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ABSTRACT. Every convex set in the plane gives rise to geometric functionals such as the area,
perimeter, diameter, width, inradius and circumradius. In this paper, we prove new inequalities
involving these geometric functionals for planar convex sets containing zero or one interior lat-
tice point. We also conjecture two results concerning sets containing one interior lattice point.
Finally, we summarize known inequalities for sets containing zero or one interior lattice point.
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1. I NTRODUCTION

Let K2 denote the set of all planar, compact, convex sets. LetK be a set inK2 with area
A = A(K), perimeterp = p(K), diameterd = d(K), width w = w(K), inradiusr = r(K)
and circumradiusR = R(K). Let Ko denote the interior ofK. Let Γ denote the integer lattice.
The lattice point enumeratorG(Ko, Γ) is defined to be the number of points ofΓ contained in
Ko. In the case whereG(Ko, Γ) = 0, we say thatK is lattice-point-free.

In this article, we prove new inequalities involving the geometric functionalsA, p, d, w, r and
R for setsK ∈ K2 with G(Ko, Γ) = 0 andG(Ko, Γ) = 1. These may be found in Sections
2 and 3 respectively. In Section 4, we conjecture two results concerning setsK ∈ K2 with
G(Ko, Γ) = 1. Finally, in Sections 5 and 6, we summarize known inequalities in one and two
functionals for setsK ∈ K2 with G(Ko, Γ) = 0 andG(Ko, Γ) = 1 respectively (see [26] for
a summary of inequalities involving two and three functionals for setsK ∈ K2 without lattice
constraints). Although there are extensive bibliographies for lattice constrained convex sets
[8, 10, 11, 12, 24], this article attempts to organise the numerous results for setsK ∈ K2 with

ISSN (electronic): 1443-5756

c© 2002 Victoria University. All rights reserved.

036-00

http://jipam.vu.edu.au/
mailto:pscott@maths.adelaide.edu.au
http://www.maths.adelaide.edu.au/pure/pscott/
http://www.ams.org/msc/
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G(Ko, Γ) = 0 andG(Ko, Γ) = 1. Although these results are rather special, they are a natural
starting point for problems in the area and have in fact served as a springboard for many new
and interesting problems.

In the statements of the theorems and the conjecture, each inequality is followed by a set for
which the inequality is sharp.

2. SOME ELEMENTARY RESULTS FOR L ATTICE -POINT -FREE SETS

Theorem 2.1. Let K ∈ K2 with G(Ko, Γ) = 0. Let λ = 2
√

2 sin φ/2, φ being the unique
solution of the equationsin θ = π/2− θ, (φ ≈ 0.832 ≈ 47.4o). Then

r ≤
√

2

2
, C0 (Figure 5.1a),(2.1)

A

R
≤ 2λ ≈ 2.288, H0 (Figure 5.1c),(2.2)

A

w3
≥ 1√

3

(
1 +

√
3

2

)−1

≈ 0.309, E0 (Figure 5.1b),(2.3)

(2r − 1)p ≤ 4

r
(
√

2− 1), S0 (Figure 5.1e).(2.4)

Proof. To prove (2.1), we use the following lemma from [3]:

Lemma 2.2. Suppose thatK ∈ K2 and G(Ko, Γ) = 0. Then there is a setK∗ ∈ K2 with
G(K∗

o, Γ) = 0 satisfying the following conditions:
(a) r(K) ≤ r(K∗),
(b) K∗ is symmetric about the linesx = 1

2
, y = 1

2
.

From the lemma, it suffices to prove (2.1) for setsK which are symmetric about the lines
x = 1

2
andy = 1

2
. To fully utilise the symmetry ofK about the linesx = 1

2
andy = 1

2
, we move

the origin to the point(1
2
, 1

2
). If r ≤ 1

2
, then (2.1) is trivially true. Hence we may assume that

r > 1
2
. SinceKo does not contain the pointsP1(

1
2
, 1

2
), P2(−1

2
, 1

2
), P3(−1

2
,−1

2
) andP4(

1
2
,−1

2
), it

follows by the convexity ofK that for eachi = 1, . . . , 4, K is bounded by a lineli through the
point Pi with l1 andl3 having negative slope andl2 andl4 having positive slope. Furthermore,
sinceK is symmetric about the coordinate axes,K is contained in a rhombusQ determined
by the linesli, i = 1, . . . , 4. SinceK ⊆ Q, r(K) ≤ r(Q). Clearly r(Q) ≤

√
2/2. Hence

r(K) ≤
√

2/2 and (2.1) is proved. An example of a set for which the inequality is sharp is the
circleC0 (Figure 5.1a).

