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Abstract

Let f be a non-negative function on Rn, which is radially monotone (0 < f ↓ r).
For 1 < p < ∞, g ≥ 0 and v a weight function, an equivalent expression for

sup
f↓r

∫
Rn fg(∫

Rn fpv
) 1

p

is proved as a generalization of the usual Sawyer duality principle. Some appli-
cations involving boundedness of certain integral operators are also given.

2000 Mathematics Subject Classification: Primary 26D15, 47B38; Secondary
26B99, 46E30.
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1. Introduction
An explicit duality principle for positive decreasing functions of one variable
was proved by E. Sawyer in [8], and also some applications are well-known.
Here we also refer to the useful proof and ideas concerning this principle pre-
sented by V. Stepanov in [9]. See also [6] and the proof and comments given
there. Moreover, it is natural to look for extensions to functions of several vari-
ables. Such generalizations were recently obtained in [1], [2] and [3]. To be
able to describe some of these generalizations we require some notations: We
write

Rn = {(x1, x2, . . . , xn) : i = 1, 2, . . . , n}

andR1 = R. If f : Rn → R is decreasing (increasing) separately in each
variable we write0 ≤ f ↓ (0 ≤ f ↑). A set D ⊂ Rn is said to be decreasing if
its characteristic functionχD is decreasing, and clearly if0 ≤ h ↓ and t > 0,
then the setDh,t = {x ∈ Rn : h (x) > t} is decreasing. For0 < q < p < ∞,
1
r

= 1
q
− 1

p
, it was shown in [3] that

(1.1) sup
0≤f↓

(∫
Rn f qu

) 1
q(∫

Rn fpv
) 1

p

≈
(∫

Rn u
) 1

q(∫
Rn v

) 1
p

+ sup
0≤h↓

∫ ∞

0

(∫
Dh,t

u

) r
q

d

(∫
Dh,t

v

)− r
p

 1
p

,

whereu andv are weights, i.e. positive and locally integrable functions onRn.
For the case0 < p ≤ q < ∞ c.f. [2].
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If q = 1 < p < ∞ andu = g ≥ 0, then (1.1) with n = 1 is a variant of the
duality theorem given in [8] (c.f. also [9]).

An explicit form of (1.1) for n ∈ Z+ was given in [1] for g = u, but only
whenv is of product type, that is weights of the formv (x) = v (x1, x2, . . . , xn) =
v1 (x1) v2 (x2) · · · vn (xn), vi ≥ 0, i = 1, 2, . . . , n.

We say thatf : Rn → R is a radially decreasing (increasing) function if
f (x) = f (y) when|x| = |y| andf (x) ≥ f (y) (f (x) ≤ f (y)) when|x| < |y|
and we writef ↓ r andf ↑ r , respectively (see also [7] for further explanations
and applications of these notions).

In this paper we prove a duality formula of the type (1.1) for radially de-
creasing functions and with general weights (see Theorem2.1). We also state
the corresponding result for radially increasing functions (see Theorem3.1).
In particular, these results imply that we can describe mapping properties of
operators defined on the cone of such monotone functions between weighted
Lebesgue spaces. Moreover, we point out that these results can also be used
to describe mapping properties between some corresponding general weighted
multidimensional Lebesgue spaces (see Theorem3.3 and c.f. also [9] for the
casen = 1). We illustrate this useful technique for the identity operator (see
Corollary4.2) and for the Hardy integral operator over then-dimensional sphere
(see Corollary4.4).

The paper is organized as follows: In Section2 we present some known and
easily derived results required in the proofs of our statements. The announced
duality theorems are stated and proved in Section3. Finally, in Section4 the
afore mentioned applications are given and also some further results and re-
marks.

Notations and conventions: Throughout this paper all functions are assumed
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to be measurable. Constants, denoteda, b, c, are always positive and may be
different at different places. Moreovern ∈ Z+, 1 ≤ p < ∞, p′ = p

p−1
(p′ = ∞

if p = 1), v (x) andu (x) are weights (positive and measurable functions onRn)
and

Lp
v = Lp

v (Rn)

=

{
f : Rn → R, measurable s.t.

