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ABSTRACT. In this note we present a new concept of well-posedness for Optimization Prob-
lems with constraints described by parametric Variational Inequalities or parametric Minimum
Problems. We investigate some classes of operators and functions that ensure this type of well-
posedness.
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1. I NTRODUCTION

Let E be a reflexive Banach space with dualE∗, A be an operator fromE to E∗ andK ⊆ E
be a nonempty, closed, convex set. The Variational Inequality(V I), defined by the pair(A, K),
consists of finding a pointu0 such that:

u0 ∈ K and〈Au0, u0 − v〉 ≤ 0 ∀v ∈ K.

This problem, introduced by G. Stampacchia in [22], has been recently investigated by many
authors including [2], [4], [8], [9] and [15].

If (X, τ) is a topological space, one can consider the parametric Variational Inequality(V I)(x),
defined by the pair(A(x, ·), H(x)), where, for allx ∈ X, A(x, ·) is an operator fromE to E∗

andH is a set-valued function fromX to E with nonempty and convex values.
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2 IMMA DEL PRETE, M. BEATRICE L IGNOLA , AND JACQUELINE MORGAN

The interest in this study is twofold: one is to study the behavior of perturbations of(V I),
another is to consider the parameterx as a decision variable in a multilevel optimization prob-
lem. More precisely, the solution set to(V I)(x) can be seen as the constraint setT (x) of the
following Optimization Problem with Variational Inequality Constraints:

(OPVIC) inf
x∈X

inf
u∈T (x)

f(x, u),

wheref : X × E → R ∪ {+∞}.
The problemsOPVIC (often termed Mathematical Programming with Equilibrium Con-

straintsMPEC) have been investigated by many authors (see for example [13], [14], [17], [19]
and [21]) since they describe many economic or engineering problems (see for example [18])
such as:

• The price setting problem
• Price setting of telecommunication networks
• Yield management in airline industry
• Traffic management through link tolls.

Assuming that(V I)(x) has a unique solution, a well-posedness concept forOPVIC, inspired
from numerical methods, has been considered in [13]. However, in many applications, the
problems(V I)(x) do not always have a unique solution.

So, in this paper, motivated from a numerical method for Variational Inequalities (M.
Fukushima [7]), we introduce and study, forα ≥ 0, the concepts ofα−well-posedness and
α−well-posedness in the generalized sense for a family of Variational Inequalities(VI) =
{(V I)(x), x ∈ X} and forOPVIC. The particular case of variational inequalities arising from
minimum problems is also considered.

The paper is organized as follows. In Section 2 we review some basic notions for variational
inequalities and present some new results onα−well-posedness for unparametric variational
inequalities. Section 3 is devoted to introducing and investigating the concept ofα−well-
posedness for parametric variational inequalities and Section 4 to parametric minimum prob-
lems. Finally, some new concepts of well-posedness forOPVIC is presented and investigated
in Section 5.

2. DEFINITIONS AND BACKGROUND

In this section, some notions ofwell-posednessfor variational inequalities(V I) introduced
in [13] and in [15] and their connections with optimization problems are presented, together
with equivalent characterizations.

Let E be a reflexive Banach space with dualE∗, σ be a convergence onE, andK be a
nonempty, closed and convex subset ofE.

Definition 2.1. [5, 23]. Leth : K → R ∪ {+∞} . The minimization problem (2.1):

(2.1) min
v∈K

h(v)

is Tikhonov well-posed (resp. well-posed in the generalized sense) with respect toσ if there
exists a unique solutionu0 to (2.1) and every minimizing sequenceσ−converges tou0 (resp. if
(2.1) has at least a solution and every minimizing sequence has a subsequenceσ−converging
to a minimum point).

For an operatorA from E to E∗, we consider the following Variational Inequality(V I)
defined by the pair (A, K):

find u0 ∈ K such that〈Au0, u0 − v〉 ≤ 0 ∀v ∈ K.
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WELL-POSEDNESS FOROPTIMIZATION PROBLEMS 3

Definition 2.2. [13, 15] Letα ≥ 0. A sequence(un)n is α−approximatingfor (V I) if:

i) un ∈ K ∀n ∈ N;
ii) there exists a sequence(εn)n, εn > 0, decreasing to 0 such that

〈Aun, un − v〉 − α

2
‖un − v‖2 ≤ εn ∀v ∈ K ∀n ∈ N.

A variational inequality(V I) is termedα−well-posedwith respect toσ, if it has a
unique solutionu0 and everyα− approximating sequence(un)n σ− converges tou0.
If σ is the strong convergences (resp. the weak convergencew) on E, (V I) will be
termedstronglyα−well-posed(resp.weaklyα−well-posed).

The above concept originated from the notion of Tikhonov well-posedness for the following
minimization problem (2.2):

(2.2) min
u∈K

gα(u),

where

gα(u) = sup
v∈K

(
〈Au, u− v〉 − α

2
‖u− v‖2

)
.

Indeed, the following result holds:

Proposition 2.1. Let α ≥ 0. The variational inequality problem(VI) is α−well-posed if and
only if the minimization problem (2.2) is Tikhonov well-posed.

Proof. If (V I) is α−well-posed there exists a unique solutionu0 for (VI), that is:

u0 ∈ K andg0(u0) = sup
v∈K

〈Au0, u0 − v〉 ≤ 0

and, consequently,gα(u0) ≤ g0(u0) ≤ 0 . Sincegα(u) ≥ 0 for everyu ∈ K, gα(u0) = 0 andu0

is a minimum point forgα. In order to prove that (2.2) has a unique solution, consideru′ ∈ K
such thatgα(u′) = gα(u0) = 0. For everyv ∈ K consider the pointw = λu′ + (1 − λ)v,
λ ∈ [0, 1], which belongs toK. Sincegα(u′) = 0 one has:

〈Au′, u′ − w〉 − α

2
‖u′ − w‖2

= (1− λ)〈Au′, u′ − v〉 − α

2
(1− λ)2 ‖u′ − v‖2 ≤ 0

which implies:

〈Au′, u′ − v〉 − α

2
(1− λ) ‖u′ − v‖2 ≤ 0 ∀λ ∈ [0, 1].

So, whenλ converges to 1, one gets:

〈Au′, u′ − v〉 ≤ 0 ∀ v ∈ K.

