Journal of Inequalities in Pure and Applied Mathematics

MONOTONIC REFINEMENTS OF A KY FAN INEQUALITY

KWOK KEI CHONG
Department of Applied Mathematics,
The Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong
The People's Republic of China.
EMail: makkchon@inet.polyu.edu.hk
volume 2, issue 2, article 19, 2001.

Received 03 October, 2000; accepted 02 February, 2001.

Communicated by: F. Qi

Abstract
Contents
Home Page
Go Back
Close

Abstract

It is well-known that inequalities between means play a very important role in many branches of mathematics. Please refer to [1, 3, 7], etc. The main aims of the present article are:
(i) to show that there are monotonic and continuous functions $H(t), K(t), P(t)$ and $Q(t)$ on $[0,1]$ such that for all $t \in[0,1]$,

$$
\begin{gathered}
H_{n} \leq H(t) \leq G_{n} \leq K(t) \leq A_{n} \text { and } \\
H_{n} /\left(1-H_{n}\right) \leq P(t) \leq G_{n} / G_{n}^{\prime} \leq Q(t) \leq A_{n} / A_{n}^{\prime},
\end{gathered}
$$

where A_{n}, G_{n} and H_{n} are respectively the weighted arithmetic, geometric and harmonic means of the positive numbers $x_{1}, x_{2}, \ldots, x_{n}$ in $(0,1 / 2]$, with positive weights $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$; while A_{n}^{\prime} and G_{n}^{\prime} are respectively the weighted arithmetic and geometric means of the numbers $1-x_{1}, 1-$ $x_{2}, \ldots, 1-x_{n}$ with the same positive weights $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$;
(ii) to present more general monotonic refinements for the Ky Fan inequality as well as some inequalities involving means; and
(iii) to present some generalized and new inequalities in this connection.

2000 Mathematics Subject Classification: 26D15, 26 A48.
Key words: Ky Fan inequality, monotonic refinements of inequalities, arithmetic, geometric and harmonic means.

The author would like to thank the referees for their invaluable comments and suggestions.

Contents

1 Introduction 4
2 Some Generalizations 8
3 Monotonic Refinements of the Ky Fan Inequality 15
4 Second Proof of Theorem 2.1 21
References

Monotonic Refinements of a Ky Fan Inequality
K. K. Chong

J. Ineq. Pure and Appl. Math. 2(2) Art. 19, 2001 http://jipam.vu.edu.au

1. Introduction

Let n be a positive integer. To two given sequences of positive numbers x_{1}, x_{2}, \ldots, x_{n} and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ such that $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}=1$, we denote by A_{n}, G_{n} and H_{n} respectively the weighted arithmetic, geometric and harmonic means, that is,

$$
\begin{gathered}
A_{n}=\sum_{i=1}^{n} \alpha_{i} x_{i}, \\
G_{n}=\prod_{i=1}^{n} x_{i}^{\alpha_{i}} \\
H_{n}=\left(\sum_{i=1}^{n} \alpha_{i} / x_{i}\right)^{-1} .
\end{gathered}
$$

We use the symbols $\mathbf{a}_{n}, \mathbf{g}_{n}$ and \mathbf{h}_{n} to denote the corresponding unweighted arithmetic, geometric and harmonic means of the n positive numbers $x_{1}, x_{2}, \ldots, x_{n}$. The following well-known inequality has been proved, using many different methods: (Please refer to [3].)

$$
\begin{equation*}
H_{n} \leq G_{n} \leq A_{n} \tag{1.1}
\end{equation*}
$$

Let the real numbers x_{i} be such that $0<x_{i} \leq 1 / 2$, for all $i=1,2, \ldots, n$. We denote by $A_{n}^{\prime}, G_{n}^{\prime}$ and H_{n}^{\prime} the weighted arithmetic, geometric and harmonic means of the numbers $1-x_{1}, 1-x_{2}, \ldots, 1-x_{n}$, namely,

$$
A_{n}^{\prime}=\sum_{i=1}^{n} \alpha_{i}\left(1-x_{i}\right)
$$

$$
\begin{gathered}
G_{n}^{\prime}=\prod_{i=1}^{n}\left(1-x_{i}\right)^{\alpha_{i}} \\
H_{n}^{\prime}=\left(\sum_{i=1}^{n} \alpha_{i} /\left(1-x_{i}\right)\right)^{-1} .
\end{gathered}
$$