(∫
Rn

|f (x)|p v (x) dx

) 1
p

< ∞

}
.

Inequalities such as (2.1) are interpreted to mean that if the right hand side is
finite, then so is the left hand side and the inequality holds. The symbol≈ (c.f.
(1.1)) means that the quotient of the right and left hand sides is bounded from
above and below by positive constants, while expressions such as0 ·∞ = ∞· 0
are taken as zero. Other notations will be introduced when required.
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2. Preliminary Results
Consider the Hardy integral operatorH of the form

(Hf) (x) =

∫
B(x)

f(y)dy,

whereB (x) is the ball inRn centered at the origin and with radius|x|. We need
the following well-knownn-dimensional form of Hardy’s inequality (see [5]):

Theorem 2.1.LetW andU be weights onRn and1 < p ≤ q < ∞.

(i) The inequality

(2.1)

(∫
Rn

W (x)

(∫
B(x)

f(y)dy

)q

dx

) 1
q

≤ c

(∫
Rn

U(x)fp(x)dx

) 1
p

holds forf ≥ 0 if and only if

a := sup
α>0

(∫
|x|≥α

W (x)dx

) 1
q
(∫

|x|≤α

U1−p′(x)dx

) 1
p′

< ∞ .

Moreover, ifc is the smallest constant for which (2.1) holds, then

a ≤ c ≤ ap
′ 1
p′ p

1
q .
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(ii) The inequality

(2.2)

(∫
Rn

W (x)

(∫
Rn\B(x)

f(y)dy

)q

dx

) 1
q

≤ c

(∫
Rn

U(x)fp(x)dx

) 1
p

holds if and only if

b := sup
α>0

(∫
|x|≤α

W (x)dx

) 1
q
(∫

|x|≥α

U1−p′(x)dx

) 1
p′

< ∞ .

Moreover, ifc is the smallest constant for which (2.2) holds, then

b ≤ c ≤ bp
′ 1
p′ p

1
q .

In particular we need the following special case of Theorem2.1(ii):

Lemma 2.2. Letv be a weight function,V (x) =
∫

B(x)
v(y)dy and1 < p < ∞.

Then forf ≥ 0

(2.3)
∫

Rn

v(x)

(∫
Rn\B(x)

f(y)dy

)p

dx ≤ p

∫
Rn

fp(x)V p (x) v1−p(x)dx

is satisfied.
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Proof. Apply Theorem2.1(ii) with W (x) = v(x), U(x) = v1−p(x)
(∫

B(x)
v(y)dy

)p

andq = p. Denote

(2.4) vn(s) =

∫
Σn−1

sn−1v(sσ)dσ,

whereΣn−1 as usual denotes the unit sphere inRn, s ∈ R. We note that

b = sup
α>0

(∫
|x|≤α

v(x)dx

) 1
p

(∫
|x|≥α

(∫
B(x)

v(y)dy

)−p′

v(x)dx

) 1
p′

= sup
α>0

V
1
p (α)

∫
|x|≥α

(∫ |x|

0

vn (s) ds

)−p′

v (x) dx

 1
p′

= sup
α>0

V
1
p (α)

(∫ ∞

α

∫
Σn−1

tn−1

(∫ t

0

vn (s) ds

)−p′

v (tδ) dtdδ

) 1
p′

= sup
α>0

V
1
p (α)

(∫ ∞

α

(∫ t

0

vn (s) ds

)−p′ (∫
Σn−1

tn−1v (tσ) dσ

)
dt

) 1
p′

= sup
α>0

V
1
p (α)

(∫ ∞

α

(∫ t

0

vn (s) ds

)−p′

vn (t) dt

) 1
p′

= sup
α>0

V
1
p (α)

(∫ ∞

α

(
d

dt

(∫ t

0

vn (s) ds

)−p′+1
)

1

1− p′
dt

) 1
p′
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≤ sup
α>0

1

(p′ − 1)
1
p′

V
1
p (α)

(∫ α

0

vn (t) dt

)−p′+1
p′

= sup
α>0

1

(p′ − 1)
1
p′

V
1
p (α) V

1
p′−1

(α) =
1

(p′ − 1)
1
p′

< ∞.

