Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 7, Issue 4, Article 145, 2006

A COEFFICIENT INEQUALITY FOR CERTAIN CLASSES OF ANALYTIC FUNCTIONS OF COMPLEX ORDER

K. SUCHITHRA, B. ADOLF STEPHEN, AND S. SIVASUBRAMANIAN
Department of Applied Mathematics Sri Venkateswara College of Engineering Sriperumbudur, Chennai - 602105, India. suchithrak@svce.ac.in
\section*{Department of Mathematics} Madras Christian College
Tambaram, Chennai - 600059, India.
adolfmcc2003@yahoo.co.in
Department of Mathematics
Easwari Engineering College
Ramapuram, ChENNAI - 600089, INDIA.
sivasaisastha@rediffmail.com

Received 06 February, 2006; accepted 25 August, 2006
Communicated by G. Kohr

Abstract

In the present investigation, we obtain the Fekete-Szegö inequality for a certain normalized analytic function $f(z)$ defined on the open unit disk for which $1+\frac{1}{b}\left[\frac{z f^{\prime}(z)+\alpha z^{2} f^{\prime \prime}(z)}{f(z)}-1\right]$ ($\alpha \geq 0$ and $b \neq 0$, a complex number) lies in a region starlike with respect to 1 and symmetric with respect to real axis. Also certain application of the main result for a class of functions of complex order defined by convolution is given. The motivation of this paper is to give a generalization of the Fekete-Szegö inequalities for subclasses of starlike functions of complex order.

2000 Mathematics Subject Classification Primary 30C45.

1. Introduction

Let \mathcal{A} denote the class of all analytic functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \quad(z \in \Delta:=\{z \in \mathbb{C} /|z|<1\}) \tag{1.1}
\end{equation*}
$$

[^0]and \mathcal{S} be the subclass of \mathcal{A} consisting of univalent functions. Let $\phi(z)$ be an analytic function with positive real part on Δ with $\phi(0)=1, \phi^{\prime}(0)>0$ which maps the unit disk Δ onto a region starlike with respect to 1 which is symmetric with respect to the real axis. Let $S^{*}(\phi)$ be the class of functions in $f \in \mathcal{S}$ for which
$$
\frac{z f^{\prime}(z)}{f(z)} \prec \phi(z), \quad(z \in \Delta)
$$
and $C(\phi)$ be the class of functions $f \in \mathcal{S}$ for which
$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \phi(z), \quad(z \in \Delta),
$$
where \prec denotes the subordination between analytic functions. These classes were introduced and studied by Ma and Minda [4]. They have obtained the Fekete-Szegö inequality for functions in the class $C(\phi)$. Since $f \in C(\phi)$ iff $z f^{\prime}(z) \in S^{*}(\phi)$, we get the Fekete-Szegö inequality for functions in the class $S^{*}(\phi)$.

The class $S_{b}^{*}(\phi)$ consists of all analytic functions $f \in \mathcal{A}$ satisfying

$$
1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right) \prec \phi(z)
$$

and the class $C_{b}(\phi)$ consists of functions $f \in \mathcal{A}$ satisfying

$$
1+\frac{1}{b}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec \phi(z)
$$

These classes were defined and studied by Ravichandran et al. [7]. They have obtained the Fekete-Szegö inequalities for functions in these classes.

For a brief history of the Fekete-Szegö problem for the class of starlike, convex and close to convex functions, see the recent paper by Srivastava et al. [10].

In the present paper, we obtain the Fekete-Szegö inequality for functions in a more general class $M_{\alpha, b}(\phi)$ of functions which we define below. Also we give applications of our results to certain functions defined through convolution (or Hadamard product) and in particular we consider a class $M_{\alpha, b}^{\lambda}(\phi)$ of functions defined by fractional derivatives.
Definition 1.1. Let $b \neq 0$ be a complex number. Let $\phi(z)$ be an analytic function with positive real part on Δ with $\phi(0)=1, \phi^{\prime}(0)>0$ which maps the unit disk Δ onto a region starlike with respect to 1 which is symmetric with respect to the real axis. A function $f \in \mathcal{A}$ is in the class $M_{\alpha, b}(\phi)$ if

$$
1+\frac{1}{b}\left(\frac{z f^{\prime}(z)+\alpha z^{2} f^{\prime \prime}(z)}{f(z)}-1\right) \prec \phi(z) \quad(\alpha \geq 0) .
$$

For fixed $g \in \mathcal{A}$, we define the class $M_{\alpha, b}^{g}(\phi)$ to be the class of functions $f \in \mathcal{A}$ for which $(f * g) \in M_{\alpha, b}(\phi)$.

To prove our result, we need the following:
Lemma 1.1 ([7]]). If $p(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ is a function with positive real part, then for any complex number μ,

$$
\left|c_{2}-\mu c_{1}^{2}\right| \leq 2 \max \{1,|2 \mu-1|\}
$$

and the result is sharp for the functions given by

$$
p(z)=\frac{1+z^{2}}{1-z^{2}}, \quad p(z)=\frac{1+z}{1-z}
$$

2. The Fekete-Szegö Problem

Our main result is the following:
Theorem 2.1. Let $\phi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots$. If $f(z)$ given by (1.1) belongs to $M_{\alpha, b}(\phi)$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}|b|}{2(1+3 \alpha)} \max \left\{1,\left|\frac{B_{2}}{B_{1}}+\left[\frac{(1+2 \alpha)-2 \mu(1+3 \alpha)}{(1+2 \alpha)^{2}}\right] b B_{1}\right|\right\}
$$