Then alsou′ solves(V I) and it must coincide withu0.
As the family of minimizing sequences for (2.2) coincides with the family ofα− approxi-

mating sequence for(V I), the first part is proved.
Now, assume that (2.2) is well-posed anduα is the unique solution for (2.2), that isuα ∈ K

andgα(uα) = 0.
With the same arguments used in the first part of this proof it can be proved thatuα solves

also the variational inequality(V I) (this has been already proved in [7] with other arguments).
In order to prove thatuα is the unique solution to(V I), letu′ be another solution to(V I). Since
gα(u′) ≤ g0(u

′) = 0, the pointu′ should be a solution to (2.2), thus it has to coincide withuα.
Then the result follows as in the first part. �
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The gap functiongα, which provides an optimization problem formulation for(V I), is, for
α = 0, the gap function introduced by Auslender in [1], and, forα > 0, the merit function
introduced by Fukushima in [7] for numerical purposes.

As it is well known, when the setK is not bounded, the setT of the solutions to(V I) may
be empty, even in finite dimensional spaces. This does not happen when the operatorA satisfies
some of the following well known properties.

Definition 2.3. The operatorA is said to be:
• monotoneonK if 〈Au− Av, u− v〉 ≥ 0 for everyu andv ∈ K,
• pseudomonotoneonK if for everyu andv ∈ K 〈Au, u− v〉 ≤ 0⇒ 〈Av, u− v〉 ≤ 0;
• strongly monotoneonK (with modulusβ) if 〈Au−Av, u− v〉 ≥ β ‖u− v‖2 for every

u andv ∈ K;
• hemicontinuousonK if it is continuous from every segment ofK to E∗ endowed with

the weak topology.

It is well known (see for example [2]) that the variational inequality(V I) has a unique so-
lution if the operatorA is strongly monotone and hemicontinuous, while there exists at least a
solution for(V I) if the operatorA is pseudomonotone and hemicontinuous and some coercive-
ness condition is satisfied (see for example [8]).

We recall some continuity properties for set-valued functions that will be used later on:

Definition 2.4. A set-valued functionF from a topological space(X, τ) to a convergence space
(Y, σ) (see [11]) is:

• sequentiallyσ−lower semicontinuousat x ∈ X if, for every sequence(xn)n

τ−converging tox and everyy ∈ F (x), there exists a sequence(yn)n σ−converging to
y such thatyn ∈ F (xn) ∀n ∈ N;

• sequentiallyσ−subcontinuousat x ∈ X if, for every sequence(xn)n τ−converging to
x, every sequence(yn)n, yn ∈ F (xn) ∀n ∈ N, has aσ−convergent subsequence;

• sequentiallyσ−closedat x ∈ X if for every sequence(xn)n τ−converging tox, for
every sequence(yn)n σ−converging toy, yn ∈ F (xn) ∀n ∈ N, one hasy ∈ F (x).

We have chosen to deal with sequential continuity notions for set-valued functions since our
well-posedness concepts are defined in a sequential way. However, for brevity, from now on the
termsequentiallywill be omitted.

Let ε > 0. The following approximate solutions set, introduced in [15],

Tα,ε =
{

u ∈ K : 〈Au, u− v〉 ≤ ε +
α

2
‖u− v‖2 ∀v ∈ K

}
for ε > 0

can be used to provide a characterization ofα−well-posedness in line with [13, Prop. 2.3 bis]
and [5].

Proposition 2.2. Let α ≥ 0 and assume that the operatorA is hemicontinuous and monotone
onK and that(V I) has a unique solution. The variational inequality(V I) is stronglyα−well-
posed if and only if

Tα,ε 6= ∅ ∀ ε > 0 and lim
ε→0

diam(Tα,ε) = 0.

Proof. Assume that(V I) is stronglyα−well-posed and

lim
ε→0

diamTα(ε) > 0.

Then there exists a positive numberβ such that, for every sequence(εn)n decreasing to 0,
εn > 0, there exist two sequences(yn)n and(vn)n in K such that

yn ∈ Tα,εn , vn ∈ Tα,εn and ‖yn − vn‖ > β for n sufficiently large.
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WELL-POSEDNESS FOROPTIMIZATION PROBLEMS 5

Since(V I) is stronglyα−well-posed, the sequences(yn)n and (vn)n must converge to the
unique solutionu0, so

lim
n
‖yn − vn‖ = 0

which gives a contradiction.
Conversely, let(yn)n be anα−approximating sequence for(V I), that isyn ∈ Tα,εn for a

sequence(εn)n, εn > 0, decreasing to 0. Beinglim
n

diam Tα,εn = 0, for every positive number

β there exists a positive integerm such that‖yn − yp‖ < β ∀n ≥ m andp ≥ m.
Therefore(yn)n is a Cauchy sequence and has to converge to a pointu0 ∈ K. SinceA is

monotone one has:

〈Av, u0 − v〉 = lim
n
〈Av, yn − v〉

≤ lim inf
n

〈Ayn, yn − v〉

≤ lim
n

α

2
‖yn − v‖2 =

α

2
‖u0 − v‖2 ∀v ∈ K.

SinceA is monotone and hemicontinuous, the following equivalence holds:

〈Av, u0 − v〉 − α

2
‖u0 − v‖2 ≤ 0 ∀v ∈ K ⇔ 〈Au0, u0 − v〉 − α

2
‖u0 − v‖2 ≤ 0 ∀v ∈ K.

In fact, assume that

〈Av, u0 − v〉 − α

2
‖u0 − v‖2 ≤ 0 ∀ v ∈ K.

If v is a point ofK, for every numbert ∈ [0, 1] the pointvt = tv + (1− t)u0 belongs toK, so:

〈Avt, u0 − vt〉 −
α

2
‖u0 − vt‖2 = t〈Avt, u0 − v〉 − t2

α

2
‖u0 − v‖2 ≤ 0 ∀t ∈ [0, 1].

So one has:

lim
t→0

(
〈Avt, u0 − v〉 − α

2
t ‖u0 − v‖2

)
≤ 0

and, in light of the hemicontinuity ofA:

〈Au0, u0 − v〉 − α

2
‖u0 − v‖2 ≤ 〈Au0, u0 − v〉 ≤ 0 ∀v ∈ K.

