COEFFICIENT BOUNDS FOR MEROMORPHIC STARLIKE AND CONVEX FUNCTIONS

SEE KEONG LEE
Universiti Sains Malaysia
11800 USM Penang,
Malaysia
EMail: sklee@cs.usm.my

V. RAVICHANDRAN
Department of Mathematics
University of Delhi
Delhi 110 007, India
EMail: vravi@maths.du.ac.in

Coefficient Bounds
S. K. Lee, V. Ravichandran and S. Shamani

Title Page

School of Mathematical Sciences
Universiti Sains Malaysia
11800 USM Penang, Malaysia
EMail: sham105@hotmail.com

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.
Key words:

30 January, 2008
03 May, 2009
S.S. Dragomir

Primary 30C45, Secondary 30C80.
Univalent meromorphic functions; starlike function, convex function, FeketeSzegö inequality.

Contents

44

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

In this paper, some subclasses of meromorphic univalent functions in the unit disk Δ are extended. Let $U(p)$ denote the class of normalized univalent meromorphic functions f in Δ with a simple pole at $z=p>0$. Let ϕ be a function with positive real part on Δ with $\phi(0)=1, \phi^{\prime}(0)>0$ which maps Δ onto a region starlike with respect to 1 which is symmetric with respect to the real axis. The class $\sum^{*}\left(p, w_{0}, \phi\right)$ consists of functions $f \in U(p)$ satisfying

$$
-\left(\frac{z f^{\prime}(z)}{f(z)-w_{0}}+\frac{p}{z-p}-\frac{p z}{1-p z}\right) \prec \phi(z)
$$

The class $\sum(p, \phi)$ consists of functions $f \in U(p)$ satisfying

$$
-\left(1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{2 p}{z-p}-\frac{2 p z}{1-p z}\right) \prec \phi(z)
$$

The bounds for w_{0} and some initial coefficients of f in $\sum^{*}\left(p, w_{0}, \phi\right)$ and $\sum(p, \phi)$ are obtained.

Acknowledgment:
This research is supported by Short Term grant from Universiti Sains Malaysia and also a grant from University of Delhi.

J

Coefficient Bounds
S. K. Lee, V. Ravichandran and S. Shamani
vol. 10, iss. 3, art. 71, 2009

Title Page
Contents

Page 2 of 14
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Contents

1 Introduction 4
2 Coefficients Bound Problem 7

Coefficient Bounds
S. K. Lee, V. Ravichandran and S. Shamani
vol. 10, iss. 3, art. 71, 2009

Title Page
Contents
44

Page 3 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction

Let $U(p)$ denote the class of univalent meromorphic functions f in the unit disk Δ with a simple pole at $z=p>0$ and with the normalization $f(0)=0$ and $f^{\prime}(0)=1$. Let $U^{*}\left(p, w_{0}\right)$ be the subclass of $U(p)$ such that $f(z) \in U^{*}\left(p, w_{0}\right)$ if and only if there is a $\rho, 0<\rho<1$, with the property that

$$
\Re \frac{z f^{\prime}(z)}{f(z)-w_{0}}<0
$$

for $\rho<|z|<1$. The functions in $U^{*}\left(p, w_{0}\right)$ map $|z|<r<\rho$ (for some $\rho, p<$ $\rho<1$) onto the complement of a set which is starlike with respect to w_{0}. Further the functions in $U^{*}\left(p, w_{0}\right)$ all omit the value w_{0}. This class of starlike meromorphic functions is developed from Robertson's concept of star center points [11]. Let \mathcal{P} denote the class of functions $P(z)$ which are meromorphic in Δ and satisfy $P(0)=1$ and $\Re\{P(z)\} \geq 0$ for all $z \in \Delta$.

