, u)dt

) 1
p

< ∞

}
,

0 < θ < 1, 1 ≤ p ≤ ∞.

(E0, E1)θ,∞ =

{
u : u ∈ E0 + E1, ‖u‖θ,∞ = sup

t∈(0,∞)

t−θK(t, u)dt < ∞

}
,

0 < θ < 1. Let A be a closed operator inH. H(A) is the domain ofA provided
with the Hilbertian graph norm

‖u‖2
H(A) = ‖Au‖2 + ‖u‖2 , u ∈ D(A).

If −A is the infinitesimal generator of the semigroupexp(−xA) which is ana-
lytic for x > 0, decreasing at infinity and strongly continuous forx ≥ 0, then
the following holds [19, p. 96]:

(H, H(An))θ,p =
{

u : u ∈ H, ‖u‖p
θ,p < ∞

}
,

where

‖u‖p
θ,p =

∫ ∞

0

t−n(1−θ)p−1 ‖An exp(−tA)u‖p dt + ‖u‖p ,

0 < θ < 1, n ∈ N, 1 ≤ p < ∞ and‖u‖θ,p its norm.
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Let H andH1 be Hilbert spaces such that the imbeddingH1 ⊂ H is continu-
ous andH1 = H. Then(H, H1)θ,2 , is a Hilbert space, we denote it by(H, H1)θ .

It is known that(H, H1)θ = H(Sθ), whereS is a self-adjoint positive-definite
operator inH [17].

Let Ff(σ) = (2π)−
1
2

+∞∫
−∞

exp(iσx)f(x)dx be the Fourier transform of the

functionf.

Lemma 2.1. [22, p. 300] LetA be a self adjoint and positive definite operator
in H. Then

1. ∃ω > 0,
∥∥∥Aα exp

[
−x (A + λI)

1
2

]∥∥∥ ≤ C exp
[
−ωx |λ|

1
2

]
for all α ∈ R,

x ≥ x0 > 0, |arg λ| ≤ ϕ < π, whereC does not depend onx andλ.

2.
∫ 1

0

∥∥∥(A + λI)α exp
[
−x (A + λI)

1
2

]
u
∥∥∥ ≤ C

(∥∥∥Aα− 1
4 u
∥∥∥2

+ |λ|2α− 1
2 ‖u‖2

)
for all α ≥ 1

4
, |arg λ| ≤ ϕ < π, andu ∈ D

(
Aα− 1

4

)
, whereC does not

depend onu andλ.

3.
∥∥∥Aα (A + λI)−β

∥∥∥ ≤ C (1 + |λ|)α−β , for all 0 ≤ α ≤ β, |arg λ| ≤ ϕ <

π, whereC does not depend onλ.
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3. Solvability of the Principal Problem

3.1. Homogeneous Problem

Consider in the Hilbert spaceH the boundary value problem for the second
order abstract differential equation

(3.1) L(D)u = −u′′(x) + Au(x) + A(x)u(x) = f(x) x ∈ (0, 1),

(3.2)
L1u = δu(0) = f1,

L2u = u′(1) + Bu(0) = f2,

A, A(x), B are linear operators andδ is a complex number.
Looking to the principal part of the problem(3.1), (3.2) with a parameter

(3.3) L(D)u = −u′′(x) + (A + λI)u(x) = 0 x ∈ (0, 1),

(3.4)
L1u = δu(0) = f1,

L2u = u′(1) + Bu(0) = f2.

Theorem 3.1.Assume that the following conditions are satisfied

1. A is a self-adjoint and positive-definite operator inH.

2. δ 6= 0.
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3. B is continuous fromH(A1/2) in H(A) and fromH in H(A1/2).

Then the problem(3.3), (3.4) for f1 ∈ (H, H(A)) 1
4
, f2 ∈ (H, H(A)) 3

4

and

for λ such that|arg λ| ≤ φ < π, |λ| −→ ∞, has a unique solution in the
spaceW 2

2 (0, 1; H(A), H), and for the solution of the problem(3.3), (3.4) the
following coercive estimate holds

(3.5) ‖u′′‖L2(0,1;H) + ‖Au‖L2(0,1;H) + |λ| ‖u‖L2(0,1;H)

≤ C
(∥∥∥A 3

4 f1

∥∥∥
H

+ |λ|
3
4 ‖f1‖H

+
∥∥∥A 1

4 f2

∥∥∥
H

+ |λ|
1
4 ‖f2‖H

)
,

whereC does not depend onλ.