The converse is an easy consequence of the monotonicity ofA.
Sogα(u0) = 0 and, arguing as in Proposition 2.1, it can be proved thatu0 coincides with the

unique solution to(V I). This completes the proof. �

3. PARAMETRICALLY α−WELL -POSED VARIATIONAL I NEQUALITIES

In what follows we shall consider a topological space(X, τ), a convergenceσ on E and,
for every x ∈ X, a parametric variational inequality onE, (V I)(x), defined by the pair
(A(x, ·), H(x)), whereA is an operator fromX ×E to E∗ andH is a set-valued function from
X to E which is assumed to be nonempty, convex and closed-valued. In many situationsH(x)
is described by a finite number of inequalities:H(x) = {u ∈ E : gi(x, u) ≤ 0, ∀ i = 1, . . . , n},
wheregi is a real-valued function, fori = 1, . . . , n, satisfying suitable assumptions.

Throughout this section we will consider the following family of variational inequalities:

(VI) = {(V I)(x), x ∈ X} .
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6 IMMA DEL PRETE, M. BEATRICE L IGNOLA , AND JACQUELINE MORGAN

Let α ≥ 0 andε > 0. In the sequel, we shall denote byT (resp. Tα,ε ) the map which
associates to everyx ∈ X the solution set (resp. the approximate solution set) to(V I)(x) :

T (x) = {u ∈ H(x) : 〈A(x, u), u− v〉 ≤ 0 ∀ v ∈ H(x)}

(resp.Tα,ε(x) =
{

u ∈ H(x) : 〈A(x, u), u− v〉 ≤ ε +
α

2
‖u− v‖2 ∀v ∈ H(x)

}
).

Now, we introduce the notion of parametricα− well-posedness for the family(VI).

Definition 3.1. Let x ∈ X and(xn)n be a sequence converging tox. A sequence(un)n is said
to beα−approximating for(V I)(x) (with respect to(xn)n) if:

i) un ∈ H(xn) ∀n ∈ N,
ii) there exists a sequence(εn)n, εn > 0, decreasing to 0 such that

〈A(xn, un), un − v〉 − α

2
‖un − v‖2 ≤ εn ∀v ∈ H(xn) ∀n ∈ N.

Definition 3.2. The family of variational inequalities(VI) is termedparametricallyα−well-
posedwith respect toσ if:

• for everyx ∈ X, (V I)(x) has a unique solutionux;
• for every sequence(xn)n converging tox, everyα− approximating sequence(un)n for

(V I)(x) (with respect to(xn)n) σ−converges toux.

If σ is the strong convergences (resp. the weak convergencew) on E, (VI) will be termed
parametrically stronglyα−well-posed(resp.parametrically weaklyα−well-posed).

Observe that forα = 0 the above definition amounts to Definition 2.3 in [13].

Definition 3.3. The family of variational inequalities(VI) is termedparametricallyα−well-
posed in thegeneralizedsense with respect toσ if, for every x ∈ X, (V I)(x) has at least
a solution and for every sequence(xn)n converging tox, everyα−approximating sequence
(un)n for (V I)(x) (with respect to(xn)n) has a subsequenceσ−convergent to a solution to
(V I)(x).

For a parametric variational inequality it is natural to consider the following parametric gap
functiongα(x, u):

gα(x, u) = sup
v∈H(x)

(
〈A(x, u), u− v〉 − α

2
‖u− v‖2

)
and with the same arguments as in Proposition 2.1 one can prove the following two propositions:

Proposition 3.1. Letα ≥ 0 andx ∈ X. A pointux solves the variational inequality(V I)(x) if
and only if :

ux ∈ H(x) andgα(x, ux) = inf
u∈H(x)

gα(x, u) = 0,

that is:
〈A(x, u), u− v〉 − α

2
‖u− v‖2 ≤ 0 ∀v ∈ H(x).

Proposition 3.2. The family of variational inequality(VI) is parametricallyα−well-posed
(resp. parametrically-α−well-posed in the generalized sense) with respect toσ if and only if,
for everyx ∈ X, the minimization problem

(3.1) min
u∈H(x)

gα(x, u)

is parametrically Tikhonov well-posed (resp. parametrically Tikhonov well-posed in the gener-
alized sense) with respect toσ, that is: gα is bounded from below, (3.1) has a unique solution
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WELL-POSEDNESS FOROPTIMIZATION PROBLEMS 7

(resp. has at least a solution)ux and for every sequence(xn)n converging tox, every sequence
(un)n such that

inf
u∈H(x)

gα(x, u) ≥ lim
n

inf gα(xn, un)

σ−converges (resp. has a subsequenceσ−convergent) toux (see Definition 2.3 in[13]).

The connection between parametricα−well-posedness and the convergence to 0 of the di-
ameters ofTα,ε(x) is given by the following result.

Proposition 3.3. Let α ≥ 0. If the family of variational inequalities(V I) is strongly paramet-
rically α−well-posed, then, for everyx ∈ X , every sequence(xn)n converging tox and every
sequence(εn)n of positive real numbers decreasing to 0, one has:

Tα,ε(x) 6= ∅ ∀ε > 0 and lim
n

diam(Tα,εn(xn)) = 0.

Proof. In light of the assumption, the setTα,ε(x) is nonempty since{ux} = T (x) ⊆ Tα,ε(x).
Assume thatlim

n
diam(Tα,εn(xn) > 0. Then there existη > 0 and two sequences(un)n and

(yn)n such thatun ∈ Tα,εn(xn), yn ∈ Tα,εn(xn) and‖yn − un‖ > η, for n sufficiently large.
But, being(un)n and(yn)n sequencesα− approximating for(V I)(x) (with respect to(xn)n),
they must converge toux, and this gives a contradiction. �

In order to achieve a similar result for generalizedα− well-posedness, one can consider the
non compactness measureµ, introduced by Kuratowski in [11]: if(S, d) is a metric space andB
is a bounded subset ofS, µ(B) is defined as the infimum ofε > 0 such thatB can be covered by
a finite number of open sets having diameter less thanε. The following proposition, whose proof
is in line with previous results concerning generalized well-posedness for minimum problems
(see [5]), gives the link between the noncompactness measure ofTα,εn(x) and the generalized
α−well-posedness, when the set-valued functionH is constant:

Proposition 3.4. Let α ≥ 0. Assume that for everyu ∈ E the operatorA(·, u) is continuous
from X to (E∗, w) and the set-valued functionH is constant, that isH(x) = K, whereK
is a nonempty, closed convex subset ofE. If the family of variational inequalities(VI) is
parametrically stronglyα−well-posed in the generalized sense, then, for everyx ∈ X, every
sequence(xn)n converging tox and every sequence(εn)n of positive real numbers decreasing
to 0, one has:

Tα,ε(x) 6= ∅ ∀ε > 0 and lim
n

µ(Tα,εn(xn)) = 0.