For $f(z) \in U^{*}\left(p, w_{0}\right)$, there is a function $P(z) \in \mathcal{P}$ such that

$$
\begin{equation*}
z \frac{f^{\prime}(z)}{f(z)-w_{0}}+\frac{p}{z-p}-\frac{p z}{1-p z}=-P(z) \tag{1.1}
\end{equation*}
$$

Coefficient Bounds
S. K. Lee, V. Ravichandran and S. Shamani
vol. 10, iss. 3, art. 71, 2009

Title Page
Contents

Page 4 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

If $f \in K(p)$, then for each z in Δ,

$$
\begin{equation*}
\Re\left\{1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{2 p}{z-p}-\frac{2 p z}{1-p z}\right\} \leq 0 . \tag{1.2}
\end{equation*}
$$

Let $\sum(p)$ denote the class of functions f which satisfy (1.2) and the conditions $f(0)=0$ and $f^{\prime}(0)=1$. The class $K(p)$ is contained in $\sum(p)$. Royster [12] showed that for $0<p \leq 2-\sqrt{3}$, if $f \in \sum(p)$ and is meromorphic, then $f \in K(p)$. Also, for each function $f \in \sum(p)$, there is a function $P \in \mathcal{P}$ such that

$$
1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{2 p}{z-p}-\frac{2 p z}{1-p z}=-P(z)
$$

The class $U(p)$ and related classes have been studied in [3], [4], [5] and [6].
Let \mathcal{A} be the class of all analytic functions of the form $f(z)=z+a_{2} z^{2}+$ $a_{3} z^{3}+\cdots$ in Δ. Several subclasses of univalent functions are characterized by the quantities $z f^{\prime}(z) / f(z)$ or $1+z f^{\prime \prime}(z) / f^{\prime}(z)$ lying often in a region in the right-half plane. Ma and Minda [7] gave a unified presentation of various subclasses of convex and starlike functions. For an analytic function ϕ with positive real part on Δ with $\phi(0)=1, \phi^{\prime}(0)>0$ which maps the unit disk Δ onto a region starlike (univalent) with respect to 1 which is symmetric with respect to the real axis, they considered the class $S^{*}(\phi)$ consisting of functions $f \in \mathcal{A}$ for which $z f^{\prime}(z) / f(z) \prec \phi(z) \quad(z \in \Delta)$. They also investigated a corresponding class $C(\phi)$ of functions $f \in \mathcal{A}$ satisfying $1+z f^{\prime \prime}(z) / f^{\prime}(z) \prec \phi(z) \quad(z \in \Delta)$. For related results, see [1, 2, 8, 13]. In the following definition, we consider the corresponding extension for meromorphic univalent functions.

Definition 1.1. Let ϕ be a function with positive real part on Δ with $\phi(0)=1$, $\phi^{\prime}(0)>0$ which maps Δ onto a region starlike with respect to 1 which is symmetric

Coefficient Bounds
S. K. Lee, V. Ravichandran and S. Shamani
vol. 10, iss. 3, art. 71, 2009

Title Page
Contents

Page 5 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
with respect to the real axis. The class $\sum^{*}\left(p, w_{0}, \phi\right)$ consists of functions $f \in U(p)$ satisfying

$$
-\left(\frac{z f^{\prime}(z)}{f(z)-w_{0}}+\frac{p}{z-p}-\frac{p z}{1-p z}\right) \prec \phi(z) \quad(z \in \Delta) .
$$

The class $\sum(p, \phi)$ consists of functions $f \in U(p)$ satisfying

$$
-\left(1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{2 p}{z-p}-\frac{2 p z}{1-p z}\right) \prec \phi(z) \quad(z \in \Delta) .
$$

In this paper, the bounds on $\left|w_{0}\right|$ will be determined. Also the bounds for some coefficients of f in $\sum^{*}\left(p, w_{0}, \phi\right)$ and $\sum(p, \phi)$ will be obtained.

Coefficient Bounds
S. K. Lee, V. Ravichandran and S. Shamani
vol. 10, iss. 3, art. 71, 2009

Title Page
Contents

$\boldsymbol{4}$	
$\boldsymbol{4}$	
Page 6 of 14	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Coefficients Bound Problem

To prove our main result, we need the following:
Lemma 2.1 ([7]). If $p_{1}(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ is a function with positive real part in Δ, then

$$
\left|c_{2}-v c_{1}^{2}\right| \leq \begin{cases}-4 v+2 & \text { if } \quad v \leq 0 \\ 2 & \text { if } \quad 0 \leq v \leq 1 \\ 4 v-2 & \text { if } \quad v \geq 1\end{cases}
$$