Also, let $\mathbf{a}_{n}^{\prime}, \mathbf{g}_{n}^{\prime}$ and \mathbf{h}_{n}^{\prime} denote the corresponding unweighted arithmetic, geometric and harmonic means of the numbers $1-x_{1}, 1-x_{2}, \ldots, 1-x_{n}$ respectively. In recent years many interesting inequalities involving these mean values have been published, in particular, the following well-known Ky Fan and Wang-Wang inequalities :

$$
\begin{equation*}
\frac{H_{n}}{H_{n}^{\prime}} \leq \frac{G_{n}}{G_{n}^{\prime}} \leq \frac{A_{n}}{A_{n}^{\prime}} \tag{1.2}
\end{equation*}
$$

with equality holding if and only if $x_{1}=\cdots=x_{n}$. Please refer to the following papers by H. Alzer [1] - [2] and Wang-Wang [10] or [7], etc. The right-hand inequality of (1.2) is the famous Ky Fan inequality; the left-hand inequality for the unweighted case was first discovered by Wang-Wang in 1984 [10]. The main purpose of this paper is to present some new monotonic continuous functions $H(\lambda), K(\lambda), P(\lambda)$ and $Q(\lambda)$ on $[0,1]$ such that

$$
H_{n} \leq H(\lambda) \leq G_{n} \leq K(\lambda) \leq A_{n}
$$

and

$$
H_{n} /\left(1-H_{n}\right) \leq P(\lambda) \leq G_{n} / G_{n}^{\prime} \leq Q(\lambda) \leq A_{n} / A_{n}^{\prime}
$$

In fact, our theorems here generalize results of Wang and Yang in [9] and a theorem of K.M. Chong [6]. In Section 2, we shall generalize refinements

Monotonic Refinements of a Ky Fan Inequality
K. K. Chong

Title Page
Contents
Go Back
Close
Quit 5 of 24

of inequalities between means. In Section 3, we shall present generalizations to refinements of the Ky Fan inequality, with some new inequalities deduced. Finally, in Section 4, we shall show that Theorem 3.1 can be used to deduce many other established refinements of the Ky Fan inequality.

In a recent paper of Wang and Yang [9], the following two interesting theorems were put forward. In fact, they are refinements of inequalities (1.1) and (1.2) in Section 1, for the discrete unweighted case. They are restated here without proof. For the details of the proof, please refer to [9].

Theorem 1.1. Given a sequence $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of positive numbers, which are not all equal:
(a) For any t in $[0,1 / n]$, let

$$
\begin{equation*}
h(t)=\prod_{i=1}^{n}\left[\frac{1}{x_{i}}+t \sum_{j=1}^{n}\left(\frac{1}{x_{j}}-\frac{1}{x_{i}}\right)\right]^{-1 / n} \tag{1.3}
\end{equation*}
$$

Then, $h(t)$ is continuous, strictly decreasing and $\mathbf{h}_{n}=h(1 / n) \leq h(t) \leq$ $h(0)=\mathbf{g}_{n}$ on $[0,1 / n]$.
(b) For any t in $[0,1 / n]$, let

$$
\begin{equation*}
k(t)=\prod_{i=1}^{n}\left[x_{i}+t \sum_{j=1}^{n}\left(x_{j}-x_{i}\right)\right]^{1 / n} \tag{1.4}
\end{equation*}
$$

Then, $k(t)$ is continuous, strictly increasing and $\mathbf{g}_{n}=k(0) \leq k(t) \leq$ $k(1 / n)=\mathbf{a}_{n}$ on $[0,1 / n]$.

Monotonic Refinements of a Ky Fan Inequality
K. K. Chong

Title Page
Contents
Go Back
Close
Quit

Theorem 1.2. Given a sequence $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ with x_{i} in $(0,1 / 2], i=$ $1,2, \ldots, n$, which are not all equal:
(a) For any t in $[0,1 / n]$, let

$$
\begin{equation*}
p(t)=\prod_{i=1}^{n}\left[\frac{1}{x_{i}}+t \sum_{j=1}^{n}\left(\frac{1}{x_{j}}-\frac{1}{x_{i}}\right)-1\right]^{-1 / n} \tag{1.5}
\end{equation*}
$$

Then, $p(t)$ is continuous, strictly decreasing, and $\mathbf{h}_{n} /\left(1-\mathbf{h}_{n}\right)=p(1 / n)$ $\leq p(t) \leq p(0)=\mathbf{g}_{n} / \mathbf{g}_{n}^{\prime}$ on $[0,1 / n]$.
(b) For any t in $[0,1 / n]$, let

$$
\begin{equation*}
q(t)=\frac{\prod_{i=1}^{n}\left[x_{i}+t \sum_{j=1}^{n}\left(x_{j}-x_{i}\right)\right]^{1 / n}}{\prod_{i=1}^{n}\left[1-x_{i}-t \sum_{j=1}^{n}\left(x_{j}-x_{i}\right)\right]^{1 / n}} \tag{1.6}
\end{equation*}
$$

Then, $q(t)$ is continuous, strictly increasing and $\mathbf{g}_{n} / \mathbf{g}_{n}^{\prime}=q(0) \leq q(t) \leq$ $q(1 / n)=\mathbf{a}_{n} / \mathbf{a}_{n}^{\prime}$ on $[0,1 / n]$.