Proof. Let (εn)n be a sequence of positive real numbers, letx ∈ X and(xn)n be a sequence
converging tox.

We start by proving thatlim
n

h(Tα,εn(xn), T (x)) = 0, whereh(Tα,εn(xn), T (x)) = hn is the

Hausdorff distance [11] betweenTα,εn(xn) and the set of solutions to(V I)(x), that is:

hn = max

{
sup

u∈Tα,εn (xn)

d(u, T (x)), sup
v∈T (x)

d(Tα,εn(xn), v)

}
.

By the assumptions, everyu ∈ T (x) belongs toTα,εn(xn), for n sufficiently large.
Indeedu ∈ T (x) if and only if 〈A(x, u), u− v〉 ≤ 0 ∀ v ∈ K and, consequently:

〈A(x, u), u− v〉 − α

2
‖u− v‖2 ≤ 0 ∀v ∈ K.

If
v 6= u, 〈A(x, u), u− v〉 − α

2
‖u− v‖2 < 0 = lim

n
εn
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8 IMMA DEL PRETE, M. BEATRICE L IGNOLA , AND JACQUELINE MORGAN

and in light of continuity ofA(·, u) one gets

〈A(xn, u), u− v〉 − α

2
‖u− v‖2 < εn

for n sufficiently large.
If v = u, the result is obvious since

〈A(xn, u), u− v〉 − α

2
‖u− v‖2 = 0 < εn for everyn ∈ N.

So, if lim sup
n

h(Tα,εn(xn), T (x)) > c > 0, there exists a sequence(un)n :

un ∈ Tα,εn(xn) andd( un, T (x)) > c for n sufficiently large.

Since(un)n is α−approximating, there is a subsequence(unk
)k converging toux ∈ T (x) and

one gets:
0 = d(ux, T (x)) ≥ lim sup

k
d(unk

, T (x)) > c,

which gives a contradiction.
In order to complete the proof, it takes only to observe thatTα,εn(xn) ⊆ B(T (x), hn) (the

ball of radiushn aroundT (x)) andµ(T (x)) = 0, so the following inequality holds (see, for
example [5]):

µ(Tα,εn(xn)) ≤ 2hn + µ(T (x)) = 2hn.

�

The next lemma is in the spirit of the Minty’s Lemma and will be used to characterize
α−well-posedness for parametric variational inequalities. The proof is omitted since it is simi-
lar to the proof given in Proposition 2.2 for unparametric variational inequalities.

Lemma 3.5. Let α ≥ 0. If, for everyx ∈ X, the operatorA(x, ·) is hemicontinuous and
monotone onH(x), then the following conditions are equivalent:

i) u0 ∈ H(x) and〈A(x, u0), u0 − v〉 − α
2
‖u0 − v‖2 ≤ 0 for everyv ∈ H(x),

ii) u0 ∈ H(x) and〈A(x, v), u0 − v〉 − α
2
‖u0 − v‖2 ≤ 0 for everyv ∈ H(x).

The next proposition proves that in finite dimensional spaces the parametricα−well-posedness
is equivalent to the uniqueness of solutions to(V I)(x), for everyα ≥ 0.

Proposition 3.6. Letα ≥ 0 andE = Rk. If the following conditions hold:

i) the set-valued functionH is lower semicontinuous, closed and subcontinuous;
ii) for everyx ∈ X, A(x, ·) is monotone and hemicontinuous;

iii) for everyu ∈ Rk, A(·, u) is continuous onX;
iv) A is uniformly bounded onX × Rk, that is there existsk > 0 such that for every

converging sequence(xn, un)n one has‖A(xn, un)‖ ≤ k for everyn ∈ N;

then(VI) is parametricallyα−well-posed if and only if, for everyx ∈ X, (V I)(x) has a
unique solutionux.

Proof. Forx ∈ X, let (xn)n be a sequence converging tox and(un)n be anα− approximating
sequence (with respect to(xn)n), that is:

un ∈ H(xn) and 〈A(xn, un), un − v〉 ≤ εn +
α

2
‖un − v‖2 ∀v ∈ H(xn),

where(εn)n, εn > 0, is a sequence decreasing to 0.
SinceH is closed and subcontinuous there exists a subsequence(unk

)k of (un)n converging
to a point ũx ∈ H(x). Moreover, in light of the lower semicontinuity ofH, for everyv ∈ H(x)
there exists a sequence(vn)n converging tov such thatvn ∈ H(xn) for everyn ∈ N.
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The monotonicity ofA(xnk
, ·) implies:

〈A(xnk
, v), unk

− v〉 ≤ 〈A(xnk
, unk

), unk
− vnk

〉+ 〈A(xnk
, unk

), vnk
− v〉

≤ εnk
+

α

2
‖unk

− vnk
‖2 + ‖A(xnk

, unk
)‖ ‖vnk

− v‖

for everyk ∈ N.
SinceA(·, v) is continuous atx andA is uniformly bounded one has:

〈A(x, v), ũx − v〉 ≤ α

2
‖ũx − v‖2

and applying the previous lemma:

〈A(x, ũx), ũx − v〉 ≤ α

2
‖ũx − v‖2 .

But, from Proposition 3.1, this inequality is equivalent to:

〈A(x, ũx), ũx − v〉 ≤ 0 ∀v ∈ H(x)

that isũx solves(V I)(x).
Since(V I)(x) has a unique solution, the point̃ux must coincide withux and the whole

sequence(un)n has to converge toux. �

A similar result could be obtained in infinite dimensional spaces if one modifies the assump-
tions: in iii) A(·, u) should be continuous fromX to (E∗, s), but in i) H should be assumed to
bes−lower semicontinuous,w−closed ands−subcontinuous, which unfortunately lead to the
strong compactness ofH(x) for everyx ∈ X.