Therefore, by Theorem2.1(ii), (2.3) holds with a constantc ≤ 1

(p′−1)
1
p′

(p′)
1
p′ p

1
p =

p and the proof is complete.
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3. The Duality Principle for Radially Monotone
Functions

In the sequel we sometimes delete the integration variable and write e.g.
∫

Rn fg
instead of

∫
Rn f (x) g (x) dx when it cannot be misinterpreted. Moreover, as

usual,‖g‖1 = ‖g‖L1
=
∫

Rn |g (x)| dx. Our main result in this section reads:

Theorem 3.1.Suppose thatv is a weight onRn and1 < p < ∞. If f is a pos-
itive radially decreasing function onRn andg a positive measurable function
onRn, then

(3.1) C (g) := sup
f↓r

∫
Rn fg(∫

Rn fpv
) 1

p

≈ I1 + I2,

where

I1 = ‖v‖
−1
p

1 ‖g‖1

and

I2 =

(∫
Rn

G (t)p′ V (t)−p′ v (t) dt

) 1
p′

with V (t) =
∫

B(t)
v (x) dx andG (t) =

∫
B(t)

g (x) dx.

Remark 1. Theorem2.1 for the casen = 1 is simply Theorem 1 in [8]. How-
ever, our proof below is based on the technique in [9] and our investigation in
Section3.
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Proof. If f ≡ c > 0, then

C (g) ≥ sup
f=c

∫
Rn

+
fg(∫

Rn
+

fpv
) 1

p

=
‖g‖1

‖v‖
1
p

1

= I1.

Moreover, we use the test functionf (x) =
∫
|t|>|x| h(t)dt, whereh (t) ≥ 0 (note

thatf is radially decreasing), Lemma2.2and the usual duality inLp
v-spaces to

find that

C (g) = sup
0≤f↓

∫
Rn f (x) g (x) dx(∫

Rn fp (x) v (x) dx
) 1

p

≥ sup
h≥0

∫
Rn

(∫
|x|<|t| h (t) dt

)
g (x) dx(∫

Rn

(∫
|x|<|t| h (t) dt

)p

v (x) dx
) 1

p

= sup
h≥0

∫
Rn h (t)

∫
|x|<|t| g (x) dxdt(∫

Rn

(∫
|x|<|t| h (t) dt

)p

v (x) dx
) 1

p

≥ 1

p
sup
h≥0

∫
Rn h

∫
|x|<|t| g(∫

Rn hpV pv1−p
) 1

p

=
1

p
sup
h≥0

∫
Rn

(
hV
v

)
G
V

v(∫
Rn

(
hV
v

)p
v
) 1

p

=
1

p

(∫
Rn

(
G

V

)p′

v

) 1
p′

= I2.
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To prove the upper bound ofC (g) we use the monotonicity off . Sincef is
radially decreasing we have∫

Rn

gf =

∫
Rn

gfV
1

V

=

∫ ∞

0

∫
Σn−1

f (x) g (x)
1

V (x)

(∫
B(x)

v(t)dt

)
dx

=

∫
Rn

v (t)

(∫
|x|>|t|

f (x) g (x)
1

V (x)
dx

)
dt

≤
∫

Rn

v (t) f (t)

(∫
|x|>|t|

g (x)
1

V (x)
dx

)
dt.(3.2)

To estimate the inner integral we definegn (s) andvn (s) analogously to (2.4),
note thatV (x) = V (|x|) and find that∫

|x|>|t|
g (x)

1

V (x)
dx

=

∫ ∞

|t|
sn−1

∫
Σn−1

g (sσ)
1

V (sσ)
dsdσ

=

∫ ∞

|t|

(∫
Σn−1

sn−1g (sσ) dσ

)
1

V (s)
ds

=

∫ ∞

|t|
gn (s)

1

V (s)
ds
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=

[
1

V (s)

∫ s

0

gn (z) dz

]∞
|t|

+

∫ ∞

|t|

1

V 2 (s)

(∫
Σn−1

sn−1v (sσ) dσ

)(∫ s

0

gn (z) dz

)
ds

≤ 1

V (∞)

∫ ∞

0

gn (z) dz︸ ︷︷ ︸
K1

+

∫ ∞

|t|

1

V 2 (s)
vn (s)

(∫ s

0

gn (z) dz

)
ds︸ ︷︷ ︸

K2

.