Proof. The solutionu, belonging toW 2
2 (0, 1; H(A), H), of the equation(3.3)

is in the form

(3.6) u(x) = e−xA
1
2
λ g1 + e−(1−x)A

1
2
λ g2

with Aλ = A + λI andg1, g2 ∈ (H, H(A)) 3
4
.

Indeed, letu ∈ W 2
2 (0, 1; H(A), H) be a solution of(3.3). Then we have(

D − A
1
2
λ

)(
D + A

1
2
λ

)
u(x) = 0.

Note by

v(x) =
(
D + A

1
2
λ

)
u(x).
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From [22, p. 168]v ∈ W 1
2 (0, 1; H(A

1
2 ), H) and

(3.7)
(
D − A

1
2
λ

)
v(x) = 0.

So

(3.8) v(x) = e−(1−x)A
1
2
λ v(1),

where, according to [19, p. 44],

v(1) ∈
(
H(A

1
2 ), H

)
1
2

=
(
H, H(A

1
2 )
)

1
2

.

From(3.7) , (3.8) we have

u(x) = e−xA
1
2
λ u(0) +

∫ x

0

e−(x−y)A
1
2
λ e−(1−y)A

1
2
λ v(1)dy

= e−xA
1
2
λ u(0) +

1

2
A
− 1

2
λ

{
e−(1−x)A

1
2
λ − e−xA

1
2
λ e−A

1
2
λ

}
v(1),

whereu(0) ∈ (H(A), H) 1
2

[19, p. 44]. Now,

A
1
2 : (H, H(A)) 3

4
→ (H, H(A)) 1

4
=
(
H, H(A

1
2 )
)

1
2

is an isomorphism. Consequently the last inequality is in the form(3.6).
Let us show the reverse, i.e. the functionu in the form (3.6) with g1 and

g2 in (H, H(A)) 3
4
, belongs toW 2

2 (0, 1; H(A), H). From interpolation spaces
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properties see [15], [19, p. 96] and the expression(3.6) of the functionu we
have

‖u‖W 2
2 (0,1;H(A),H)

≤
(∥∥AA−1

λ

∥∥+ 1
)

×


(∫ 1

0

∥∥∥∥Aλe
−xA

1
2
λ g1

∥∥∥∥2

dx

) 1
2

+

(∫ 1

0

∥∥∥∥Aλe
−(1−x)A

1
2
λ g2

∥∥∥∥2

dx

) 1
2


≤ C

(
‖g1‖(H,H(Aλ)) 3

4

+ ‖g2‖(H,H(Aλ)) 3
4

)
≤ C(λ)

(
‖g1‖(H,H(A)) 3

4

+ ‖g2‖(H,H(A)) 3
4

)
.(3.9)

The functionu satisfies the boundary conditions(3.4) if
δg1 + δe−A

1
2
λ g2 = f1,

−A
1
2
λe−A

1
2
λ g1 + Bg1 + A

1
2
λg2 + Be−A

1
2
λ g2 = f2,

which we can write in matrix form as:

(3.10)


 δI 0

B A
1
2
λ

+

 0 δe−A
1
2
λ

−A
1
2
λe−A

1
2
λ Be−A

1
2
λ


( g1

g2

)
=

(
f1

f2

)
.
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The first matrix of operators is invertible, its inverse is

(3.11)

 1
δ
I 0

−1
δ
A
− 1

2
λ B A

− 1
2

λ

 .

Multiplying the two members of(3.10) by the matrix inverse(3.11), we get the
following system:

g1 + e−A
1
2
λ g2 = 1

δ
f1

e−A
1
2
λ g1 + g2 = −1

δ
A
− 1

2
λ Bf1 + A

− 1
2

λ f2

we can solve it by Cramer’s method, because the coefficients of the linear sys-

tem are bounded linear operators. The determinant is given byI +e−2A
1
2
λ which

is invertible as a little perturbation of unity, in fact

∥∥∥∥e−2A
1
2
λ

∥∥∥∥ ≤ q < 1.