Monotonic Refinements of a Ky Fan Inequality
K. K. Chong

J. Ineq. Pure and Appl. Math. 2(2) Art. 19, 2001 http://jipam.vu.edu.au

2. Some Generalizations

In this section, we are going to present and prove a generalization of Theorem 1.1 and Theorem 1.2(a), in particular, to the case for weighted means. Its statement runs as follows:

Theorem 2.1. Let $a_{1}, a_{2}, \ldots, a_{n}$, and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be two sequences of positive numbers, with a_{i} not all equal and $\sum_{i=1}^{n} \alpha_{i}=1$. Let a be any positive number such that $A_{n} \leq a$, where $A_{n}=\sum_{i=1}^{n} \alpha_{i} a_{i}$, and k is a constant such that $k<a_{i}$, for all $i=1,2, \ldots, n$. Let

$$
\begin{align*}
& F(\lambda)=\prod_{i=1}^{n}\left[\lambda a+(1-\lambda) a_{i}-k\right]^{\alpha_{i}} \tag{2.1}\\
& G(\lambda)=\prod_{i=1}^{n}\left[\lambda a+(1-\lambda) a_{i}-k\right]^{-\alpha_{i}} \tag{2.2}
\end{align*}
$$

Then,
(i) $F(\lambda)$ is continuous and strictly increasing on $[0,1]$;
(ii) $G(\lambda)$ is continuous and strictly decreasing on $[0,1]$.

Proof. (i) Taking the logarithm of $F(\lambda)$, we have,

$$
\ln F(\lambda)=\sum_{i=1}^{n} \alpha_{i} \ln \left[\lambda a+(1-\lambda) a_{i}-k\right]
$$

Differentiating the last expression with respect to λ, we have:

$$
\frac{F^{\prime}(\lambda)}{F(\lambda)}=\sum_{i=1}^{n} \frac{\alpha_{i}\left(a-a_{i}\right)}{\left[\lambda a+(1-\lambda) a_{i}-k\right]}
$$

Differentiating again, we obtain:

$$
\begin{equation*}
\left[\frac{F^{\prime}(\lambda)}{F(\lambda)}\right]^{\prime}=-\sum_{i=1}^{n} \frac{\alpha_{i}\left(a-a_{i}\right)^{2}}{\left[\lambda a+(1-\lambda) a_{i}-k\right]^{2}}<0 \tag{2.3}
\end{equation*}
$$

for all λ in $[0,1]$, as the a_{i} are not all equal. Hence, $F^{\prime}(\lambda) / F(\lambda)$ is strictly decreasing on $[0,1]$. Also, as $A_{n} \leq a$ and $k<a$, we have :

$$
\begin{equation*}
\frac{F^{\prime}(1)}{F(1)}=\sum_{i=1}^{n} \frac{\alpha_{i}\left(a-a_{i}\right)}{a-k}=\frac{a-A_{n}}{a-k} \geq 0 \tag{2.4}
\end{equation*}
$$

Therefore, $F^{\prime}(\lambda) / F(\lambda)>0$, for all λ in $[0,1)$. As $F(\lambda)$ is positive for all λ in $[0,1], F^{\prime}(\lambda)>0$ for λ in $[0,1)$. Hence, $F(\lambda)$ is strictly increasing on $[0,1]$. The continuity of $F(\lambda)$ on $[0,1]$ is obvious.
(ii) As $F(\lambda)$ is positive for all λ in $[0,1]$ and $G(\lambda)=1 / F(\lambda), G(\lambda)$ is continuous and strictly decreasing on $[0,1]$. Hence, the proof of Theorem 2.1 is complete.

Monotonic Refinements of a Ky Fan Inequality
K. K. Chong

Title Page
Contents
Go Back
Close
Page 9 of 24

Now, we use Theorem 2.1 to deduce some established theorems.

Remark 2.1. (i) From Theorem 2.1, we have, for all $\lambda \in(0,1)$,

$$
F(0)<F(\lambda)<F(1)
$$

which yields for not all equal a_{i},

$$
\begin{equation*}
\prod_{i=1}^{n}\left(a_{i}-k\right)^{\alpha_{i}}<a-k \tag{2.5}
\end{equation*}
$$

In particular, if $a=A_{n}$, for not all equal a_{i} we have,

$$
\begin{equation*}
\prod_{i=1}^{n}\left(a_{i}-k\right)^{\alpha_{i}}<A_{n}-k \tag{2.6}
\end{equation*}
$$

which is a generalization of the weighted arithmetic-geometric means inequality.
(ii) Again, in Theorem 2.1, we let $k=0, a=\sum_{i=1}^{n} \alpha_{i} a_{i}=A_{n}$. Then, $F(\lambda)$ will reduce to, say

$$
\begin{equation*}
K(\lambda)=\prod_{i=1}^{n}\left[\lambda A_{n}+(1-\lambda) a_{i}\right]^{\alpha_{i}} \tag{2.7}
\end{equation*}
$$

It is clear that $K(\lambda)$ is continuous and strictly increasing on $[0,1]$, and for all $\lambda \in(0,1)$,

$$
\begin{equation*}
K(0)=G_{n}<K(\lambda)<K(1)=A_{n} . \tag{2.8}
\end{equation*}
$$