Hence the inner integral can be estimated byK1 + K2 and by substituting this
into (3.2) and applying Hölder’s and Minkowski’s inequalities we get∫

Rn

fg ≤
∫

Rn

fv (K1 + K2)

≤
(∫

Rn

fpv

) 1
p
(∫

Rn

(K1 + K2)
p′ v

) 1
p′

≤
(∫

Rn

fpv

) 1
p

((∫
Rn

Kp′

1 v

) 1
p′

+

(∫
Rn

Kp′

2 v

) 1
p′
)

.

Moreover,

(∫
Rn

Kp′

1 v

) 1
p′

=

(∫
Rn

(
1

V (∞)

∫ ∞

0

gn (z) dz

)p′

v (x) dx

) 1
p′
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=
1

V (∞)

(∫ ∞

0

∫
Σn−1

sn−1g (sσ) dσds

)(∫
Rn

v (x) dx

) 1
p′

= ‖v‖
−1+ 1

p′
1 ‖g‖1 = ‖v‖

− 1
p

1 ‖g‖1 = I1,

and, according to Lemma2.2,(∫
Rn

Kp′

2 v

) 1
p′

=

(∫
Rn

(∫ ∞

|t|

1

V 2 (s)
vn (s)

(∫ s

0

gn (z) dz

)
ds

)p′

v (t) dt

) 1
p′

=

(∫
Rn

(∫ ∞

|t|

∫
Σn−1

sn−1v (sσ)

V 2 (s)

(∫ s

0

∫
Σn−1

zn−1g (zδ) dzdδ

)
dσds

)p′

v

) 1
p′

=

(∫
Rn

(∫
Rn\B(t)

v (x)

V 2 (x)

∫
B(x)

g (y) dy

)p′

v (t) dt

) 1
p′

≤ p′
(∫

Rn

V (t)−p′
(∫

B(|x|)
g

)
v (t) dt

) 1
p′

= p′I2.

The upper bound ofC (g) follows by combining the last estimates and the proof
is complete.

Remark 2. According to our proof we see that the duality constantC (g) in
(3.1) can in fact be estimated in the following more precise way:

max (I1, I2) ≤ C (g) ≤ I1 + p′I2.
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In particular we have the following useful information:

Corollary 3.2. Let the assumptions in Theorem3.1be satisfied and
∫

Rn v = ∞.
Then

(3.3) I2 ≤ sup
f↓r

∫
Rn fg(∫

Rn fpv
) 1

p

≤ p′I2.

The proof above is self-contained and does not depend directly on the one-
dimensional result (only on our investigations in Section2 and similar argu-
ments as V.D. Stepanov used when he proved the casen = 1). Here we give
another shorter proof where we directly use the (Sawyer) one-dimensional re-
sult.

Proof. Make the following changes of variables

(3.4) t = sσ andx = yτ,

wheres, y ∈ (0,∞) andσ, τ ∈
∑

n−1 . By using the fact thatf (sσ) = f (s)
sincef is radial, we get:∫

Rn fg(∫
Rn fpv

) 1
p

=

∫∞
0

∫∑
n−1

f (sσ) g (sσ) sn−1dσds(∫∞
0

∫∑
n−1

fp (sσ) v (sσ) sn−1dσds
) 1

p

=

∫∞
0

f (s) G̃ (s) ds(∫∞
0

fp (s) Ṽ (s) ds
) 1

p

,
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and hence, by using the (Sawyer) one-dimensional result we find that

(3.5)

∫
Rn fg(∫

Rn fpv
) 1

p

≈
(∫ ∞

0

Ṽ (s) ds

)− 1
p
(∫ ∞

0

G̃ (s) ds

)

+

∫ ∞

0

(∫ s

0
G̃ (y) dy

)p′

(∫ s

0
Ṽ (y) dy

)p′
Ṽ (s) ds


1
p′

:= I.