Hence the solution is written as

(3.12)

 g1 = 1
δ
f1 + R11(λ)f1 + R12(λ)f2,

g2 = −1
δ
(I + T (λ)) A

− 1
2

λ Bf1 + (I + T (λ)) A
− 1

2
λ f2 + R21(λ)f1,

whereRij(λ) are given by
R11(λ) = −1

δ
(I + T (λ)) e−2A

1
2
λ + 1

δ
(I + T (λ)) A

− 1
2

λ e−A
1
2
λ B,

R12(λ) = − (I + T (λ)) A
− 1

2
λ e−A

1
2
λ ,

R21(λ) = 1
δ

(I + T (λ)) e−A
1
2
λ ,
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and satisfy‖Rij(λ)‖ → 0 when |λ| → ∞. (I + T (λ)) is the inverse ofI +

e−2A
1
2
λ obtained from the corresponding Neumann series.

Finally the solutionu is given by

u(x) = e−xA
1
2
λ

(
1

δ
f1 + R11(λ)f1 + R12(λ)f2

)
+ e−(1−x)A

1
2
λ

(
−1

δ
(I + T (λ)) A

− 1
2

λ Bf1

+ (I + T (λ)) A
− 1

2
λ f2 + R21(λ)f1

)
.

From the assumptions of Theorem3.1and the properties of interpolation spaces,
the following applications are continuous,

(I + T (λ)) A
− 1

2
λ B : (H, H(A)) 3

4
7−→ (H, H(A)) 3

4

,

(I + T (λ)) A
− 1

2
λ : (H, H(A)) 1

4
7−→ (H, H(A)) 3

4

.

Then we have the estimates∥∥∥(I + T (λ)) A
− 1

2
λ Bf1

∥∥∥
(H,H(A)) 3

4

≤ C ‖f1‖(H,H(A)) 3
4

and ∥∥∥(I + T (λ)) A
− 1

2
λ f2

∥∥∥
(H,H(A)) 3

4

≤ C ‖f2‖(H,H(A)) 1
4

.
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Setu(x) = u1(x) + u2(x) + u3(x), where

u1(x) =
1

δ
e−xA

1
2
λ f1,

u2(x) = −1

δ
e−(1−x)A

1
2
λ

(
(I + T (λ)) A

− 1
2

λ Bf1

)
,

u2(x) = e−(1−x)A
1
2
λ

(
(I + T (λ)) A

− 1
2

λ f2

)
.

Then

‖u1‖W 2
2 (0,1;H(A),H) =

1

|δ|

∥∥∥∥Aλe
−xA

1
2
λ f1

∥∥∥∥
L2(0,1;H)

+
1

|δ|

∥∥∥∥Ae−xA
1
2
λ f1

∥∥∥∥
L2(0,1;H)

.

However, from Lemma2.1, we have∥∥∥∥Aλe
−xA

1
2
λ f1

∥∥∥∥
L2(0,1;H)

≤ C
(∥∥∥A 3

4 f1

∥∥∥
H

+ |λ|
3
4 ‖f1‖H

)
.

Similarly we obtain bounds foru2 andu3.

3.2. Non Homogeneous Problem

Consider, now, the principal problem for the non homogeneous equation with a
parameter

(3.13) L0(λ, D)u = −u′′(x) + Aλu(x) = f(x) x ∈ (0, 1),
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(3.14)
L10u = δu(0) = f1,

L20u = u′(1) + Bu(0) = f2.

We have the result.

Theorem 3.2.Suppose the following conditions satisfied

1. A is a self-adjoint and positive-definite operator inH.

2. B is continuous fromH(A1/2) in H(A) and fromH in H(A1/2).

3. δ 6= 0.