Monotonic Refinements of a Ky Fan Inequality
K. K. Chong

This is a refinement of the weighted arithmetic-geometric means inequality.
(iii) Furthermore, if we put $\lambda=n t, \alpha_{i}=\frac{1}{n}, i=1,2, \ldots, n$, into $K(\lambda)$, we obtain for all $t \in[0,1 / n]$,

$$
K(n t)=\prod_{i=1}^{n}\left[n t A_{n}+(1-n t) a_{i}\right]^{1 / n}=\prod_{i=1}^{n}\left[a_{i}+t \sum_{j=1}^{n}\left(a_{j}-a_{i}\right)\right]^{1 / n}
$$

The last expression is in fact the function $k(t)$ of Theorem 1.1(b). Hence, we have shown that Theorem 1.1(b) is a particular case of Theorem 2.1.
Remark 2.2. If, in Theorem 2.1, we let $k=0, a_{i}=\frac{1}{x_{i}}, i=1,2, \ldots, n, a=$ $\frac{1}{H_{n}}=\frac{\alpha_{1}}{x_{1}}+\cdots+\frac{\alpha_{n}}{x_{n}}$, then $G(\lambda)$ will reduce to,

$$
\begin{equation*}
H(\lambda)=\prod_{i=1}^{n}\left[\frac{\lambda}{H_{n}}+(1-\lambda) \frac{1}{x_{i}}\right]^{-\alpha_{i}} \tag{2.9}
\end{equation*}
$$

Then, $H(\lambda)$ is continuous and strictly decreasing on $[0,1]$, and for all $\lambda \in$ $(0,1)$,

$$
\begin{equation*}
H(1)=H_{n}<H(\lambda)<H(0)=G_{n} \tag{2.10}
\end{equation*}
$$

(2.10) is a refinement of the weighted means inequality. Furthermore, if we put $\lambda=n t, \alpha_{i}=\frac{1}{n}, a_{i}=1 / x_{i}, i=1,2, \ldots, n$, into $H(\lambda)$, we obtain for all t in $[0,1 / n]$,

$$
H(n t)=\prod_{i=1}^{n}\left[n t a+(1-n t) \frac{1}{x_{i}}\right]^{-1 / n}=\prod_{i=1}^{n}\left[\frac{1}{x_{i}}+t \sum_{j=1}^{n}\left(\frac{1}{x_{j}}-\frac{1}{x_{i}}\right)\right]^{-1 / n}
$$

Monotonic Refinements of a Ky Fan Inequality
K. K. Chong

Title Page
Contents
Close Back
Pait

This is the function $h(t)$ in Theorem 1.1(a). Hence, we have deduced Theorem 1.1(a) as a particular case of Theorem 2.1.

Theorem 2.2. Let $x_{1}, x_{2}, \ldots, x_{n}$ be n positive numbers, not all equal, with $x_{i} \in(0,1 / 2]$ for all $i=1,2, . ., n$. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be the corresponding weights, i.e., $\alpha_{i}>0, i=1,2, \ldots, n$ and $\alpha_{1}+\cdots+\alpha_{n}=1$. Let γ be a constant such that $\gamma<\frac{1}{x_{i}}$, for all $i=1,2, \ldots, n$. We define $P(\lambda)$ as :

$$
\begin{equation*}
P(\lambda)=\prod_{i=1}^{n}\left[\frac{\lambda}{H_{n}}+(1-\lambda) \frac{1}{x_{i}}-\gamma\right]^{-\alpha_{i}} \tag{2.11}
\end{equation*}
$$

Then,
(i) $P(\lambda)$ is continuous and strictly decreasing on $[0,1]$;
(ii) for all $\lambda \in(0,1)$, we have,

$$
\begin{equation*}
P(1)=\frac{H_{n}}{1-\gamma H_{n}}<P(\lambda)<P(0)=\prod_{i=1}^{n}\left(\frac{x_{i}}{1-\gamma x_{i}}\right)^{\alpha_{i}} \tag{2.12}
\end{equation*}
$$

Proof. (i) $P(\lambda)$ is continuous and strictly decreasing on $[0,1]$, as we get $P(\lambda)$ from the continuous and strictly decreasing function $G(\lambda)$, by putting $k=$ $\gamma, a_{i}=1 / x_{i}$ with $x_{i} \in(0,1 / 2], i=1,2, \ldots, n, a=1 / H_{n}=\alpha_{1} / x_{1}+$ $\cdots+\alpha_{n} / x_{n}$ into $G(\lambda)$ of Theorem 2.1.
(ii) We have : $P(0)=G(0)=\prod_{i=1}^{n}\left(\frac{x_{i}}{1-\gamma x_{i}}\right)^{\alpha_{i}}$,

$$
P(1)=G(1)=H_{n} /\left(1-\gamma H_{n}\right)
$$

Hence, for all $\lambda \in(0,1)$,

$$
H_{n} /\left(1-\gamma H_{n}\right)<P(\lambda)<\prod_{i=1}^{n}\left(\frac{x_{i}}{1-\gamma x_{i}}\right)^{\alpha_{i}}
$$

