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Abstract

The aim of the present paper is to establish some variants integral inequalities
in two independent variables. These integral inequalities given here can be
applied as tools in the boundedness and uniquness of certain partial differential
equations.
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1. Introduction
The integral inequalities involving functions of one and more than one inde-
pendent variables which provide explicit bounds on unknown functions play a
fundamental role in the development of the theory of differential equations (see
[1]–[11]). In recent year, Pachpatte [11] discovered some new integral inequal-
ities involving functions of two independent variables. These inequalities are
applied to study the boundedness and uniqueness of the solutions of following
terminal value problem for the hyperbolic partial differential equation (1.1) with
the condition (1.2).

uxy(x, y) = h(x, y, u(x, y)) + r(x, y),(1.1)

u(x,∞) = σ∞(x), u(∞, y) = τ∞(y), u(∞,∞) = d.(1.2)

Our main objective here, motivated by Pachpatte’s inequalities [11], is to
establish additional new integral inequalities involving functions of two inde-
pendent variables which can be used in the analysis of certain classes of partial
differential equations.
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2. Main Results
Throughout the paper, all the functions which appear in the inequalities are
assumed to be real-valued and all the integrals are involved in existence on the
domains of their definitions. We shall introduce some notation,R denotes the
set of real numbers andR+ = [0,∞) is the given subset ofR. The first order
partial derivatives of a functionsz(x, y) defined forx, y ∈ R with respect tox
andy are denoted byzx(x, y) andzy(x, y) respectively.

We need the inequalities in the following Lemma2.1and Lemma2.2, which
are given in the book [1].

Lemma 2.1. Letg be a monotone continuous function in an intervalI, contain-
ing a pointu0, which vanishes inI. Let u andk be continuous functions in an
intervalJ = [α, β] such thatu(J) ⊂ I, and suppose thatk is of fixed sign inJ.
Leta ∈ I.

(i) Assume thatg is nondecreasing andk is nonnegative. If

u(t) ≤ a +

∫ t

α

k(s)g (u(s)) ds, t ∈ J,

then

u(t) ≤ G−1

(
G(a) +

∫ t

α

k(s)ds

)
, α ≤ t ≤ β1,

whereG(u) =
∫ u

u0
dx/g(x), u ∈ I, andβ1 = min(v1, v2), with

v1 = sup

{
v ∈ J : a +

∫ t

α

k(s)g (u(s)) ds ∈ I, α ≤ t ≤ v

}
,
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v2 = sup

{
v ∈ J : G(a) +

∫ t

α

k(s)ds ∈ G(I), α ≤ t ≤ v

}
.

(ii) Assume thatJ = (α, β]. If

u(t) ≤ a +

∫ β

t

k(s)g (u(s)) ds, t ∈ J,

then

u(t) ≤ G−1

(
G(a) +

∫ β

t

k(s)ds

)
, α1 < t ≤ β,

whereα1 = max(µ1, µ2), with

µ1 = sup

{
µ1 ∈ J : a +

∫ β

t

k(s)g (u(s)) ds ∈ I, µ ≤ t ≤ β

}
,

µ2 = sup

{
µ ∈ J : G(a) +

∫ β

t

k(s)ds ∈ G(I), µ ≤ t ≤ β

}
.

The proofs of the inequalities in (i), (ii) can be completed as in [1, p. 40–42].
Here we omit the details.

Let u(x, y), a(x, y), b(x, y) be nonnegative continuous functions defined for
x, y ∈ R+.

Lemma 2.2. (i) Assume thata(x, y) is nondecreasing inx and nonincreasing
in y for x, y ∈ R+. If

u(x, y) ≤ a(x, y) +

∫ x

0

∫ ∞

y

b(s, t)u(s, t) dtds
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for all x, y ∈ R+, then

u(x, y) ≤ a(x, y) exp

(∫ x

0

∫ ∞

y

b(s, t) dtds

)
.

(ii) Assume thata(x, y) is nonincreasing in each of the variablesx, y ∈ R+.
If

u(x, y) ≤ a(x, y) +

∫ ∞

x

∫ ∞

y

b(s, t)u(s, t) dtds

for all x, y ∈ R+, then

u(x, y) ≤ a(x, y) exp

(∫ ∞

x

∫ ∞

y

b(s, t) dtds

)
.