Then the problem(3.13), (3.14), for f, f1 andf2 in L2(0, 1; H), (H, H(A)) 3
4

and (H, H(A)) 1
4

respectively, and forλ such that|arg λ| ≤ φ < π, |λ| −→
∞, has a unique solution belonging to the spaceW 2

p (0, 1; H(A), H), for p ∈
(1,∞), and the following coercive estimate holds

(3.15) ‖u′′‖L2(0,1;H) + ‖Au‖L2(0,1;H) + |λ| ‖u‖L2(0,1;H)

≤ C
(
‖f‖L2(0,1;H) +

∥∥∥A 3
4 f1

∥∥∥
H

+ |λ|
3
4 ‖f1‖H +

∥∥∥A 1
4 f2

∥∥∥
H

+ |λ|
1
4 ‖f2‖H

)
,

whereC does not depend onλ.

http://jipam.vu.edu.au/
mailto:aibeche@wissal.dz
http://jipam.vu.edu.au/


Coerciveness Inequality for
Nonlocal Boundary value

Problems for Second Order
Abstract Elliptic Differential

Equations

Aissa Aibeche

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 15 of 29

J. Ineq. Pure and Appl. Math. 4(2) Art. 43, 2003

http://jipam.vu.edu.au

Proof. In Theorem3.1, we proved the uniqueness. Let us now show that the
solution of the problem(3.13), (3.14) belonging toW 2

p (0, 1; H(A), H) can be
written in the formu(x) = u1(x) + u2(x), u1(x) is the restriction to[0, 1] of
ũ1(x), whereũ1(x) is the solution of the equation

(3.16) L0(λ, D)ũ1(x) = f̃(x), x ∈ R,

with f̃(x) = f(x) if x ∈ [0, 1] andf̃(x) = 0 otherwise.u2(x) is the solution of
the problem

(3.17) L0(λ, D)u2 = 0, L10u2 = f1 − L10u1, L20u2 = f2 − L20u1.

The solution of the equation(3.16) is given by the formula

(3.18) û1(x) =
1√
2π

∫
R

eiµxL0(λ, iµ)−1̂̃f(µ)dµ

wherễf is the Fourier transform of the functioñf(x), L0(λ, s) is the character-
istic pencil of the equation(3.16) i.e. L0(λ, s) = −s2I + A + λI.
From(3.18) and Plancherel equality it follows that:

|λ| ‖u1‖L2(0,1;H) + ‖u′′1‖L2(0,1;H) + ‖Au1‖L2(0,1;H)

≤ |λ| ‖û1‖L2(R;H(A)) + ‖û′′1‖L2(R;H) + ‖Aû1‖L2(R;H)

≤ |λ|
∥∥∥F−1L0(λ, iµ)−1F f̃(µ)

∥∥∥
L2(R;H)

+
∥∥∥F−1(iµ)2L0(λ, iµ)−1F f̃(µ)

∥∥∥
L2(R;H)

+
∥∥∥F−1AL0(λ, iµ)−1F f̃(µ)

∥∥∥
L2(R;H)

,(3.19)
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whereF is the Fourier transform.
From condition(1) of Theorem3.2, for |arg λ| ≤ ϕ < π and|λ| sufficiently

large, we have∥∥L0(λ, iµ)−1
∥∥ =

∥∥(A + λI + µ2I)−1
∥∥(3.20)

≤ C(1 +
∣∣λ + µ2

∣∣)−1 ≤ C |µ|−2

(3.21)
∥∥AL0(λ, iµ)−1

∥∥ =
∥∥A(A + λI + µ2I)−1

∥∥ ≤ C

|λ|
∥∥L0(λ, iµ)−1

∥∥ = |λ|
∥∥(A + λI + µ2I)−1

∥∥(3.22)

≤ C |λ| (1 +
∣∣λ + µ2

∣∣)−1 ≤ C.

Then it follows that

|λ| ‖u1‖L2(0,1;H) + ‖u′′1‖L2(0,1;H) + ‖Au1‖L2(0,1;H) ≤ C ‖f‖L2(0,1;H) .

Sinceu1 ∈ W 2
2 (0, 1; H(A), H) and from [19, p. 44] we have

u′1(0) ∈ (H(A), H) 3
4

= (H, H(A)) 1
4
,

u1(0) ∈ (H, H(A)) 3
4
.