(2.2) follows easily from a result by Scott [18], that ifK ∈ K2 with G(Ko, Γ) = 0, then

(2.5)
A

d
≤ λ ≈ 1.144,

whereλ is as defined in Theorem 2.1. The result is best possible with equality when and only
whenK ∼= H0 (Figure 5.1c). Usingd ≤ 2R and (2.5), it follows immediately that

A

R
≤ 2λ ≈ 2.288,

with equality when and only whenK ∼= H0 (Figure 5.1c).
The proof of (2.3) follows easily by combining two known results. The first is that of all

sets inK2 with a given width, the equilateral triangle has the least area [27, p. 68]. Hence

J. Inequal. Pure and Appl. Math., 3(2) Art. 23, 2002 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


INEQUALITIES FORLATTICE CONSTRAINED PLANAR CONVEX SETS 3

A ≥ (1/
√

3)w2. We also recall from [17] that ifK ∈ K2 with G(Ko, Γ) = 0, then

w ≤ 1 +

√
3

2
,

with equality when and only whenK ∼= E0 (Figure 5.1b). Hence

A

w3
=

(
A

w2

)
1

w
≥ 1√

3

(
1 +

√
3

2

)−1

≈ 0.309.

Equality holds when and only whenK ∼= E0 (Figure 5.1b).
To prove (2.4), we use a result from [3]: IfK ∈ K2 with G(Ko, Γ) = 0, then

(2.6) (2r − 1)A ≤ 2(
√

2− 1),

with equality when and only whenK ∼= S0 (Figure 5.1e). We also note from the same paper,
that if K is a convex polygon,K may be partitioned into triangles by joining each vertex ofK
to an in-centre ofK. Summing the areas of these triangles gives

A ≥ 1

2
pr,

with equality when and only when every edge ofK touches the unique incircle. Since any set
in K2 is either a convex polygon, or may be approximated by a convex polygon, this inequality
is valid for all sets inK2. By combining this inequality with (2.6), we have (2.4), with equality
when and only whenK ∼= S0 (Figure 5.1e). �

3. SOME ELEMENTARY RESULTS FOR SETS CONTAINING ONE I NTERIOR L ATTICE

POINT

Theorem 3.1.LetK ∈ K2 with G(Ko, Γ) = 1, . Letλ be as defined in Theorem 2.1. Then

r ≤ 1, C1 (Figure 6.1a),(3.1)
A

R
≤ 2

√
2λ ≈ 3.232, H1 (Figure 6.1d),(3.2)

A(w −
√

2) ≤ 1

2
w2, T1 (Figure 6.1e),(3.3)

(2r −
√

2)p ≤ 8

r
(2−

√
2), S1 (Figure 6.1g).(3.4)

We note that (3.1), (3.2) and (3.4) are the results for setsK ∈ K2 havingG(Ko, Γ) = 1
corresponding to (2.1), (2.2) and (2.4) respectively. Furthermore, we recall from [22] that if
K ∈ K2 with G(Ko, Γ) = 0, then

(3.5) A(w − 1) ≤ 1

2
w2,

with equality when and only whenK ∼= T0 (Figure 5.1f). We observe that (3.3) is the result
corresponding to (3.5) for setsK ∈ K2 havingG(Ko, Γ) = 1.

In fact, (3.3) has been proved in [14], where the method of proof is an adaptation of the
method in [22]. In this paper we present a short and different proof for (3.3). We will see that
all the inequalities of Theorem 3.1 follow immediately from their corresponding inequalities
for lattice-point-free sets by using a simple sublattice argument.

Proof. Let
Γ′ = {(x, y) : x + y ≡ 1 mod 2)}.
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O

Γ

Γ /

Figure 3.1: The latticeΓ′.