The proofs of the inequalities in (i), (ii) can be completed as in [1, p. 109-
110]. Here we omit the details.

To establish our results, we require the class of functionsS as defined in [2].
A functiong : [0,∞) → [0,∞) is said to belong to the classS if

(i) g(u) is positive, nondecreasing and continuous foru ≥ 0,

(ii) (1/v)g(u) ≤ g(u/v), u > 0, v ≥ 1.

Theorem 2.3. Let u(x, y), a(x, y), b(x, y), c(x, y), d(x, y) be nonnegative con-
tinuous functions defined forx, y ∈ R+, let g ∈ S. Define a functionz(x, y)
by

z(x, y) = a(x, y) + c(x, y)

∫ x

0

∫ ∞

y

d(s, t)u(s, t) dtds
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with z(x, y) is nondecreasing inx andz(x, y) ≥ 1 for x, y ∈ R+. If

(2.1) u(x, y) ≤ z(x, y) +

∫ x

α

b(s, y)g
(
u(s, y)

)
ds,

for α, x, y ∈ R+ andα ≤ x, then

(2.2) u(x, y) ≤ p(x, y)

[
a(x, y) + c(x, y)e(x, y)

× exp

(∫ x

0

∫ ∞

y

d(s, t)p(s, t)c(s, t) dtds

)]
,

for x, y ∈ R+, where

p(x, y) = G−1

(
G(1) +

∫ x

α

b(s, y) ds

)
,(2.3)

e(x, y) =

∫ x

0

∫ ∞

y

d(s, t)p(s, t)a(s, t) dtds,(2.4)

G(u) =

∫ u

u0

ds

g(s)
, u ≥ u0 > 0,(2.5)

G−1 is the inverse function ofG, and

G(1) +

∫ x

α

b(s, y) ds ∈ Dom (G−1).

Proof. Let z(x, y) is a nonnegative, continuous, nondecreasing and letg ∈ S.
Then (2.1) can be restated as

(2.6)
u(x, y)

z(x, y)
≤ 1 +

∫ x

α

b(s, y)
1

z(x, y)
g (u(s, y)) ds.
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Define a functionw(x, y) by the right side of (2.6), then [u(x, y)/z(x, y)] ≤
w(x, y) and

(2.7) w(x, y) ≤ 1 +

∫ x

α

b(s, y)g (w(s, y)) ds.

Treatingy, y ∈ R+ fixed in (2.7) and using (i) of Lemma2.1to (2.7), we get

(2.8) w(x, y) ≤ G−1

(
G(1) +

∫ x

α

b(s, y) ds

)
.

Using (2.8) in [u(x, y)/z(x, y)] ≤ w(x, y), we obtain

u(x, y) ≤ z(x, y)p(x, y),

wherep(x, y) is defined by (2.3). From the definition ofz(x, y) we have

(2.9) u(x, y) ≤ p(x, y) (a(x, y) + c(x, y)v(x, y)) ,

wherev(x, y) is defined by

v(x, y) =

∫ x

0

∫ ∞

y

d(s, t)u(s, t) dtds.

From (2.9) we get

v(x, y) ≤
∫ x

0

∫ ∞

y

d(s, t)p(s, t) (a(s, t) + c(s, t)v(s, t)) dtds

= e(x, y) +

∫ x

0

∫ ∞

y

d(s, t)p(s, t)c(s, t)v(s, t) dtds,
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wheree(x, y) is defined by (2.4). Clearly,e(x, y) is nonnegative, continuous,
nondecreasing inx, x ∈ R+ and nonincreasing iny, y ∈ R+. Now, by (i) of
Lemma2.2, we obtain

(2.10) v(x, y) ≤ e(x, y) exp

(∫ x

0

∫ ∞

y

d(s, t)p(s, t)c(s, t) dtds

)
.

Using (2.10) in (2.9) we get the required inequality in (2.2).