When $v<0$ or $v>1$, equality holds if and only if $p_{1}(z)$ is $(1+z) /(1-z)$ or one of its rotations. If $0<v<1$, then equality holds if and only if $p_{1}(z)$ is $\left(1+z^{2}\right) /\left(1-z^{2}\right)$ or one of its rotations. If $v=0$, the equality holds if and only if

$$
p_{1}(z)=\left(\frac{1}{2}+\frac{1}{2} \lambda\right) \frac{1+z}{1-z}+\left(\frac{1}{2}-\frac{1}{2} \lambda\right) \frac{1-z}{1+z} \quad(0 \leq \lambda \leq 1)
$$

or one of its rotations. If $v=1$, the equality holds if and only if p_{1} is the reciprocal of one of the functions such that equality holds in the case of $v=0$.

Theorem 2.2. Let $\phi(z)=1+B_{1} z+B_{2} z^{2}+\cdots$ and $f(z)=z+a_{2} z^{2}+\cdots$ in $|z|<p$. If $f \in \sum^{*}\left(p, w_{0}, \phi\right)$, then

Coefficient Bounds
S. K. Lee, V. Ravichandran and S. Shamani
vol. 10, iss. 3, art. 71, 2009

Title Page
Contents

Page 7 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Also, we have

$$
\left|a_{2}+\frac{w_{0}}{2}\left(p^{2}+\frac{1}{p^{2}}+\frac{1}{w_{0}^{2}}\right)\right| \leq \begin{cases}\frac{\left|w_{0}\right|\left|B_{2}\right|}{2} & \text { if }\left|B_{2}\right| \geq B_{1} \tag{2.2}\\ \frac{\left|w_{0}\right| B_{1}}{2} & \text { if }\left|B_{2}\right| \leq B_{1} .\end{cases}
$$

Proof. Let h be defined by

$$
h(z)=-\left[\frac{z f^{\prime}(z)}{f(z)-w_{0}}+\frac{p}{z-p}-\frac{p z}{1-p z}\right]=1+b_{1} z+b_{2} z^{2}+\cdots
$$

Then it follows that

$$
\begin{align*}
& b_{1}=p+\frac{1}{p}+\frac{1}{w_{0}}, \quad \text { and } \tag{2.3}\\
& b_{2}=p^{2}+\frac{1}{p^{2}}+\frac{1}{w_{0}^{2}}+\frac{2 a_{2}}{w_{0}} \tag{2.4}
\end{align*}
$$

Since ϕ is univalent and $h \prec \phi$, the function

$$
p_{1}(z)=\frac{1+\phi^{-1}(h(z))}{1-\phi^{-1}(h(z))}=1+c_{1} z+c_{2} z^{2}+\cdots
$$

is analytic and has a positive real part in Δ. Also, we have

Coefficient Bounds
S. K. Lee, V. Ravichandran and S. Shamani
vol. 10, iss. 3, art. 71, 2009

Title Page
Contents
4

Page 8 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and

$$
\begin{equation*}
b_{2}=\frac{1}{2} B_{1}\left(c_{2}-\frac{1}{2} c_{1}^{2}\right)+\frac{1}{4} B_{2} c_{1}^{2} . \tag{2.7}
\end{equation*}
$$

From (2.3), (2.4), (2.6) and (2.7), we get

$$
\begin{equation*}
w_{0}=\frac{2 p}{p B_{1} c_{1}-2 p^{2}-2} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{2}=\frac{w_{0}}{8}\left(2 B_{1} c_{2}-B_{1} c_{1}^{2}+B_{2} c_{1}^{2}\right)-\frac{p^{2} w_{0}}{2}-\frac{w_{0}}{2 p^{2}}-\frac{1}{2 w_{0}} . \tag{2.9}
\end{equation*}
$$

Coefficient Bounds
S. K. Lee, V. Ravichandran and S. Shamani
vol. 10, iss. 3, art. 71, 2009