Monotonic Refinements of a Ky Fan Inequality
K. K. Chong

Title Page
Contents

Go Back
Close
Quit
Page 12 of 24

This completes the proof of Theorem 2.2.
Remark 2.3. If we put $\lambda=n t, \alpha_{i}=1 / n, i=1,2, \ldots, n, \gamma=1$ into $P(\lambda)$ of Theorem 2.2, we obtain for any t in $[0,1 / n]$,

$$
\begin{aligned}
P(n t) & =\prod_{i=1}^{n}\left[\frac{n t}{\mathbf{h}_{n}}+(1-n t) a_{i}-1\right]^{-1 / n} \\
& =\prod_{i=1}^{n}\left[\frac{1}{x_{i}}+t \sum_{j=1}^{n}\left(\frac{1}{x_{j}}-\frac{1}{x_{i}}\right)-1\right]^{-1 / n}
\end{aligned}
$$

This is the function $p(t)$ of Theorem 1.2(a), and we have deduced Theorem 1.2(a) as a particular case of Theorem 2.1.

The only part in Section 1, which is not yet dealt with, is Theorem 1.2(b). Its proof is postponed to the next section, with some additional theorems. We end this section by considering another similar theorem. In [6], K.M. Chong presented the following theorem:
Theorem 2.3. Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive numbers and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be their corresponding weights, i.e. $\alpha_{i}>0, i=1,2, \ldots, n$ and $\sum_{i=1}^{n} \alpha_{i}=1$. Let $f(\lambda)$ be defined as:

$$
\begin{equation*}
f(\lambda)=\prod_{i=1}^{n}\left[\lambda \sum_{j=1}^{n} \alpha_{j} a_{j}+(1-\lambda) a_{i}\right]^{\alpha_{i}} \tag{2.13}
\end{equation*}
$$

Then $f(\lambda)$ is a strictly increasing function of λ for $\lambda \in[0,1]$, unless $a_{1}=a_{2}=$ $\cdots=a_{n}$; in which case $f(0)=G_{n}=A_{n}=f(1)$.

Proof. It is obvious that when $k=0$ and $a=A_{n}$ in Theorem 2.1 we obtain K.M. Chong's theorem at once.

Monotonic Refinements of a Ky Fan Inequality
K. K. Chong
Title Page
J. Ineq. Pure and Appl. Math. 2(2) Art. 19, 200

3. Monotonic Refinements of the Ky Fan Inequal-

 ityIn the previous section, we have seen that Theorem 2.1 is a generalization of various theorems. In this section, we shall present a refinement of the wellknown Ky Fan inequality, which is a generalization of Theorem 1.2(b).

Theorem 3.1. Let $x_{1}, x_{2}, \ldots, x_{n}$ be n positive numbers, not all equal, such that $x_{i} \in(0,1 / 2]$ for all $i=1,2, \ldots, n$ and let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be their corresponding weights i.e. $\alpha_{i}>0, i=1,2, \ldots, n$ and $\sum_{i=1}^{n} \alpha_{i}=1$. Let β and δ be two constants such that $\delta \leq \beta$ and $\beta<x_{i}$, for all $i=1,2, \ldots, n$. Let $r(\lambda)$ be defined as :

$$
\begin{equation*}
r(\lambda)=\frac{\prod_{i=1}^{n}\left[\lambda z+(1-\lambda) x_{i}-\beta\right]^{\alpha_{i}}}{\prod_{i=1}^{n}\left[\lambda(1-z)+(1-\lambda)\left(1-x_{i}\right)-\delta\right]^{\alpha_{i}}} \tag{3.1}
\end{equation*}
$$

for any $\lambda \in[0,1]$, and any real number z such that $\sum_{i=1}^{n} \alpha_{i} x_{i} \leq z \leq 1 / 2$. Then,
(i) $r(\lambda)$ is continuous and strictly increasing on $[0,1]$; and
(ii) when $\beta=\delta=0$, we have, for all $\lambda \in(0,1)$,

$$
\begin{equation*}
G_{n} / G_{n}^{\prime}=r(0)<r(\lambda)<r(1)=\frac{z}{1-z} \tag{3.2}
\end{equation*}
$$

Monotonic Refinements of a Ky Fan Inequality
K. K. Chong

Title Page
Contents
Close Back
Quit

Proof. (i) Taking the logarithm, we have,

$$
\begin{aligned}
\ln \{r(\lambda)\}=\sum_{i=1}^{n} \alpha_{i} \ln [\lambda z & \left.+(1-\lambda) x_{i}-\beta\right] \\
& -\sum_{i=1}^{n} \alpha_{i} \ln \left[\lambda(1-z)+(1-\lambda)\left(1-x_{i}\right)-\delta\right]
\end{aligned}
$$