ThereforeL10u1 ∈ (H, H(A)) 3
4

andL20u1 ∈ (H, H(A)) 1
4
.
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From Theorem3.1, the problem(3.17) , when |arg λ| ≤ φ < π, |λ| →
∞, has a solutionu2(x) which is inW 2

2 (0, 1; H(A), H). Now, we have to find
bounds for the following terms∥∥∥A 3

4 L10u1

∥∥∥
H

=
∥∥∥A 3

4 u1 (0)
∥∥∥

H
,

|λ|
3
4 ‖L10u1‖H = |λ|

3
4 ‖u1 (0)‖H ,∥∥∥A 1

4 L20u1

∥∥∥
H
≤
∥∥∥A 1

4 u′1 (1)
∥∥∥

H
+
∥∥∥A 1

4 Bu1 (0)
∥∥∥

H

and
|λ|

1
4 ‖L20u1‖H ≤ |λ|

1
4 ‖u′1 (1)‖H + |λ|

1
4 ‖Bu1 (0)‖H .

For example, we have

|λ|
3
4 ‖u1 (0)‖H ≤ C

(
‖u1‖W 2

2 (0,1;H(A),H) + |λ| ‖u1‖L2(0,1;H)

)
≤ C ‖f‖L2(0,1;H) .

Similarly, we get the other bounds and by the same way the coerciveness esti-
mate.
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4. Solvability of the General Problem
Consider, now, the general problem with a parameter

(4.1) L0(λ, D)u = λu(x)−u′′(x)+Au(x)+A(x)u(x) = f(x) x ∈ (0, 1),

(4.2)
L10u = δu(0) = f1,

L20u = u′(1) + Bu(0) = f2.

We have the result.

Theorem 4.1.Suppose the following conditions satisfied

1. A is a self-adjoint and positive-definite operator inH.

2. The imbeddingH(A) ⊂ H is compact.

3. B is continuous fromH(A1/2) in H(A) and fromH in H(A1/2).

4. δ 6= 0.

5. ‖A(.)u‖L2(0,1;H) ≤ ε ‖Au‖L2(0,1;H) + C(ε) ‖u‖L2(0,1;H) .

Then the problem(4.1), (4.2), for f, f1 andf2 in L2(0, 1; H), (H, H(A)) 3
4

and (H, H(A)) 1
4

respectively, and forλ such that|arg λ| ≤ φ < π, |λ| −→
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∞, has a unique solution belonging to the spaceW 2
p (0, 1; H(A), H), for p ∈

(1,∞), and the following coercive estimate holds

(4.3) ‖u′′‖L2(0,1;H) + ‖Au‖L2(0,1;H) + |λ| ‖u‖L2(0,1;H)

≤ C
(
‖f‖L2(0,1;H) +

∥∥∥A 3
4 f1

∥∥∥
H

+ |λ|
3
4 ‖f1‖H +

∥∥∥A 1
4 f2

∥∥∥
H

+ |λ|
1
4 ‖f2‖H

)
.

whereC does not depend onu, f, f1, f2, andλ.

Proof. Let u be a solution of(4.1), (4.2) belonging toW 2
2 (0, 1; H(A), H).

Thenu is a solution of the problem

(P0)


L0(λ, D)u = f(x)− A(x)u(x) x ∈ (0, 1),

L10u = δu(0) = f1

L20u = u′(1) + Bu(0) = f2.

From Theorem3.2, we get the estimate

‖u′′‖L2(0,1;H) + ‖Au‖L2(0,1;H) + |λ| ‖u‖L2(0,1;H)

≤ C
(
‖f − A(.)u‖L2(0,1;H) +

∥∥∥A 3
4 f1

∥∥∥
H

+ |λ|
3
4 ‖f1‖H +

∥∥∥A 1
4 f2

∥∥∥
H

+ |λ|
1
4 ‖f2‖H

)
.
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Using condition (5) of Theorem3.2, we get

‖u′′‖L2(0,1;H) + (1− Cε) ‖Au‖L2(0,1;H) + (|λ| − C.C(ε)) ‖u‖L2(0,1;H)

≤ C
(
‖f‖L2(0,1;H) +

∥∥∥A 3
4 f1

∥∥∥
H

+ |λ|
3
4 ‖f1‖H +

∥∥∥A 1
4 f2

∥∥∥
H

+ |λ|
1
4 ‖f2‖H

)
.