Moreover,

I =

(∫ ∞

0

∫
∑

n−1

v (sσ) sn−1dσ ds

)− 1
p
(∫ ∞

0

∫
∑

n−1

g (sσ) sn−1dσds

)

+

∫ ∞

0

(∫ s

0

∫∑
n−1

g (yτ) yn−1dτdy
)p′

(∫ s

0

∫∑
n−1

v (yτ) yn−1dτdy
)p′

∫
∑

n−1

v (sσ) sn−1dσds


1
p′

=

(∫
Rn

v (t) dt

)− 1
p
(∫

Rn

g (t) dt

)

+

∫
Rn

(∫
B(t)

g (x) dx
)p′

(∫
B(t)

v (x) dx
)p′

v (t) dt


1
p′

.(3.6)

The proof follows by combining (3.5) and (3.6).
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For completeness and later use in our applications we also state the corre-
sponding result for radially increasing functions inRn:

Theorem 3.3. Suppose thatv is a weight onRn and 1 < p < ∞. If f is a
positive radially increasing function onRn andg a positive measurable function
onRn, then

D (g) := sup
f↑r

∫
Rn fg(∫

Rn fpv
) 1

p

≈ I1 + I3,

where

I1 = ‖v‖
−1
p

1 ‖g‖1 ,

and

I3 =

(∫
Rn

G1 (t)p′ V1 (t)−p′ v (t) dt

) 1
p′

,

with G1 (t) =
∫

Rn\B(t)
g (x) dx andV1 (t) =

∫
Rn\B(t)

v (x) dx.

Proof. We now use Theorem2.1 (i) (instead of (ii) as in the proof of Lemma
2.2) and obtain as in the proof of (2.3):∫

Rn

v(x)

(∫
B(x)

f(y)dy

)p

dx ≤ p

∫
Rn

fp(x)V p
1 (x) v1−p(x)dx.

By using this estimate the proof follows similarly as the proof of Theorem3.1
so we leave out the details.

Remark 3. In fact, similar to Remark2 and Corollary3.2, we find that

max (I1, I3) ≤ D (g) ≤ I1 + p′I3
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and if, in addition to the assumptions in Theorem3.3,
∫

Rn v = ∞, then

I3 ≤ sup
f↑r

∫
Rn fg(∫

Rn fpv
) 1

p

≤ p′I3.
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4. Further Results and Applications
Let T be an integral operator defined on the cone of functionsf : Rn → R,
which are radially decreasing(0 < f ↓ r) and letT ∗ be the adjoint operator.
Then our results imply the following useful duality result:

Theorem 4.1.Let1 < p, q < ∞, u, v be weights onRn with
∫

Rn v (x) dx = ∞.
Then the inequality

(4.1)

(∫
Rn

(Tf(x))q u (x) dx

) 1
q

≤ c

(∫
Rn

fp(x)v (x) dx

) 1
p

holds for allf ↓ r if and only if

(4.2)

(∫
Rn

(∫
B(x)

T ∗g (y) dy

)p′

V −p′ (x) v (x) dx

) 1
p′

≤ c

(∫
Rn

gq′(x)u1−q′ (x) dx

) 1
q′

holds for every positive measurable functiong.

Proof. Assume first that (4.1) holds for all0 < f ↓ r. Then, by using Corollary
3.2, duality and Hölder’s inequality, we find that∫

Rn

(∫
B(x)

T ∗g (y) dy

)p′

V −p′ (x) v (x) dx
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≤ sup
f↓r

∫
Rn f (x) T ∗g (x) dx(∫
Rn fp (x) v (x) dx

) 1
p

= sup
f↓r

∫
Rn Tf (x) g (x) dx(∫
Rn fp (x) v (x) dx

) 1
p

≤ sup
f↓r

(∫
Rn (Tf (x))q u (x) dx

) 1
q

(∫
Rn gq′ (x) u

−q′
q (x) dx

) 1
q′

(∫
Rn fp (x) v (x) dx

) 1
p

= c

(∫
Rn

gq′ (x) u1−q′ (x) dx

) 1
q′

.