Differentiating with respect to λ, we have :

$$
\begin{aligned}
& \frac{r^{\prime}(\lambda)}{r(\lambda)} \\
& \quad=\sum_{i=1}^{n} \alpha_{i} \frac{z-x_{i}}{\lambda z+(1-\lambda) x_{i}-\beta}-\sum_{i=1}^{n} \alpha_{i} \frac{(1-z)-\left(1-x_{i}\right)}{\lambda(1-z)+(1-\lambda)\left(1-x_{i}\right)-\delta} \\
& \quad=\sum_{i=1}^{n} \alpha_{i} \frac{z-x_{i}}{\lambda z+(1-\lambda) x_{i}-\beta}+\sum_{i=1}^{n} \alpha_{i} \frac{z-x_{i}}{\lambda(1-z)+(1-\lambda)\left(1-x_{i}\right)-\delta} .
\end{aligned}
$$

Let $u(\lambda)=\frac{r^{\prime}(\lambda)}{r(\lambda)}$.
We are going to show that $\ln \{r(\lambda)\}$ and hence $r(\lambda)$ are both strictly increasing by showing that $u(\lambda)>0$ for all $\lambda \in[0,1)$.

Monotonic Refinements of a Ky Fan Inequality
K. K. Chong

J. Ineq. Pure and Appl. Math. 2(2) Art. 19, 2001

Differentiating $u(\lambda)$ with respect to λ, we have :

$$
\begin{aligned}
u^{\prime}(\lambda)=- & \sum_{i=1}^{n} \frac{\alpha_{i}\left(z-x_{i}\right)^{2}}{\left[\lambda z+(1-\lambda) x_{i}-\beta\right]^{2}} \\
& +\sum_{i=1}^{n} \frac{\alpha_{i}\left(z-x_{i}\right)^{2}}{\left[\lambda(1-z)+(1-\lambda)\left(1-x_{i}\right)-\delta\right]^{2}}<0
\end{aligned}
$$

as

$$
\frac{1}{\left[\lambda z+(1-\lambda) x_{i}-\beta\right]^{2}}>\frac{1}{\left[\lambda(1-z)+(1-\lambda)\left(1-x_{i}\right)-\delta\right]^{2}}
$$

$i=1,2, \ldots, n$, unless $z=x_{1}=x_{2}=\ldots=x_{n}=1 / 2$, and $\beta=\delta$.
Hence $u(\lambda)$ is strictly decreasing on $[0,1]$.

$$
\begin{aligned}
u(1) & =\sum_{i=1}^{n} \alpha_{i} \frac{z-x_{i}}{z-\beta}+\sum_{i=1}^{n} \alpha_{i} \frac{z-x_{i}}{1-z-\delta} \\
& =\frac{1}{z-\beta} \sum_{i=1}^{n} \alpha_{i}\left(z-x_{i}\right)+\frac{1}{1-z-\delta} \sum_{i=1}^{n} \alpha_{i}\left(z-x_{i}\right) \\
& =\left(z-\sum_{i=1}^{n} \alpha_{i} x_{i}\right) \frac{1-\beta-\delta}{(z-\beta)(1-z-\delta)} \geq 0, \text { for } \sum_{i=1}^{n} \alpha_{i} x_{i} \leq z \leq 1 / 2
\end{aligned}
$$

Hence, $u(\lambda)=\frac{r^{\prime}(\lambda)}{r(\lambda)}>0$, for all $\lambda \in[0,1)$.
As $r(\lambda)$ is always positive, we have $r^{\prime}(\lambda)>0$ for all $\lambda \in[0,1)$ and $r(\lambda)$ is strictly increasing on $[0,1]$.

Monotonic Refinements of a Ky Fan Inequality
K. K. Chong

Title Page
Contents

Go Back
Close
Quit
Page 17 of 24
(ii) It is easy to see that when $\beta=\delta=0, r(0)=G_{n} / G_{n}^{\prime}, r(1)=\frac{z}{1-z}$ and $r(0)<r(\lambda)<r(1)$ on $(0,1)$.

It is remarked, that if $\beta=\delta=0, z=\sum_{i=1}^{n} \alpha_{i} x_{i}$ in Theorem 3.1, then the chain of inequalities in (3.2), with $r(\lambda)$ replaced by $Q(\lambda)$, will become : for any $\lambda \in(0,1)$,

$$
\begin{equation*}
\frac{G_{n}}{G_{n}^{\prime}}=Q(0)<Q(\lambda)<Q(1)=\frac{z}{1-z}=\frac{A_{n}}{A_{n}^{\prime}} \tag{3.3}
\end{equation*}
$$

This is a refinement of the Ky Fan inequality.
Remark 3.1. (3.3) is a refinement of the weighted Ky Fan inequality and we have $r(0)<r(\lambda)<r(1)$, unless $x_{1}=x_{2}=\ldots=x_{n}$. In general, (3.2) yields a generalization of the Ky Fan inequality as follows :