Choosingε such thatC · ε < 1, the coerciveness estimates follows easily.
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5. Completeness of Root Functions
Let us define the operatorL by

Lu ≡ −u′′ + Au,

D (L) = W 2
2 (0, 1; H(A), H, Lku = 0, k = 0, 1) .

Lemma 5.1. Suppose thatsj (I, H(A), H) ' Cj−q then

sj

(
I, W 2

2 (0, 1; H(A), H) , L2 (0, 1; H)
)
' Cj

− 1
1
2+q .

I (resp. I) is the imbedding ofH(A) in H (resp. ofW 2
2 (0, 1; H(A), H) in

L2 (0, 1; H)) and sj (I,H(A), H) are thes-numbers of the operatorI from
H(A) to H.

Proof. Let S1 be the operator defined inL2(0, 1) such thatS1 = S∗1 ≥ γ2I,
D(S1) = H(S1) = W 2

2 (0, 1). From [17], we know that ifH1 ⊂ H andH1 is
dense inH then there exists an operatorS1 such thatS1 = S∗1 andD(S1) = H.
Otherwise, letS2 be the operator defined byS2 = S∗2 ≥ γ2I, D(S2) = H(A). If
we define the operatorS onL2(0, 1)⊗H = L2(0, 1; H) byS = S1⊗I2+I1⊗S2,
whereI1 (resp.I2) is the identity operator inL2(0, 1) (resp.H). We have

sj

(
S−1

1 , L2(0, 1), L2(0, 1)
)
' sj (I,H(S1), L2(0, 1)) ' Cj−2,

sj

(
S−1

2 , H,H
)
' sj (I,H(A), H) ' Cj−q.

Hence, from [11], we obtainsj (S−1, L2(0, 1; H), L2(0, 1; H)) ' Cj
− 1

1
2+q .
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Theorem 5.2.Let the conditions of Theorem3.2hold along withA−1 ∈ σq (H) ,
q > 0. Then, the system of root functions of the operatorL is complete in
L2(0, 1; H).

Proof. From Theorem4.1, we have‖R(λ,L)‖ ≤ C |λ|−1 for |arg λ| ≤ ϕ < π
and|λ| sufficiently large. Using Lemma5.1, we haveR(λ,L) ∈ σp (L2(0, 1; H))
for p > 1

2
+ 1

q
, so, for the operatorL, all the conditions of [8, Theorem 126, 2.3,

p. 50], are fulfilled. This achieves the proof of the theorem.

Theorem 5.3. Suppose that the conditions of Theorem5.2are satisfied as well
as the condition D(A(x)) ⊂ D(A) and ∀ε > 0, ‖A(·)u‖H ≤ ε ‖Au‖H +
C(ε) ‖u‖H . u ∈ D(A). LetA be the operator defined by(Au) (x) = A(x)u(x),
D (A) = L2(0, 1; H). Then the system of root functions ofL+A is complete in
L2(0, 1; H).

Proof. It is clear that

‖Au‖L2(0,1;H) ≤ ε ‖Au‖L2(0,1;H) + C(ε) ‖u‖L2(0,1;H) .

Since by Theorem4.1, we have

‖Au‖L2(0,1;H) ≤ C ‖f‖L2(0,1;H) = C ‖(L − λI) u‖L2(0,1;H) ,

hence

‖Au‖L2(0,1;H) ≤ ε ‖(L − λI) u‖L2(0,1;H) + C(ε) ‖u‖L2(0,1;H)

and so, for|λ| sufficiently large and|arg λ| ≤ ϕ < π,

R(λ,L+A) ∈ σp (L2(0, 1; H)) ,
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and from Theorem4.1we have

‖R(λ,L+A)‖ ≤ C |λ|−1

for |λ| sufficiently large and|arg λ| ≤ ϕ < π. Then the system of root functions
is complete inL2(0, 1; H).
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6. Application
Let us consider, in the cylindrical domainΩ = [0, 1]×G the non local boundary
value problem for the Laplace equation with a parameter