On the contrary assume that (4.2) holds for allg ≥ 0. Then, by using Corollary
3.2again, we have

p′c

(∫
Rn

(g (x))q′ (u (x))1−q′ dx

) 1
p′

≥ p′

(∫
Rn

(∫
B(x)

T ∗g (t) dt

)p′

V −p′ (x) v (x) dx

) 1
p′

≥
∫

Rn f (x) T ∗g (x) dx(∫
Rn fp (x) v (x) dx

) 1
p

=

∫
Rn Tf (x) g (x) dx(∫
Rn fp (x) v (x) dx

) 1
p

for each fixed0 < f ↓ r. Therefore we have

(4.3)
∫

Rn

h (x) Tf (x) u
1
q (x) dx ≤ p′c

(∫
Rn

fp (x) v (x) dx

) 1
p

,
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where

h (x) =
g (x) u−

1
q (x)(∫

Rn

(
g (x) u−

1
q (x)

)q′

dx

) 1
q′

.

Since‖h‖Lq′ = 1 we obtain (4.1) by taking the supremum in (4.3) and usual
duality inLp-spaces.

Remark 4. By modifying the proof above we see that a similar duality result
also holds for positive radially increasing functions. In fact, in this case we
just need to replace

∫
B(x)

by
∫

Rn\B(x)
andV (x) byV1 (x) =

∫
Rn\B(x)

v (x) dx in
(4.2).

For example whenT is the identity operator we obtain the following:

Corollary 4.2. Let 1 < p ≤ q < ∞ and suppose thatu, v are weights onRn

with
∫

Rn v = ∞ andV (x) =
∫

B(x)
v (y) dy.

a) The following conditions are equivalent:

i) The inequality

(4.4)

(∫
Rn

f qu

) 1
q

≤ c

(∫
Rn

fpv

) 1
p

is satisfied for all0 ≤ f ↓ r.
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ii) The inequality

(4.5)

(∫
Rn

(∫
B(x)

g (y) dy

)p′

V −p′ (x) v (x) dx

) 1
p′

≤ c

(∫
Rn

gq′(x)u1−q′ (x) dx

) 1
q′

holds for allg ≥ 0.

iii)

sup
α>0

(∫
B(α)

v(x)dx

)− 1
p
(∫

B(α)

u(x)dx

) 1
q

< ∞ .

b) If V1 (x) =
∫

Rn\B(x)
v (t) dt, then for0 ≤ f ↑ r (4.4) is equivalent to

(∫
Rn

(∫
Rn\B(x)

g (y) dy

)p′

V −p′

1 (x) v (x) dx

) 1
p′

≤ c

(∫
Rn

gq′(x)u1−q′ (x) dx

) 1
q′

which in turn is equivalent to

sup
α>0

(∫
Rn\B(α)

v(x)dx

)− 1
p
(∫

Rn\B(α)

u(x)dx

) 1
q

< ∞.

http://jipam.vu.edu.au/
mailto:
mailto:sorina.barza@kau.se
mailto:
mailto:marjoh@sm.luth.se
mailto:
mailto:larserik@sm.luth.se
http://jipam.vu.edu.au/


A Sawyer Duality Principle for
Radially Monotone Functions in

Rn

Sorina Barza, Maria Johansson
and Lars-Erik Persson

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 23 of 31

J. Ineq. Pure and Appl. Math. 6(2) Art. 44, 2005

http://jipam.vu.edu.au

Proof. a) The equivalence of i) and ii) is just a special case of Theorem4.1.
Moreover, the fact that ii) and iii) are equivalent follows from Theorem2.1 (i)
with f replaced byg, q by p′, p by q′, W by vV −p′ andU by u1−q′. In fact, then
(4.5) is equivalent to (note that(1− q) (1− q′) = 1)

sup
α>0

(∫
|x|>α

vV −p′
) 1

p′
(∫

|x|<α

u

) 1
q

= sup
α>0

(∫
|x|<α

v
)− 1

p

(p′ − 1)
1
p′

(∫
|x|<α

u

) 1
q

< ∞.

The proof of b) follows similarly by just using Remark4 and Theorem2.1
(ii).

Remark 5. The equivalence of i) and iii) can also be proved using the technique
from [2]. For the caseq < p cf. also [3].