Remark 3.7. If the set-valued functionH is constant, that isH(x) = K ∀x ∈ X, the same
result holds assuming that the setK is compact and convex,A(x, ·) is monotone and hemicon-
tinuous onK for everyx ∈ X, andA(·, u) is continuous onX for everyu ∈ K. Indeed, arguing
as in Proposition 3.6, for everyv ∈ K one has:

〈A(xnk
, v), ũ− v〉 = 〈A(xnk

, v), ũ− unk
〉+ 〈A(xnk

, v), unk
− v〉

≤ 〈A(xnk
, v), ũ− unk

〉+ 〈A(xnk
, unk

), unk
− v〉

≤ 〈A(xnk
, v), ũ− unk

〉+ εnk
+

α

2
‖unk

− v‖2 ,

and fork converging to+∞ the result follows.

Example 3.1. If E is an infinite dimensional space, the previous result may fail to be true when
K is only weakly compact, that is: there are variational inequalities with a unique solution
which are notα−well-posed. Indeed, the following example (already considered in [5]) holds:
let E be a separable Hilbert space with an ortonormal basis(en)n, B be the unitary closed ball
of E. Consider the operator5h(u), whereh(u) =

∑
n
〈u,en〉

n2 and the variational inequality
(V I) defined by:v ∈ B and〈5h(u), u− v〉 ≤ 0 ∀ v ∈ B.

It has as unique solutionu0 = 0, but (en)n is an approximating (and consequentlyα− ap-
proximating for everyα > 0) sequence that does not strongly converge to0.

The next result and the following remark, concerningα−well-posedness in the generalized
sense, can be easily proved with the same arguments as in Proposition 3.6 and Remark 3.7.

Proposition 3.8. Let E = Rk andα ≥ 0. If the assumptions of Proposition 3.6 hold, then the
family (VI) is parametricallyα−well-posed in the generalized sense.

Proof. Since under assumption i) the setH(x) is compact, (V I)(x) has at least a solution for
everyx ∈ X (see for example [10] or [2]), so the result can be easily proved as in Proposition
3.6. �
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10 IMMA DEL PRETE, M. BEATRICE L IGNOLA , AND JACQUELINE MORGAN

The previous proposition says nothing else that, under conditions i) to iv), in finite dimen-
sional spaces, the parametricα−well-posedness in the generalized sense is equivalent to the
existence of solutions.

Remark 3.9. If the set-valued functionK is constant, that isH(x) = K ∀x ∈ X, the same re-
sult holds assuming that the setK is compact and convex, for everyx ∈ X A(x, ·) is monotone
and hemicontinuous onH, and, for everyu ∈ K A(·, u) is continuous onX.

The following propositions furnish classes of operators for which the corresponding vari-
ational inequalities are parametricallyα−well-posed or parametricallyα−well-posed in the
generalized sense.

Proposition 3.10.Assume that the following conditions are satisfied:

i) the operatorA is strongly monotone onE in the variableu, uniformly with respect to
x, that is:

∃ β > 0 such that〈A(x, u)− A(x, v), u− v〉 ≥ β ‖u− v‖2 ∀x ∈ X, ∀ u ∈ E, ∀v ∈ E;

ii) for everyu ∈ E, A(·, u) is continuous from(X, τ) to (E∗, s);
iii) for everyx ∈ X, A(x, ·) is hemicontinuous onH(x);
iv) A is uniformly bounded onX × E;
v) the set-valued functionH is w−closed,w−subcontinuous ands−lower semicontinu-

ous.

Then(VI) is parametrically stronglyα−well-posed for everyα such that0 ≤ α ≤ 2β.

Proof. First of all, for everyx ∈ X, the variational inequality(V I)(x) has a unique solutionux

(see, for example, [10] or [2]).
To prove that, for0 ≤ α ≤ 2β, everyα−approximating sequence is strongly convergent, let

x ∈ X, (xn)n be a sequence converging tox and(un)n be anα−approximating sequence for
(VI) with respect to(xn)n.

SinceH is w−closed andw−subcontinuous, the sequence(un)n has a subsequence, still
denoted by(un)n, which weakly converges tõux ∈ H(x). To prove that̃ux = ux, consider a
point v ∈ H(x) and a sequence(vn)n strongly converging tov such thatvn ∈ H(xn) for every
n ∈ N (such sequence exists in virtue of the lower semicontinuity ofH). One has, for every
n ∈ N:

〈A(xn, v), un − v〉 ≤ 〈A(xn, un), un − v〉 − β ‖un − v‖2

= 〈A(xn, un), un − vn〉+ 〈A(xn, un), vn − v〉 − β ‖un − v‖2

≤ εn +
α

2
‖un − vn‖2 − β ‖un − v‖2 + ‖A(xn, un)‖ ‖vn − v‖ .

Sinceα
2
≤ β, one gets:

〈A(xn, v), un − v〉 ≤ εn + β
(
‖vn − v‖2 + 2 ‖un − v‖ ‖vn − v‖

)
+ ‖A(xn, un)‖ ‖vn − v‖

and in light of assumptions ii) and iv):

〈A(x, v), ũx − v〉 ≤ 0.

The last inequality, for the arbitrarity ofv, implies, by Minty’s Lemma (see, for example, [2]),
thatũx solves(V I)(x), soũx = ux.

J. Inequal. Pure and Appl. Math., 4(1) Art. 5, 2002 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


WELL-POSEDNESS FOROPTIMIZATION PROBLEMS 11

To prove that the sequence(un)n strongly converges toux, let (wn)n be a sequence strongly
converging toux, wn ∈ H(xn) ∀ n ∈ N (such a sequence exists sinceH is s−lower semicon-
tinuous). Observe that:

β ‖un − ux‖2 ≤ 〈A(xn, un)− A(xn, ux), un − ux〉
= 〈A(xn, un), un − wn〉+ 〈A(xn, un), wn − ux〉 − 〈A(xn, ux), un − ux〉

≤ εn +
α

2
‖un − wn‖2 + ‖A(xn, un)‖ ‖wn − ux‖

− 〈A(xn, ux), un − ux〉 ∀ n ∈ N.

Since‖wn − un‖2 ≤ (‖wn − ux‖+ ‖un − ux‖)2, one gets, for everyn ∈ N:

0 ≤
(
β − α

2

)
‖un − ux‖2

≤ εn +
α

2
‖ux − wn‖2 + α ‖un − ux‖ ‖ux − wn‖

+ ‖A(xn, un)‖ ‖wn − ux‖ − 〈A(xn, ux), un − ux〉

and this implies thatlim
n
‖un − ux‖ = 0. So, we have proved that every weakly converging

subsequence of(un)n is also strongly converging to the unique solution for(V I)(x). Then the
whole sequence(un)n strongly converges toux. �

Remark 3.11. If the set-valued functionH is constant, that isH(x) = K ∀x ∈ X, the same
result can be established assuming that:

i) the operatorA is strongly monotone in the variableu onE (with modulusβ), uniformly
with respect tox;

ii) for everyu ∈ K, A(·, u) is continuous from(X, τ) to (E∗, s);
iii) for every x ∈ X, A(x, ·) is hemicontinuous onH(x);
iv) the setK is convex, closed and bounded.