For $A_{n} \leq z \leq 1 / 2$ and $\delta \leq \beta<x_{i} \in(0,1 / 2]$, for all $i=1,2, \ldots, n$, we have,

$$
\begin{equation*}
r(0)=\frac{\prod_{i=1}^{n}\left[x_{i}-\beta\right]^{\alpha_{i}}}{\prod_{i=1}^{n}\left[1-x_{i}-\delta\right]^{\alpha_{i}}} \leq \frac{z-\beta}{1-z-\delta}=r(1) \tag{3.4}
\end{equation*}
$$

with equality if and only if $x_{1}=x_{2}=\cdots=x_{n}$.
If in (3.4) we let $z=A_{n}$ the weighted arithmetic mean of $x_{1}, x_{2}, \ldots, x_{n}$, we
Monotonic Refinements of a Ky Fan Inequality
K. K. Chong

Title Page
Contents
Go Back
Close
Quit

obtain a generalization of the weighted Ky Fan inequality :

$$
\begin{equation*}
\frac{\prod_{i=1}^{n}\left[x_{i}-\beta\right]^{\alpha_{i}}}{\prod_{i=1}^{n}\left[1-x_{i}-\delta\right]^{\alpha_{i}}} \leq \frac{A_{n}-\beta}{A_{n}^{\prime}-\delta} \tag{3.5}
\end{equation*}
$$

with equality if and only if $x_{1}=x_{2}=\cdots=x_{n}$.
Remark 3.2. If we put $\alpha_{i}=1 / n, i=1,2, \ldots, n, z=\sum_{i=1}^{n} \alpha_{i} x_{i}, \beta=\delta=0$ and $\lambda=$ nt into (3.1), we then obtain after simplification,

$$
\begin{aligned}
r(n t) & =\frac{\prod_{i=1}^{n}\left[n t \sum_{j=1}^{n} \frac{1}{n} x_{j}+(1-n t) x_{i}\right]^{1 / n}}{\prod_{i=1}^{n}\left[n t\left(1-\sum_{j=1}^{n} \frac{1}{n} x_{j}\right)+(1-n t)\left(1-x_{i}\right)\right]^{1 / n}} \\
& =\frac{\prod_{i=1}^{n}\left[x_{i}+t \sum_{j=1}^{n}\left(x_{j}-x_{i}\right)\right]^{1 / n}}{\prod_{i=1}^{n}\left[1-x_{i}-t \sum_{j=1}^{n}\left(x_{j}-x_{i}\right)\right]^{1 / n}}=q(t), \quad \text { for } t \in[0,1 / n] .
\end{aligned}
$$

This is the function $q(t)$ in Theorem 1.2(b), showing that Theorem 3.1 is a generalization of Theorem 1.2(b).
Remark 3.3. In [5], we have the following theorem, which can be easily seen to follow as a particular case of Theorem 3.1, when $\beta=0$ and $\delta=0$:

Theorem 3.2. Let $x_{1}, x_{2}, \ldots, x_{n}$ be n positive numbers, such that $x_{i} \in(0,1 / 2]$, for all $i=1,2, \ldots, n$, and let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be their corresponding positive weights, with $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}=1$. Let z be a constant such that $A_{n} \leq$ $z \leq 1 / 2$, where $A_{n}=\sum_{i=1}^{n} \alpha_{i} x_{i}$. We define $w(\lambda)$, for any $\lambda \in[0,1]$, to be the function:

$$
\begin{equation*}
w(\lambda)=\frac{\prod_{i=1}^{n}\left[\lambda z+(1-\lambda) x_{i}\right]^{\alpha_{i}}}{\prod_{i=1}^{n}\left[\lambda(1-z)+(1-\lambda)\left(1-x_{i}\right)\right]^{\alpha_{i}}} . \tag{3.6}
\end{equation*}
$$

Then,
(i) $w(\lambda)$ is continuous and strictly increasing on $[0,1]$, unless $x_{1}=x_{2}=$ $\cdots=x_{n} ;$
(ii) $G_{n} / G_{n}^{\prime}=w(0) \leq w(\lambda) \leq w(1)=\frac{z}{1-z}$, for $\lambda \in[0,1]$.

Monotonic Refinements of a Ky Fan Inequality
K. K. Chong
Title Page

4. Second Proof of Theorem 2.1

In this section, we shall show that Theorem 3.1 is not only a generalization of Theorem 1.2(b), but also it can be used to deduce some elementary theorems.

Second proof of Theorem 2.1. Suppose the n numbers $x_{1}, x_{2}, \ldots, x_{n}$ are not all equal.