Suppose thatK ∈ K2, with G(Ko, Γ) = 1. Then clearlyG(Ko, Γ′) = 0 (Figure 3.1). We
also observe thatΓ′ is essentially an anticlockwise rotation ofΓ aboutO through an angleπ/4
and scaled by a factor of

√
2. Now letA′, p′, d′ w′, r′, andR′ be the area, perimeter, diameter,

width, inradius and circumradius respectively ofK measured in the scale ofΓ′. Then since
G(Ko, Γ′) = 0, the inequalities (2.1), (2.2), (3.5), and (2.4) apply, from which we have

r′ ≤
√

2

2
, C0

′

A′

R′ ≤ 2λ, H0
′

A′(w′ − 1) ≤ 1

2
(w′)2, T0

′

(2r′ − 1)p′ ≤ 4

r′
(
√

2− 1), S0
′,

whereC0
′,H0

′, T0
′, andS0

′ are the setsC0, H0, T0 andS0 respectively rotated anticlockwise
aboutO throughπ/4 and scaled by a factor of

√
2. HenceC0

′ = C1 (Figure 6.1a),H0
′ = H1

(Figure 6.1d),T0
′ = T1 (Figure 6.1e), andS0

′ = S1 (Figure 6.1g). Furthermore, sinceΓ′ is a
rotation ofΓ scaled by a factor of

√
2, we have

A′ =

(
1√
2

)2

A, p′ =
1√
2
p, w′ =

1√
2
w, r′ =

1√
2
r, R′ =

1√
2
R.

Substituting these into the above inequalities, we obtain (3.1), (3.2), (3.3), and (3.4) respec-
tively. �

4. CONJECTURES FOR SETS CONTAINING ONE I NTERIOR L ATTICE POINT

Conjecture 4.1. Let K ∈ K2 with G(Ko, Γ′) = 1. Let O be the circumcentre ofK in (4.2).
Then

A

w3
≥ 1√

3
.

4√
2(5 +

√
3)
≈ 0.243, E1 (Figure 6.1b),(4.1)

A ≤ α ≈ 4.05, Q1 (Figure 6.1f).(4.2)
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The problem which occurs in (4.1) is that for a setK ∈ K2 with G(Ko, Γ) = 1, w ≤
1 +

√
2 ≈ 2.414, with equality when and only whenK ∼= I1 (Figure 6.1e) [23]. Since this set

of largest width is not an equilateral triangle, the method used to prove (2.3) cannot be applied.
A simple calculation shows that the width ofE1 (Figure 6.1b) is1

4

√
2(5+

√
3) ≈ 2.38. Hence

if 0 < w ≤ 1
4

√
2(5 +

√
3), an equilateral triangle containing one interior lattice point may be

constructed. SinceA ≥ (1/
√

3)w2 with equality when and only whenK is an equilateral
triangle, for this range ofw we have

A

w3
=

(
A

w2

)
1

w
≥ 1√

3
.

4√
2(5 +

√
3)
≈ 0.243,

with equality when and only whenK ∼= E1 (Figure 6.1b).
This leaves unresolved those cases for which1

4

√
2(5 +

√
3) < w ≤ 1 +

√
2. We believe that

the set for whichA/w3 is minimal is congruent to the equilateral triangleE1 (Figure 6.1b).
In [21], Scott conjectures a result concerning the maximal area of a setK ∈ K2 with

G(Ko, Γ) = 1 and having circumcentreO. Using a computer run, we discover that the con-
jecture is false. We revise the conjecture as stated in (4.2), with equality when and only when
K ∼= Q1 (Figure 6.1f).

5. I NEQUALITIES I NVOLVING ONE AND TWO FUNCTIONALS FOR

L ATTICE -POINT -FREE SETS

Tables 5.1 and 6.1 list the known inequalities (including conjectures) involving one and two
functionals for lattice-point-free sets and sets containing one interior lattice point respectively.
The extremal sets referred to in the tables may be found in Figures 5.1 and 6.1 respectively.
Where a star (?) appears in the inequality column, no inequality is known for the corresponding
functionals.