The next result concerns the multidimensional Hardy operator, defined on
the cone of radially decreasing functions inRn.

Proposition 4.3. Let 1 < p ≤ q < ∞ and suppose thatu and v are weights
on Rn with

∫
Rn v = ∞ and V (x) =

∫
B(x)

v (x) dx. If 0 ≤ f is a radially
decreasing function inRn, then

(4.6)

(∫
Rn

(∫
B(x)

f (y) dy

)q

u (x) dx

) 1
q

≤ c

(∫
Rn

fp(x)v (x) dx

) 1
p

is satisfied if and only if the following conditions hold:

(4.7) sup
α>0

(∫
B(α)

v(x)dx

)− 1
p
(∫

B(α)

u(x) |B (x)|q dx

) 1
q

< ∞

http://jipam.vu.edu.au/
mailto:
mailto:sorina.barza@kau.se
mailto:
mailto:marjoh@sm.luth.se
mailto:
mailto:larserik@sm.luth.se
http://jipam.vu.edu.au/


A Sawyer Duality Principle for
Radially Monotone Functions in

Rn

Sorina Barza, Maria Johansson
and Lars-Erik Persson

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 24 of 31

J. Ineq. Pure and Appl. Math. 6(2) Art. 44, 2005

http://jipam.vu.edu.au

and

(4.8) sup
α>0

(∫
B(α)

|B (x)|p
′
V −p′ (x) v (x) dx

) 1
p′
(∫

Rn\B(α)

u(x)dx

) 1
q

< ∞.

Here, as usual,|B (x)| denotes the Lebesgue measure of the ball with center
at0 and with radius|x|.

Remark 6. For the casen = 1 this result is due to V. Stepanov (see [9], Theo-
rem 2).

Proposition4.3 can be proved by using the method of reduction to the one-
dimensional case but here we present an independent proof:

Proof. SinceTf (x) =
∫

B(x)
f (t) dt its conjugateT ∗ is defined byT ∗g (x) =∫

Rn\B(x)
g (t) dt. Assume first that (4.7) and (4.8) hold. We note that, according

to Theorem4.1, (4.6) for 0 < f ↓ r is equivalent to (4.2) for arbitraryg ≥ 0.
Moreover, to be able to characterize weights for which (4.2) is satisfied, we first
compute: ∫

B(x)

T ∗g =

∫
B(x)

(∫
|y|>|z|

g (y) dy

)
dz

=

∫
B(x)

(∫ ∞

|z|

∫
Σn−1

tn−1g (tδ) dδdt

)
dz

=

∫
B(x)

(∫ ∞

|z|
gn (t) dt

)
dz
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=

∫ |x|

0

∫
Σn−1

sn−1

(∫ ∞

s

gn (t) dt

)
dσds

= |Σn−1|

(∫ |x|

0

sn−1

(∫ |x|

s

gn (t) dt

)
ds +

∫ |x|

0

∫ ∞

|x|
gn (t) dtds

)

= |Σn−1|
∫ |x|

0

(∫ t

0

sn−1ds

)
gn (t) dt + |Σn−1|

∫ |x|

0

ds

∫ ∞

|x|
gn (t) dt

=

∫ |x|

0

(∫
Σn−1

dσ

∫ t

0

sn−1ds

∫
Σn−1

tn−1g (tδ) dδ

)
dt

+

(∫ |x|

0

∫
Σn−1

dσds

)∫ ∞

|x|

∫
Σn−1

tn−1g (tδ) dδdt

=

∫
B(x)

|B (y)| g (y) dy︸ ︷︷ ︸
I1

+ |B (x)|
∫

Rn\|B(x)|
g (y) dy︸ ︷︷ ︸

I2

= I1 (x) + I2 (x) .

This means that (4.6) holds if and only if

(4.9)

(∫
Rn

(I1 (x) + I2 (x))p′ V −p′ (x) v (x) dx

) 1
p′

≤ c

(∫
Rn

gq′ (x) U1−q′ (x) dx

) 1
q′

.