For $x_{i} \in(0,1 / 2], i=1,2, \ldots, n, z$ lying between $\sum_{i=1}^{n} \alpha_{i} x_{i}$ and $1 / 2$, the function $r(\lambda)$ of Theorem 3.1 is strictly increasing on $[0,1]$, where for $\lambda \in$ $[0,1], r(\lambda)$ is defined as :

$$
\begin{equation*}
r(\lambda)=\frac{\prod_{i=1}^{n}\left[\lambda z+(1-\lambda) x_{i}-\beta\right]^{\alpha_{i}}}{\prod_{i=1}^{n}\left[\lambda(1-z)+(1-\lambda)\left(1-x_{i}\right)-\delta\right]^{\alpha_{i}}} \tag{4.1}
\end{equation*}
$$

Now, we put $x_{i}=\frac{a_{i}}{l}, i=1,2, \ldots, n$, where l is a large positive number, and let $z=\frac{a}{l}, \beta=\frac{k}{l}$ with $\delta=\beta$. Then, the function $r(\lambda)$ becomes :

$$
\begin{equation*}
r(\lambda)=\frac{\frac{1}{l} \prod_{i=1}^{n}\left[\lambda a+(1-\lambda) a_{i}-k\right]^{\alpha_{i}}}{\prod_{i=1}^{n}\left[\lambda\left(1-\frac{a}{l}\right)+(1-\lambda)\left(1-\frac{a_{i}}{l}\right)-\beta\right]^{\alpha_{i}}} . \tag{4.2}
\end{equation*}
$$

By Theorem 3.1,

$$
\begin{equation*}
v(\lambda)=\frac{\prod_{i=1}^{n}\left[\lambda a+(1-\lambda) a_{i}-k\right]^{\alpha_{i}}}{\prod_{i=1}^{n}\left[\lambda\left(1-\frac{a}{l}\right)+(1-\lambda)\left(1-\frac{a_{i}}{l}\right)-\frac{k}{l}\right]^{\alpha_{i}}} \tag{4.3}
\end{equation*}
$$

Monotonic Refinements of a Ky Fan Inequality
K. K. Chong

Title Page
Contents
Go Back
Close
Page 21 of 24

is strictly increasing as λ increases from 0 to 1 .
We let l tend to $+\infty$, the denominator tends to 1 and we have shown that the function in Theorem 2.1

$$
\begin{equation*}
F(\lambda)=\prod_{i=1}^{n}\left[\lambda a+(1-\lambda) a_{i}-k\right]^{\alpha_{i}} \tag{4.4}
\end{equation*}
$$

is an increasing function on $[0,1]$.
Differentiation calculations as in Theorem 2.1 easily reveal that in fact $F(\lambda)$ is strictly increasing on $[0,1]$. This completes the proof of Theorem 2.1.

Remark 4.1. From the discussions in Section 2, it can be seen that Theorem 2.1 generalizes Theorem 1.1, Theorem 1.2(a), Theorem 2.2 and Theorem 2.3. From the discussions of the last two sections, it can be seen that Theorem 3.1 generalizes Theorem 1.2(b), Theorem 3.2 and Theorem 2.1. As a whole, we have shown that Theorem 3.1 is a generalization of all other refinements of inequalities (1.1) and (1.2), appearing in this paper.

Monotonic Refinements of a Ky Fan Inequality
K. K. Chong

Title Page
Contents
Go Back
Close
Quit

J. Ineq. Pure and Appl. Math. 2(2) Art. 19, 2001

References

[1] H. ALZER, Inequalities for arithmetic, geometric and harmonic means, Bull. London Math. Soc., 22 (1990), 362-366.
[2] H. ALZER, The inequality of Ky Fan and related results, Acta Appl. Math., 38 (1995), 305-354.
[3] P.S. BULLEN, D.S. MITRINOVIĆ AND J.E. PEČARIĆ, Means and Their Inequalities, Reiddel Dordrecht, 1988.
[4] K.K. CHONG, On a Ky Fan's inequality and some related inequalities between means, Southeast Asian Bull. Math., 22 (1998), 363-372.
[5] K.K. CHONG, On some generalizations and refinements of a Ky Fan inequality, Southeast Asian Bull. Math., 24 (2000), 355-364.
[6] K.M. CHONG, On the arithmetic-mean-geometric-mean inequality, Nanta Mathematica, 10(1) (1977), 26-27.
[7] A.M. FINK, J.E. PEČARIĆ AND D.S. MITRINOVIĆ, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, 1993.
[8] N. LEVINSON, Generalization of an inequality of Ky Fan, J. Math. Anal. Appl., 3 (1964), 133-134.
[9] C.S. WANG AND G.S. YANG, Refinements on an inequality of Ky Fan, J. Math. Anal. Appl., 201 (1996), 955-965.
[10] W.L. WANG and P.F. WANG, A class of inequalities for the symmetric functions, Acta Math. Sinica, 27 (1984), 485-497 [In Chinese].
[11] W.L. WANG, Some inequalities involving means and their converses, J. Math. Anal. Appl., 238 (1999), 567-579.

Monotonic Refinements of a Ky Fan Inequality
K. K. Chong
Title Page
J. Ineq. Pure and Appl. Math. 2(2) Art. 19, 2001