Parameters Inequality Extremal Reference
Set

A unbounded
p unbounded
d unbounded
w w ≤ 1

2
(2 +

√
3) ≈ 1.866 E0 [17]

R unbounded
r r ≤

√
2/2 C0 (2.1)

A, p A < 1
2
p P0 [6]

A, d A/d ≤ λ, λ ≈ 1.144 H0 [18]
A, w 1. (w − 1)A ≤ 1

2
w2 T0 [20]

2. A
w3 ≥ 1√

3
(1 +

√
3

2
)−1 ≈ 0.309 E0 (2.3)

A, R A/R ≤ 2λ, λ ≈ 1.144 H0 (2.2)
A, r 1. (2r − 1)A ≤ 2(

√
2− 1) ≈ 0.828 S0 [3]

2. (2r − 1)|A− 1| < 1
2

P0 [3]
p, d ?
p, w (w − 1)p ≤ 3w E0 [20]
p, R ?
p, r 1. (2r − 1)|p− 4| < 2 P0 [3]

2. (2r − 1)p ≤ 4
r
(
√

2− 1) S0 (2.4)
Continued . . .
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Parameters Inequality Extremal Reference
Set

d, w (w − 1)(d− 1) ≤ 1 T0 [19]
d,R 2R− d ≤ 1

3
E0 [4]

d, r (2r − 1)(d− 1) < 1 P0 [3]
w, R 1. (w − 1)R ≤ 1√

3
w E0 [20]

2. (w − 1)(2R− 1) ≤
√

3
6

+ 1 ≈ 1.289 E0 [25]
w, r w − 2r ≤ 1

3
+ 1

6

√
3 ≈ 0.622 E0 [4]

R, r (2r − 1)(2R− 1) ≤ 1 P0 [25]

Table 5.1: Inequalities for the caseG(Ko,Γ) = 0.

(a) The circleC0 (b) The equilateral triangleE0

φ

(c)
The truncated diagonal squareH0, φ ≈ 47.7o

(d) The parallel stripP0

π/4

(e) The diagonal squareS0

w

d

(f) The triangleT0

Figure 5.1: Extremal sets for the caseG(Ko,Γ) = 0
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6. I NEQUALITIES I NVOLVING ONE AND TWO FUNCTIONALS FOR SETS CONTAINING

ONE I NTERIOR L ATTICE POINT

Parameters Inequality Extremal Reference
Set

A 1. A ≤ 4 if O is centre ofK e.g.S1 [16]
2. A ≤ 4.5 if O is the C.G. Ehrhart’s4 [9]
3. Conjecture:
If O is the circumcentre thenA ≈ 4.05 Q1 (4.2)

p unbounded
d unbounded
w 1. w ≤ 1 +

√
2 ≈ 2.414 I1 [23]

2. If O is the C.G. thenw ≤ 3
√

2/2
for the family of triangles Ehrhart’s4 [13]

R R ≤ α ≈ 1.685 or R unbounded T [2]
r r ≤ 1 C1 (3.1)

A, p A/p ≤ 2(2 +
√

π)−1 ≈ 0.53 U1 [1, 7]
(O is centre ofK)

A, d A/d ≤
√

2λ, λ ≈ 1.144 H1 [15]
A, w 1. A(w −

√
2) ≤ 1√

2
w2 T1 (3.3), [14]

2. Conjecture:
A
w3 ≥ 1√

3
. 4√

2(5+
√

3)
≈ 0.243 E1 (4.1)

A, R A/R ≤ 2
√

2λ H1 (3.2)
A, r A(2r −

√
2) ≤ 4(2−

√
2) ≈ 2.343 S1 [3]

p, d ?
p, w ?
p, R ?

p, r p(2r −
√

2) ≤ 8
r
(2−

√
2) S1 (3.4)

d, w (w −
√

2)(d−
√

2) ≤ 2 T1 [23]
d,R Conjecture:

2R− d ≤
√

2
6

.(7− 3
√

3) ≈ 0.425 E1 [5]
d, r ?
w, R ?
w, r Conjecture:

w − 2r ≤
√

2
12

(5 +
√

3) ≈ 0.793 E1 [5]
R, r ?

Table 6.1: Inequalities for the caseG(Ko,Γ) = 1
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(a) The circleC1 (b) The equilateral triangleE1 (c) Ehrhart’s4

φ

(d) The truncated squareH1,
φ ≈ 47.7o

d
||

||

(e) The isosceles triangleI1

β

α

R

(f) The truncated quadrilateral
Q1, R ≈ 1.593, α ≈ 5.47o,
β ≈ 20.23o

(g) The squareS1

w

d

(h) The triangleT1

R

O

(i) The triangleT , R ≈ 1.685

r

(j) The rounded squareU1, r ≈
0.530

Figure 6.1: Extremal sets for the caseG(Ko,Γ) = 1
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