For what concerning parametricα−well-posedness in the generalized sense, we have the
following result forα = 0 :

Proposition 3.12.Assume that the following conditions are satisfied:

i) for everyx ∈ X, A(x, ·) is monotone onH(x);
ii) for everyu ∈ H, A(·, u) is continuous from(X, τ) to (E∗, s);

iii) for everyx ∈ X, A(x, ·) is hemicontinuous onH(x);
iv) A is uniformly bounded onX × E;
v) the set-valued functionH is w−closed,w−subcontinuous ands−lower semicontinu-

ous.

Then(VI) is parametrically weakly well-posed in the generalized sense.

Proof. First of all, for everyx ∈ X, the variational inequality(V I)(x) has at least a solution
(see, for example, [10] or [2]), since under our assumptions the setH(x) is compact with respect
to the weak convergence.

Let x ∈ X, (xn)n be a sequence converging tox, and(un)n be an approximating sequence
for (VI) with respect to(xn)n.

SinceH is w−closed andw−subcontinuous, the sequence(un)n has a subsequence, still
denoted by(un)n, which weakly converges toux ∈ H(x). To prove thatux ∈ T (x), consider
a pointv ∈ H(x), a sequence(vn)n strongly converging tov such thatvn ∈ H(xn) for every

J. Inequal. Pure and Appl. Math., 4(1) Art. 5, 2002 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


12 IMMA DEL PRETE, M. BEATRICE L IGNOLA , AND JACQUELINE MORGAN

n ∈ N (such sequence exists in virtue of the lower semicontinuity ofH). Since:

〈A(xn, v), un − v〉 ≤ 〈A(xn, un), un − v〉
= 〈A(xn, un), un − vn〉+ 〈A(xn, un), vn − v〉
≤ εn + 〈A(xn, un), vn − v〉
≤ εn + ‖A(xn, un)‖ ‖vn − v‖ ∀n ∈ N

and assumptions ii) and iv) hold, one gets:

〈A(x, v), ux − v〉 ≤ 0 ∀v ∈ H(x),

that, for the Minty’s Lemma, is equivalent to say thatux solves(V I)(x). �

Remark 3.13. If the set-valued functionH is constant, that isH(x) = K, ∀ x ∈ X, the same
result can be established assuming that:

i) the operatorA(x, ·) is hemicontinuous onH;
ii) the operatorA(x, ·) is monotone;

iii) for every u ∈ K, A(·, u) is continuous onX;
iv) the setK is convex, closed and bounded.

4. PARAMETRICALLY α−WELL -POSED M INIMUM PROBLEMS

In this section we consider variational inequalities arising from parametric minimum prob-
lems and we investigate, forα > 0, the links between parametricα−well-posedness of such
problems and parametricα− well-posedness of the corresponding variational inequalities. The
caseα = 0 can be found in [13].

Let h be a function fromX × E to R ∪ {+∞} andH be a set-valued function fromX
to E, which is assumed to be nonempty, convex and closed-valued. If, for everyx ∈ X,
the functionh(x, ·) is Gâteaux differentiable, bounded from below and convex onH(x), the
minimum problem:

((P ) (x)) inf
u∈H(x)

h(x, u)

is equivalent to the following variational inequality problem:

((V I)(x)) find u ∈ H(x) such that

〈
∂h

∂u
(x, u), u− v

〉
≤ 0 ∀v ∈ H(x),

where∂h
∂u

is the derivative of the functionh with respect to the variableu (see [2]). Then, it is
natural to introduce the notion of parametricα−well-posedness for a family of minimization
problemsP = { (P ) (x) , x ∈ X} and compare it with the parametricα−well-posedness for
the familyVI = { (V I)(x), x ∈ X}.

Definition 4.1. Let x ∈ X, (xn)n be a sequence converging tox; the sequence(un)n is termed
α−minimizing for (P ) (x) (with respect to(xn)n) if:

i) un ∈ H(xn) ∀ n ∈ N,
ii) there exists a sequence(εn)n, εn > 0, decreasing to 0 such that:

h(xn, un) ≤ h(xn, v) +
α

2
‖un − v‖2 + εn ∀ v ∈ H(xn) and∀n ∈ N.

Definition 4.2. The family of minimum problemsP is calledparametricallyα−well-posed,
with respect toσ, if:

i) for everyx ∈ X, h(x, ·) is bounded from below,
ii) for everyx ∈ X, (P ) (x) has a unique solutionux,
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iii) for every sequence(xn)n converging to a pointx, everyα−minimizing sequence(un)n

for (P ) (x) (with respect to(xn)n) σ−converges toux.

Definition 4.3. The family of minimum problemsP is calledparametricallyα−well-posed in
the generalized sense, with respect toσ, if:

i) for everyx ∈ X, h(x, ·) is bounded from below,
ii) for everyx ∈ X, (P ) (x) has at least a solutionux,

iii) for every sequence(xn)n converging to a pointx, everyα−minimizing sequence(un)n

for (P ) (x) (with respect to(xn)n) has a subsequenceσ−convergent to a solution for
(P ) (x).

The following two propositions give, under suitable assumptions, the equivalence between
parametricα−well-posedness for a minimization problem and the corresponding variational
inequality.

Proposition 4.1. Assume that, for allx ∈ X, the functionh(x, ·) is bounded from below, convex
and Gâteaux differentiable onH(x) and the family of problemsP is parametricallyα−well-
posed (resp. in the generalized sense) with respect toσ. Then the family of variational inequal-
ities defined by

((V I)(x)) findu ∈ H(x) such that

〈
∂h

∂u
(x, u), u− v

〉
≤ 0 ∀v ∈ H(x),

is parametricallyα−well-posed (resp. in the generalized sense) with respect toσ.