Theorem 2.4. Let u(x, y), a(x, y), b(x, y), c(x, y), d(x, y) be nonnegative con-
tinuous functions defined forx, y ∈ R+ and letg ∈ S. Define a functionz(x, y)
by

z(x, y) = a(x, y) + c(x, y)

∫ ∞

x

∫ ∞

y

d(s, t)u(s, t) dtds

with z(x, y) is nonincreasing inx andz(x, y) ≥ 1 for x, y ∈ R+. If

u(x, y) ≤ z(x, y) +

∫ β

x

b(s, y)g (u(s, y)) ds

for β, x, y ∈ R+ andβ ≥ x, then

u(x, y) ≤ p(x, y)

[
a(x, y) + c(x, y)e(x, y)

× exp

(∫ ∞

x

∫ ∞

y

d(s, t)p(s, t)c(s, t) dtds

)]
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for x, y ∈ R+, where

p(x, y) = G−1

(
G(1) +

∫ β

x

b(s, y) ds

)
,(2.11)

e(x, y) =

∫ ∞

x

∫ ∞

y

d(s, t)p(s, t)a(s, t) dtds.

G is defined in (2.5), G−1 is the inverse function ofG, and

G(1) +

∫ β

x

b(s, y) ds ∈ Dom (G−1).

The details of the proof of Theorem2.4 follows by an argument similar to
that in the proofs of Theorem2.3with suitable changes. We omit the details.

Theorem 2.5. Let u(x, y), a(x, y), b(x, y), c(x, y) be nonnegative continuous
functions defined forx, y ∈ R+ andF : R3

+ → R+ be a continuous function
which satisfies the condition

(2.12) 0 ≤ F (x, y, u)− F (x, y, v) ≤ K(x, y, v)(u− v)

for u ≥ v ≥ 0, whereK(x, y, v) is a nonnegative continuous function defined
for x, y, v ∈ R+. And letg ∈ S. Define a functionz(x, y) by

z(x, y) = a(x, y) + c(x, y)

∫ x

0

∫ ∞

y

F (s, t, u(s, t)) dtds

with nondecreasing inx andz(x, y) ≥ 1 for x, y ∈ R+. If

(2.13) u(x, y) ≤ z(x, y) +

∫ x

α

b(s, y)g
(
u(s, y)

)
ds
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for α, x, y ∈ R+ andα ≤ x, then

(2.14) u(x, y) ≤ p(x, y)

[
a(x, y) + c(x, y)A(x, y)

× exp

(∫ x

0

∫ ∞

y

K (s, t, p(s, t)a(s, t)) p(s, t)c(s, t) dtds

)]
for x, y ∈ R+, wherep(x, y) is defined by (2.3) and

(2.15) A(x, y) =

∫ x

0

∫ ∞

y

F (s, t, p(s, t)a(s, t)) dtds,

G(u) =
∫ u

u0
(ds/g(s)), u ≥ u0 > 0, G−1 is the inverse function ofG, and

G(1) +

∫ x

α

b(s, y) ds ∈ Dom (G−1).

Proof. The proof of this theorem follows by argument similar to that given in the
proof of Theorem2.3. Let z(x, y) is a nonnegative, continuous, nondecreasing
and letg ∈ S, then, we observe that

u(x, y) ≤ z(x, y)p(x, y),

wherep(x, y) is defined by (2.3). From the definition ofz(x, y) we have

(2.16) u(x, y) ≤ p(x, y)
(
a(x, y) + c(x, y)w(x, y)

)
,

wherew(x, y) is defined by

w(x, y) =

∫ x

0

∫ ∞

y

F (s, t, u(s, t)) dtds.
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From (2.12) and (2.16) we get

w(x, y) ≤
∫ x

0

∫ ∞

y

[
F (s, t, p(s, t) (a(s, t) + c(s, t)w(s, t)))

+ F (s, t, p(s, t)a(s, t))− F (s, t, p(s, t)a(s, t))

]
dtds

≤ A(x, y) +

∫ x

0

∫ ∞

y

K ((s, t, p(s, t)a(s, t)) p(s, t)c(s, t)w(s, t) dtds,

whereA(x, y) is defined by (2.15). Clearly,A(x, y) is nonnegative, continuous,
nondecreasing inx, x ∈ R+ and nonincreasing iny, y ∈ R+. Now, by (i) of
Lemma2.2, we obtain

(2.17) w(x, y) ≤ A(x, y)

× exp

(∫ x

0

∫ ∞

y

K ((s, t, p(s, t)a(s, t)) p(s, t)c(s, t) dtds

)
.

Using (2.16) in (2.17) we get the required inequality in (2.14).