Title Page
Contents

Page 9 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

From (2.9), we obtain

$$
\begin{aligned}
\left|a_{2}+\frac{w_{0}}{2}\left(p^{2}+\frac{1}{p^{2}}+\frac{1}{w_{0}^{2}}\right)\right| & =\left|\frac{w_{0}}{2}\left(\frac{1}{2} B_{1}\left(c_{2}-\frac{1}{2} c_{1}^{2}\right)+\frac{1}{4} B_{2} c_{1}^{2}\right)\right| \\
& =\frac{\left|w_{0}\right| B_{1}}{4}\left|c_{2}-\left(\frac{B_{1}-B_{2}}{2 B_{1}}\right) c_{1}^{2}\right| .
\end{aligned}
$$

The result now follows from Lemma 2.1.
The classes $\sum^{*}\left(p, w_{0}, \phi\right)$ and $\sum(p, \phi)$ are indeed a more general class of functions, as can be seen in the following corollaries.
Corollary 2.3 ([10, inequality 4, p. 447]). If $f(z) \in \sum^{*}\left(p, w_{0}\right)$, then

$$
\frac{p}{(1+p)^{2}} \leq\left|w_{0}\right| \leq \frac{p}{(1-p)^{2}}
$$

Proof. Let $B_{1}=2$ in (2.1) of Theorem 2.2.
Corollary 2.4 ([10, Theorem 1, p. 447]). Let $f \in \sum^{*}\left(p, w_{0}\right)$ and $f(z)=z+a_{2} z^{2}+$ \cdots in $|z|<p$. Then the second coefficient a_{2} is given by

$$
a_{2}=\frac{1}{2} w_{0}\left(b_{2}-p^{2}-\frac{1}{p^{2}}-\frac{1}{w_{0}^{2}}\right),
$$

Coefficient Bounds
S. K. Lee, V. Ravichandran and S. Shamani
vol. 10, iss. 3, art. 71, 2009

Title Page
Contents

Page 10 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics

Theorem 2.5. Let $\phi(z)=1+B_{1} z+B_{2} z^{2}+\cdots$ and $f(z)=z+a_{2} z^{2}+\cdots$ in $|z|<p$. If $f \in \sum(p, \phi)$, then

$$
\frac{2 p^{2}-B_{1} p+2}{2 p} \leq\left|a_{2}\right| \leq \frac{2 p^{2}+B_{1} p+2}{2 p}
$$

Also

$$
\begin{aligned}
&\left|a_{3}-\frac{1}{3}\left(p^{2}+\frac{1}{p^{2}}\right)-\frac{2}{3} a_{2}^{2}-\mu\left(a_{2}-p-\frac{1}{p}\right)^{2}\right| \\
& \leq \begin{cases}\frac{\left|2 B_{2}+3 \mu B_{1}^{2}\right|}{12} & \text { if }\left|\frac{2 B_{2}}{B_{1}}+3 \mu B_{1}\right| \geq 2 \\
\frac{B_{1}}{6} & \text { if }\left|\frac{2 B_{2}}{B_{1}}+3 \mu B_{1}\right| \leq 2\end{cases}
\end{aligned}
$$

Proof. Let h now be defined by

$$
h(z)=-\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{2 p}{z-p}-\frac{2 p z}{1-p z}\right]=1+b_{1} z+b_{2} z^{2}+\cdots
$$

and p_{1} be defined as in the proof of Theorem 2.2. A computation shows that

$$
\begin{align*}
& b_{1}=2\left(p+\frac{1}{p}-a_{2}\right), \quad \text { and } \tag{2.10}\\
& b_{2}=2\left(p^{2}+\frac{1}{p^{2}}+2 a_{2}^{2}-3 a_{3}\right) . \tag{2.11}
\end{align*}
$$

From (2.6) and (2.10), we have

$$
\begin{equation*}
a_{2}=p+\frac{1}{p}-\frac{B_{1} c_{1}}{4} . \tag{2.12}
\end{equation*}
$$

Coefficient Bounds
S. K. Lee, V. Ravichandran and S. Shamani
vol. 10, iss. 3, art. 71, 2009

Title Page
Contents

Page 11 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

From (2.7) and (2.11), we have

$$
\begin{equation*}
a_{3}=\frac{1}{24}\left(8 p^{2}+\frac{8}{p^{2}}+16 a_{2}^{2}-2 B_{1} c_{2}+B_{1} c_{1}^{2}-B_{2} c_{1}^{2}\right) . \tag{2.13}
\end{equation*}
$$