Proof. Under the above assumptions, for allx ∈ X, the problems(V I)(x) and(P ) (x) have
the same solutions. Consider a pointx ∈ X, a sequence(xn)n converging tox and an
α−approximating sequence(un)n for (V I)(x), with respect to(xn)n, that is:

un ∈ H(xn) and

〈
∂h

∂u
(xn, un), un − v

〉
− α

2
‖un − v‖2 ≤ εn ∀v ∈ H(xn) ∀n ∈ N,

where(εn)n, εn > 0, decreases to 0. Sinceh(xn, ·) is convex one has:

h(xn, un)− h(xn, v) ≤
〈

∂h

∂u
(xn, un), un − v

〉
≤ α

2
‖un − v‖2 + εn ∀v ∈ H(xn) ∀n ∈ N,

that is(un)n is α−minimizing for (P ) (x) (with respect to(xn)n) and the result then follows.
�

Proposition 4.2. Let E be a real Hilbert space. Assume that, for allx ∈ X, the function
h(x, ·) is lower semicontinuous, bounded from below and Gâteaux differentiable onH(x) and
the family of variational inequalities(VI) is parametrically strongly0−well-posed . If the
rangeH(X) is a bounded subset ofE, then the family of minimum problemsP is strongly
parametricallyα−well-posed for everyα > 0.

Proof. Under the assumptions above, every solution to(P ) (x) has to coincide with the unique
solution to(V I)(x), ∀x ∈ X.

Considerx ∈ X, a sequence(xn)n converging tox and anα-minimizing sequence(un)n for
(P ) (x), with respect to(xn)n, that is:

un ∈ H(xn) and h(xn, un) ≤ h(xn, v) +
α

2
‖un − v‖2 + εn ∀ v ∈ H(xn) ∀n ∈ N,

where(εn)n, εn > 0, is a sequence decreasing to 0.
For everyn ∈ N define a new functionfn onE by:

fn(v) = h(xn, v) +
α

2
‖un − v‖2
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and observe thatfn is lower semicontinuous, bounded from below, Gâteaux differentiable on
H(xn) andfn(un) = h(xn, un).

Sincefn(un) ≤ fn(v) + εn ∀ v ∈ H(xn), from Ekeland Theorem (see [6]), for everyn ∈ N
there existsu′n ∈ H(xn) such that:

‖u′n − un‖ <
√

εn and〈
∂fn

∂u
(u′n), u′n − v

〉
≤
√

εn ‖u′n − v‖ ∀v ∈ H(xn) ∀n ∈ N.

Therefore: 〈
∂h

∂u
(xn, u

′
n), u′n − v

〉
=

〈
∂fn

∂u
(u′n), u′n − v

〉
− α 〈un − u′n, u

′
n − v〉

≤
√

εn ‖u′n − v‖ (1 + α) ∀v ∈ H(xn).

Since the set-valued functionH has a bounded range, the sequence(u′n)n is 0-approximating
for (V I)(x) and the result follows. �

Corollary 4.3. Let E be a real Hilbert space. Assume that, for allx ∈ X, the functionh(x, ·)
is lower semicontinuous, convex, bounded from below and Gâteaux differentiable onH(x) and
the rangeH(X) is a bounded subset ofE. Then the family of variational inequalities (VI)
is parametrically stronglyα−well-posed (resp. in the generalized sense) with respect toσ,
if and only if the minimum problemP is parametrically stronglyα−well-posed (resp. in the
generalized sense) with respect toσ.

Corollary 4.4. LetE be a real Hilbert space. Assume that, for allx ∈ X, the functionh(x, ·)
is lower semicontinuous, convex, bounded from below and Gâteaux differentiable onH(x) and
the rangeH(X) is a bounded subset ofE. Then the family of variational inequalities (VI)
is parametrically strongly0−well-posed (resp. in the generalized sense) if and only if it is
parametrically stronglyα−well-posed (resp. in the generalized sense) for (every)α > 0.

5. α−WELL -POSEDNESS FOROPVIC

In this section we consider a convergenceσ onE and the problem introduced in Section 1:

(OPVIC) inf
x∈X

inf
u∈T (x)

f(x, u),

where f : X ×E → R∪ {+∞} is bounded from below, H is a set-valued function fromX to
E, and, for everyx ∈ X, A(x, ·) is an operator fromE to E∗, while T (x) is the set of solutions
to the parametric variational inequality(V I)(x) defined by the pair(A(x, ·), H(x)).

In order to obtain sufficient conditions forα−well-posedness ofOPVIC we shall assume
also that the functionf satisfies a coercivity condition: namely, we say thatf is equicoercive
on (X × E, (τ × σ)) if every sequence(xn, un)n, such thatf(xn, un) ≤ k ∀n ∈ N, has a
(τ × σ)−convergent subsequence.

Definition 5.1. Let α ≥ 0. A sequence(xn, un)n is said to beα−approximatingfor OPVIC if:
i) lim inf

n
f(xn, un) ≤ inf

(x,u)∈X×E,u∈T (x)
f(x, u);

ii) there exists a sequence(εn)n, εn > 0, decreasing to 0, such thatun ∈ Ta,εn(xn) ∀n ∈ N,
that is:

un ∈ H(xn) and 〈A(xn, un), un − v〉 − α

2
‖un − v‖2 ≤ εn ∀ v ∈ H(xn).

Observe that forα = 0 the above definition amounts to Definition 3.1 in [13] forOPVICwith
variational inequalities having a unique solution.
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Definition 5.2. An optimization problem with variational inequality constraintsOPVICis termed
α−well-posedwith respect to(τ × σ), if it has a unique solution(x0, u0) towards which every
α−approximating sequence(xn, un)n (τ × σ)−converges.

Definition 5.3. An optimization problem with variational inequality constraintsOPVICis termed
α−well-posed in the generalized sensewith respect to(τ × σ), if OPVIC has at least a solu-
tion and everyα−approximating sequence(xn, un)n has a subsequenceτ × σ−convergent to a
solution forOPVIC.

Remark 5.1. We point out that the setT (x) of solutions to(V I)(x) is not assumed to be
always a singleton. In this situation many different types of “approximating” sequences could be
considered instead of the ones considered in Definition 5.1 (see [20], where the well-posedness
of MinSup problems is investigated).

In order to give sufficient conditions for theα−well-posedness orα−well-posedness in the
generalized sense ofOPVIC, we will distinguish the following situations:

• for everyx ∈ X (V I)(x) has a unique solution;
• there existsx ∈ X such that(V I)(x) has not a unique solution.