Theorem 2.6.Let the assumptions of Theorem2.5be fulfilled. Define a function
z(x, y) by

z(x, y) = a(x, y) + c(x, y)

∫ ∞

x

∫ ∞

y

F (s, t, u(s, t)) dtds,

with nonincreasing inx andz(x, y) ≥ 1 for x, y ∈ R+. If

u(x, y) ≤ z(x, y) +

∫ β

x

b(s, y)g (u(s, y)) ds
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for β, x, y ∈ R+ andβ ≥ x, then

u(x, y) ≤ p(x, y)

[
a(x, y) + c(x, y)A(x, y)

× exp

(∫ ∞

x

∫ ∞

y

K (s, t, p(s, t)a(s, t)) p(s, t)c(s, t) dtds

)]
for x, y ∈ R+, wherep(x, y) is defined by (2.11) and

A(x, y) =

∫ ∞

x

∫ ∞

y

F (s, t, p(s, t)a(s, t)) dtds.

G is defined in (2.5), G−1 is the inverse function ofG, and

G(1) +

∫ β

x

b(s, y) ds ∈ Dom (G−1).

The details of the proof of Theorem2.6 follows by an argument similar to
that in the proofs of Theorem2.5with suitable changes. We omit the details.
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3. Some Applications
In this section we present some immediate applications of Theorem2.3to study
certain properties of solutions of the following terminal value problem for the
hyperbolic partial differential equation

uxy(x, y) = h(x, y, u(x, y)) + r(x, y),(3.1)

u(x,∞) = σ∞(x), u(0, y) = τ(y), u(0,∞) = k,(3.2)

whereh : R2
+ × R → R, r : R2

+ → R, σ∞, τ(y) : R+ → R are continuous
functions andk is a real constant.

The following example deals with the estimate on the solution of the partial
differential equation (3.1) with the conditions (3.2).

Example3.1. Let c(x, y) continuous, nonnegative, nondecreasing inx and non-
increasing iny for x, y ∈ R+, and let

(3.3) |h(x, y, u)| ≤ c(x, y)d(x, y) |u| ,

(3.4)

∣∣∣∣σ∞(x) + τ(y)− k −
∫ x

0

∫ ∞

y

r(s, t) dtds

∣∣∣∣
≤ a(x, y) +

∫ x

α

b(s, y)g(|u|) ds,

wherea(x, y), b(x, y), d(x, y), g are as defined in Theorem2.3. If u(x, y) is a
solution of (3.1) with the conditions (3.2), then it can be written as (see [1, p.
80])

(3.5) u(x, y) = σ∞(x)+ τ(y)−k−
∫ x

0

∫ ∞

y

(h(s, t, u(s, t))+ r(s, t)) dtds
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for x, y ∈ R. From (3.3), (3.4), (3.5) we get

(3.6) |u(x, y)| ≤ a(x, y) +

∫ x

α

b(s, y)g(|u|) ds

+ c(x, y)

∫ x

0

∫ ∞

y

d(s, t)|u| dtds.

Now, a suitable application of Theorem2.3to (3.6) yields the required estimate
following

|u(x, y)| ≤ p(x, y)

[
a(x, y) + c(x, y)e(x, y)

× exp

(∫ x

0

∫ ∞

y

d(s, t)p(s, t)c(s, t) dtds

)]
for x, y ∈ R+, wheree(x, y), p(x, y) are define in Theorem2.3.

Our next result deals with the uniqueness of the solution of the partial differ-
ential equation (3.1) with the conditions (3.2).

Example3.2. Suppose that the functionh in (3.1) satisfies the condition

(3.7) |h(x, y, u)− h(x, y, v)| ≤ c(x, y)d(x, y) |u− v| ,

wherec(x, y), d(x, y) is as defined in Theorem2.3with c(x, y) is nonincreasing
in y. Let u(x, y), v(x, y) be two solutions of equation (3.1) with the conditions
(3.2). From (3.5), (3.7) we have

(3.8) |u(x, y)− v(x, y)| ≤ c(x, y)

∫ x

0

∫ ∞

y

d(s, t)|u(s, t)− v(s, t)| dtds.

Now a suitable application of Theorem2.3 yields u(x, y) = v(x, y), that is,
there is at most one solution to the problem (3.1) with the conditions (3.2).
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