From (2.12), we have

$$
2 p+\frac{2}{p}-2 a_{2}=\frac{1}{2} B_{1} c_{1}
$$

or

$$
\left|2 p+\frac{2}{p}-2\right| a_{2}| | \leq\left|2 p+\frac{2}{p}-2 a_{2}\right| \leq \frac{1}{2} B_{1}\left|c_{1}\right| \leq B_{1} .
$$

Coefficient Bounds
S. K. Lee, V. Ravichandran and S. Shamani
vol. 10, iss. 3, art. 71, 2009

Title Page
or

$$
\frac{2 p^{2}-B_{1} p+2}{2 p} \leq\left|a_{2}\right| \leq \frac{2 p^{2}+B_{1} p+2}{2 p} .
$$

From (2.12) and (2.13), we obtain

$$
\begin{aligned}
& \left|a_{3}-\frac{1}{3}\left(p^{2}+\frac{1}{p^{2}}\right)-\frac{2}{3} a_{2}^{2}-\mu\left(a_{2}-p-\frac{1}{p}\right)^{2}\right| \\
& =\left|\frac{1}{24}\left(-2 B_{1} c_{2}+B_{1} c_{1}^{2}-B_{2} c_{1}^{2}\right)-\mu\left(\frac{B_{1}^{2} c_{1}^{2}}{16}\right)\right| \\
& =\frac{B_{1}}{12}\left|c_{2}-\left(\frac{1}{2}-\frac{B_{2}}{2 B_{1}}-\frac{3 \mu B_{1}}{4}\right) c_{1}^{2}\right| .
\end{aligned}
$$

The result now follows from Lemma 2.1.

Contents
\square
Page 12 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] R.M. ALI, V. RAVICHANDRAN and N. SEENIVASAGAN, Coefficient bounds for p-valent functions, Appl. Math. Comput., 187(1) (2007), 35-46.
[2] R.M. ALI, V. RAVICHANDRAN, AND S.K. LEE, Subclasses of multivalent starlike and convex functions, Bull. Belgian Math. Soc. Simon Stevin, 16 (2009), 385-394.
[3] A.W. GOODMAN, Functions typically-real and meromorphic in the unit circle, Trans. Amer. Math. Soc., 81 (1956), 92-105.
[4] J.A. JENKINS, On a conjecture of Goodman concerning meromorphic univalent functions, Michigan Math. J., 9 (1962), 25-27.
[5] Y. KOMATU, Note on the theory of conformal representation by meromorphic functions. I, Proc. Japan Acad., 21 (1945), 269-277.
[6] K. LADEGAST, Beiträge zur Theorie der schlichten Funktionen, Math. Z., 58 (1953), 115-159.
[7] W. MA AND D. MINDA, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis, Z. Li, F. Ren, L. Yang, and S. Zhang (Eds.), Int. Press (1994), 157-169.
[8] M.H. MOHD, R.M. ALI, S.K. LEE and V. RAVICHANDRAN, Subclasses of meromorphic functions associated with convolution, J. Inequal. Appl., 2009 (2009), Article ID 190291, 10 pp .
[9] J. MILLER, Convex meromorphic mappings and related functions, Proc. Amer. Math. Soc., 25 (1970), 220-228.
[10] J. MILLER, Starlike meromorphic functions, Proc. Amer. Math. Soc., 31 (1972), 446-452.

Coefficient Bounds
S. K. Lee, V. Ravichandran and S. Shamani
vol. 10, iss. 3, art. 71, 2009

Title Page
Contents

Page 13 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
[11] M.S. ROBERTSON, Star center points of multivalent functions, Duke Math. J., 12 (1945), 669-684.
[12] W.C. ROYSTER, Convex meromorphic functions, in Mathematical Essays Dedicated to A. J. Macintyre, 331-339, Ohio Univ. Press, Athens, Ohio (1970).
[13] S. SHAMANI, R.M. ALI, S.K. LEE AND V. RAVICHANDRAN, Convolution and differential subordination for multivalent functions, Bull. Malays. Math. Sci. Soc. (2), 32(3) (2009), to appear.

Coefficient Bounds
S. K. Lee, V. Ravichandran and S. Shamani
vol. 10, iss. 3, art. 71, 2009

Title Page
Contents

Page 14 of 14
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