First Case: for everyx ∈ X (V I)(x) has a unique solution
Since this case forα = 0 has been already investigated in [13], assume thatα > 0.

Theorem 5.2.If (VI) is parametricallyα−well-posed with respect toσ, f is sequentially lower
semicontinuous and equicoercive on(X ×E, (τ × σ)) and OPVIC has a unique solution, then
OPVIC isα−well-posed with respect to(τ × σ).

Proof. Let (xn, un)n be a sequenceα−approximating forOPVIC. Beingf equicoercive, there
exists a subsequence of(xn, un)n, still denoted by(xn, un)n, which (τ × σ)−converges to a
point (x0, u0).

Since the sequence(un)n is α−approximating for(V I)(x0) with respect to(xn)n and(VI) is
parametricallyα−well-posed with respect toσ, the pointu0 must belong toT (x0). Therefore,
in light of condition i) in Definition 5.1 and lower semicontinuity off, one has:

f(x0, u0) ≤ inf
(x,u)∈X×E,u∈T (x)

f(x, u),

that is(x0, u0) is the unique solution toOPVIC. Since every(τ × σ)−convergent subsequence
of (xn, un)n converges to the unique solution forOPVIC, the whole sequence(xn, un)n (τ ×
σ)−converges to it. �

Bearing in mind the proof of Proposition 3.10, a sufficient condition for the stronglyα−well-
posedness ofOPVICwith explicit assumptions on the data can be established.

Theorem 5.3. Assume thatf is sequentially lower semicontinuous and equicoercive on(X ×
E, (τ × w)), and OPVIC has a unique solution. If the following assumptions are satisfied:

i) the operatorA is strongly monotone onE in the variableu, uniformly with respect to
x, that is:

∃β > 0 such that〈A(x, u)− A(x, v), u− v〉 ≥ β ‖u− v‖2 ∀ x ∈ X,∀ u ∈ E, ∀ v ∈ E;

ii) for everyu ∈ E, A(·, u) is continuous from(X, τ) to (E∗, s);
iii) for everyx ∈ X, A(x, ·) is hemicontinuous onH(x);
iv) A is uniformly bounded onX × E;
v) the set-valued functionH is w−closed,w−subcontinuous,s−lower semicontinuous

and convex-valued.
Then OPVIC isα−well-posed with respect to(τ × s), for everyα ≤ 2β.
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Now we do not assume thatOPVIC has a unique solution. With the same arguments as in
Theorem 5.2 one can prove:

Theorem 5.4.If (VI) is parametricallyα−well-posed with respect toσ, f is sequentially lower
semicontinuous and equicoercive on(X ×E, (τ × σ)) and OPVIC has at least a solution, then
OPVIC isα−well-posed in the generalized sense with respect to(τ × σ).

In finite dimensional spaces one obtains:

Corollary 5.5. Assume thatf is sequentially lower semicontinuous and equicoercive onX ×
Rk, OPVIC has at least a solution and, for everyx ∈ X, (V I)(x) has a unique solution.

If the following assumptions are satisfied:
i) the set-valued functionH is closed, lower semicontinuous, subcontinuous and convex-

valued;
ii) for everyx ∈ X, A(x, ·) is monotone and hemicontinuous onH(x);

iii) for everyu ∈ Rk, A(·, u) is continuous onX;
iv) A is uniformly bounded onX ×Rk;

then OPVIC isα−well-posed in the generalized sense. If the set-valued functionH is con-
stant, that isH(x) = K ∀ x ∈ X, the same result holds assuming ii), iii) and the setK compact
and convex.

Second Case:there existsx ∈ X such that(V I)(x) does not have a unique solution.

Theorem 5.6.Letα ≥ 0. If (VI) is parametricallyα−well-posed in the generalized sense with
respect toσ, f is sequentially lower semicontinuous and equicoercive on(X×E, (τ ×σ)) and
OPVIC has at least a solution, then OPVIC isα−well-posed in the generalized sense with
respect to(τ × σ).

Proof. Let (xn, un)n be a sequenceα−approximating forOPVIC. From the equicoercivity of
f , there exists a subsequence of(xn, un)n, still denoted by(xn, un)n, which(τ ×σ)−converges
to a point(x0, u0).

Since the sequence(un)n is α−approximating for(VI) with respect to(xn)n and(VI) is
parametricallyα−well-posed in the generalized sense with respect toσ, (un)n has a subse-
quence(unk

)nk
σ− converging to a solutionu0 to (V I)(x0). Therefore, from condition i) in

Definition 5.1 and in light of the lower semicontinuity off, one has:

f(x0, u0) ≤ inf
(x,u)∈X×E,u∈T (x)

f(x, u),

that is(x0, u0) is a solution toOPVIC. �

Theorem 5.7.Under the same assumptions of Theorem 5.6, if, moreover, OPVIC has a unique
solution, then OPVIC isα−well-posed with respect to(τ × σ).

Proof. Following the proof of the previous theorem, everyα−approximating sequence(xn, un)n

for OPVIChas a subsequence which(τ × σ)−converges to the unique solution(x0, u0). This
is sufficient to conclude that the whole sequence(xn, un)n (τ × σ)−converges to(x0, u0). �

When the variational inequality arises from a minimization problem,OPVIC is nothing else
than a bilevel optimization problem, also called strong Stackelberg problem (see [16]):

inf
x∈X

inf
u∈M(x)

f(x, u),

where

M(x) = Argmin h(x, ·) =

{
u ∈ H(x) : h(x, u) ≤ inf

u′∈H(x)
h(x, u′)

}
.
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Theorem 5.8. Assume thatf is sequentially lower semicontinuous, equicoercive on(X ×
E, (τ × w)) and OPVIC has a unique solution. If the following assumptions are satisfied:

i) for everyx ∈ X, the functionh(x, ·) is lower semicontinuous, bounded from below,
convex and Gâteaux differentiable onH(x);

ii) the set-valued functionH is w−closed,w−subcontinuous,s−lower semicontinuous,
convex-valued and the rangeH(X) is a bounded subset ofE;

iii) for everyu ∈ E, ∂h
∂u

(·, u) is continuous onX;

iv) for everyx ∈ X, ∂h
∂u

(x, ·) is hemicontinuous onH(x);

v) ∂h
∂u

is uniformly bounded onX × E;

then OPVIC isα−well-posed with respect to(τ × s).
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