Moreover, by Theorem2.1 (i) with q replaced byp′ andp replaced byq′, we
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have (∫
Rn

(I1 (x))p′ V −p′ (x) v (x) dx

) 1
p′

(4.10)

=

(∫
Rn

(∫
B(x)

|B (y)| g (y) dy

)p′

V −p′ (x) v (x) dx

) 1
p′

≤ c

(∫
Rn

(|B (x)| g (x))q′ u (x)1−q′

|B (x)|q′
dx

) 1
q

= c

(∫
Rn

g (x)q′ u (x)1−q′ dx

) 1
q′

,

which holds because, according to (4.7),

sup
α>0

(∫
Rn\B(α)

v (x)

(∫
B(x)

v (y) dy

)−p′

dx

) 1
p′

×

∫
B(α)

(
u (y)1−q′

|B (y)|q′

)1−q

dy

 1
q

≤ sup
α>0

(∫
B(α)

v (y) dy
)− 1

p

(p′ − 1)
1
p′

(∫
B(α)

u (y) |B (y)|q dy

) 1
q

< ∞.
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Similarly, according to Theorem2.1(ii),(∫
Rn

(I2 (x))p′ V −p′ (x) v (x) dx

) 1
p′

(4.11)

=

(∫
Rn\B(α)

(
|B (x)|

∫
Rn\B(x)

g (y) dy

)−p′

V −p′ (x) v (x) dx

) 1
p′

≤ c

(∫
Rn

gq′ (x) u1−q′ (x) dx

) 1
q′

because

sup
α>0

(∫
B(α)

|B (x)|p
′
V −p′ (x) v (x) dx

) 1
p′
(∫

Rn\B(α)

u (x) dx

) 1
q

< ∞

which holds by (4.8). Thus by using (4.9), Minkowski’s inequality and (4.10) –
(4.11) we see that (4.6) holds.

Now assume that (4.6) holds, i.e., that (4.9) holds. Then, in particular,

(4.12)

(∫
Rn

(I1 (x))p′ V −p′ (x) v (x) dx

) 1
p′

≤ c

(∫
Rn

gq′ (x) u1−q′ (x) dx

) 1
q′

and by using Theorem2.1 (i) and arguing as above, we find that (4.7) holds.
Moreover, (4.12) holds also withI1 replaced byI2 so that, by using Theorem
2.1(ii) and again arguing as in the sufficiency part, we see that (4.8) holds. The
proof is complete.
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Remark 7. For the case when the weights are also radially decreasing or in-
creasing some of our results can be written in a more suitable form. Here we
only state the following consequence of Proposition4.3:

Corollary 4.4. Let 1 < p ≤ q < ∞ and letf (x) be positive and radially
decreasing inRn. Then the Hardy inequality(∫

Rn

(
1

|B (x)|

∫
B(x)

f (y) dy

)q

|B (x)|b dx

) 1
q

≤ c

(∫
Rn

fp(x) |B (x)|a dx

) 1
p

holds if and only if−1 < a < p− 1,−1 < b < q − 1 and

(4.13)
a + 1

p
=

b + 1

q
.

Proof. Apply Proposition4.3 with v (x) = |B (x)|a andu (x) = |B (x)|b. We
note that some straightforward calculations give

(4.14)

(∫
B(α)

v (x) dx

)− 1
p
(∫

B(α)

u (x) dx

) 1
q

≈ α
−(a+1)n

p
+

(b+1)n
q

whenevera > −1, b > −1 and

(4.15)

(∫
B(α)

|B (x)|p
′
V −p′ (x) v (x) dx

) 1
p′
(∫

Rn\B(α)

u(x)dx

) 1
q

≈ α
an−anp′+n

p′ + bn−nq+n
q = αn(−a+1

p
+ b+1

q )
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whenevera < p− 1 andb < q − 1.

Moreover, according to the estimates (4.14) and (4.15) the condition (4.13)
(and only this) gives a finite supremum. The proof is complete.

Remark 8. It is easy to see that Theorem2.1also holds ifRn is replaced byRn
+

or even some more general cone inRn. Therefore, by modifying our proofs, we
see that all our results in this chapter indeed hold also whenRn is replaced by
Rn

+ or even general cones inRn as defined in [4].
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