(6.1) (P )



L(λ)u = λu(x, y)−∆u(x, y) + b(x, y)u(x, y)
= f(x, y), (x, y) ∈ Ω;

L1u = δu(0, y) = f1(y), y ∈ G;

L2u = ∂
∂x

u(1, y) + Bu(0, y) = f2(y), y ∈ G;

Pu = u(x, y′) = 0, (x, y′) ∈ Γ,

whereΓ = [0, 1]× ∂G and∂G is the boundary ofG.
A numberλ0 is called an eigenvalue of(P ) if the problem

(6.2) (P ′)



L(λ0)u = 0, (x, y) ∈ Ω;

L1u = 0, y ∈ G;

L2u = 0, y ∈ G;

Pu = 0, (x, y′) ∈ Γ,

has a non trivial solution that belongs toW 2
2 (Ω). The non trivial solutionu0 of

(P ′) that belongs toW 2
2 (Ω) is called the eigenfunction of(P ) corresponding to
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the eigenvalueλ0. Solutionsuk of

(6.3) (P ′′)



L(λ0)uk + uk−1 = 0, (x, y) ∈ Ω;

L1uk = 0, y ∈ G;

L2uk = 0, y ∈ G;

Puk = 0, (x, y′) ∈ Γ,

belonging toW 2
2 (Ω) are associated functions of thek−th rank to the eigenvalue

u0 of (P ) . Eigenfunctions and associated functions of(P ) are gathered under
the general name of root functions of(P ) .

Theorem 6.1.Let b(x, y) ∈ W 0,1
∞ (Ω), δ 6= 0, ∂G ∈ C2 then

1. (P ) , for f ∈ W 0,1
2 (Ω, Pu = 0), fk ∈ W

−mk
2

+ 3
4

2 (G, Pu = 0) and forλ
such that|λ| sufficiently large and|arg λ| ≤ ϕ < π, has a unique solution
that belongs to the spaceW 2

2 (Ω), and for this solution we have the coercive
estimate

|λ| ‖u′′‖L2(Ω) + ‖u‖W 2
2 (Ω)

≤ C

(
‖f‖L2(Ω) +

2∑
k=1

‖fk‖
W
−mk

2 +3
4

2 (G,Pu=0)

+
2∑

k=1

|λ|−
mk
2

+ 3
4 ‖fk‖H

)
,

whereC does not depend onu andλ.

http://jipam.vu.edu.au/
mailto:aibeche@wissal.dz
http://jipam.vu.edu.au/


Coerciveness Inequality for
Nonlocal Boundary value

Problems for Second Order
Abstract Elliptic Differential

Equations

Aissa Aibeche

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 26 of 29

J. Ineq. Pure and Appl. Math. 4(2) Art. 43, 2003

http://jipam.vu.edu.au

2. Root functions of(P ) are complete inL2(Ω).

Proof. Consider inH = L2(Ω) the operatorsA andA(x) defined by

Au = −∆u(y) + λ0u(y), D(A) = W 2
2 (G, Pu = 0)

A (x) u = b(x, y)u(y)− λ0u(y), D(A (x)) = W 1
2 (G, Pu = 0, m = 0).

Then the problem(P ) can be written in the form
λu(x)− u′′(x) + Au(x) + A(x)u(x) = 0 x ∈ (0, 1),

δu(0) = f1

u′(1) + Bu(0) = f2.

We have the compact imbeddingW 2
2 (Ω) ⊂ L2(Ω). On the other hand

sj

(
I, W 2

2 (Ω), L2(Ω)
)
' j−

2
r+1 .

By virtue of Lemma 3.1 in [21, p. 60] we have

sj (I,H(A), L2(Ω)) ' sj

(
A−1, L2(Ω), L2(Ω)

)
.

SinceH(A) ⊂ W 2
2 (Ω), then it follows thatA−1 ∈ σp (L2(Ω), L2(Ω)) , then

‖R(λ, A)‖ ≤ C |λ|−1 for |arg λ| ≤ ϕ < π and|λ| sufficiently large. Hence, all
conditions of Theorem5.3has been checked.
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