The result is sharp.
Proof. If $f(z) \in M_{\alpha, b}(\phi)$, then there is a Schwarz function $w(z)$, analytic in Δ with $w(0)=0$ and $|w(z)|<1$ in Δ such that

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{z f^{\prime}(z)+\alpha z^{2} f^{\prime \prime}(z)}{f(z)}-1\right)=\phi(w(z)) . \tag{2.1}
\end{equation*}
$$

Define the function $p_{1}(z)$ by

$$
\begin{equation*}
p_{1}(z):=\frac{1+w(z)}{1-w(z)}=1+c_{1} z+c_{2} z^{2}+\cdots \tag{2.2}
\end{equation*}
$$

Since $w(z)$ is a Schwarz function, we see that $\mathcal{R} p_{1}(z)>0$ and $p_{1}(0)=1$. Define the function $p(z)$ by

$$
\begin{equation*}
p(z):=1+\frac{1}{b}\left(\frac{z f^{\prime}(z)+\alpha z^{2} f^{\prime \prime}(z)}{f(z)}-1\right)=1+b_{1} z+b_{2} z^{2}+\cdots . \tag{2.3}
\end{equation*}
$$

In view of the equations (2.1), (2.2), (2.3), we have

$$
\begin{equation*}
p(z)=\phi\left(\frac{p_{1}(z)-1}{p_{1}(z)+1}\right) \tag{2.4}
\end{equation*}
$$

and from this equation (2.4), we obtain

$$
\begin{equation*}
b_{1}=\frac{1}{2} B_{1} c_{1} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{2}=\frac{1}{2} B_{1}\left(c_{2}-\frac{1}{2} c_{1}^{2}\right)+\frac{1}{4} B_{2} c_{1}^{2} . \tag{2.6}
\end{equation*}
$$

From equation (2.3), we obtain

$$
\begin{aligned}
& (1+2 \alpha) a_{2}=b b_{1} \\
& (2+6 \alpha) a_{3}=b b_{2}+(1+2 \alpha) a_{2}^{2}
\end{aligned}
$$

or equivalently we have

$$
\begin{gather*}
a_{2}=\frac{b b_{1}}{1+2 \alpha}, \tag{2.7}\\
a_{3}=\frac{1}{2+6 \alpha}\left[b b_{2}+\frac{b^{2} b_{1}^{2}}{1+2 \alpha}\right] . \tag{2.8}
\end{gather*}
$$

Applying (2.5) in (2.7) and (2.5), (2.6) in (2.8), we have

$$
\begin{aligned}
& a_{2}=\frac{b B_{1} c_{1}}{2(1+2 \alpha)}, \\
& a_{3}=\frac{b B_{1} c_{2}}{4(1+3 \alpha)}+\frac{c_{1}^{2}}{8(1+3 \alpha)}\left[\frac{b^{2} B_{1}^{2}}{1+2 \alpha}-b\left(B_{1}-B_{2}\right)\right] .
\end{aligned}
$$

Therefore we have

$$
\begin{equation*}
a_{3}-\mu a_{2}^{2}=\frac{b B_{1}}{4(1+3 \alpha)}\left\{c_{2}-v c_{1}^{2}\right\} \tag{2.9}
\end{equation*}
$$

where

$$
v:=\frac{1}{2}\left[1-\frac{B_{2}}{B_{1}}+\left(\frac{2 \mu(1+3 \alpha)-(1+2 \alpha)}{(1+2 \alpha)^{2}}\right) b B_{1}\right] .
$$

Our result now follows by an application of Lemma 1.1. The result is sharp for the function defined by

$$
1+\frac{1}{b}\left(\frac{z f^{\prime}(z)+\alpha z^{2} f^{\prime \prime}(z)}{f(z)}-1\right)=\phi\left(z^{2}\right)
$$

and

$$
1+\frac{1}{b}\left(\frac{z f^{\prime}(z)+\alpha z^{2} f^{\prime \prime}(z)}{f(z)}-1\right)=\phi(z)
$$

Example 2.1. By taking $b=(1-\beta) e^{-i \lambda} \cos \lambda, \phi(z)=\frac{1+z}{1-z}$, we obtain the following sharp inequality

$$
\begin{aligned}
\left|a_{3}-\mu a_{2}^{2}\right| \leq & \frac{(1-\beta) \cos \lambda}{1+3 \alpha} \\
& \quad \times \max \left\{1,\left|e^{i \lambda}-2\left[\frac{2 \mu(1+3 \alpha)-(1+2 \alpha)}{(1+2 \alpha)^{2}}\right](1-\beta) \cos \lambda\right|\right\} .
\end{aligned}
$$

Remark 2.2. When $\alpha=0$, Example 2.1] reduces to a result of [7] for λ-spirallike function $f(z)$ of order β.

3. Application to Functions Defined by Fractional Derivatives

In order to introduce the class $M_{\alpha, b}^{\lambda}(\phi)$, we need the following:
Definition 3.1. (See [5, 6]; see also [11, 12]). Let the function $f(z)$ be analytic in a simply connected region of the z-plane containing the origin. The fractional derivative of f of order λ is defined by

$$
D_{z}^{\lambda} f(z):=\frac{1}{\Gamma(1-\lambda)} \frac{d}{d z} \int_{0}^{z} \frac{f(\zeta)}{(z-\zeta)^{\lambda}} d \zeta \quad(0 \leq \lambda<1)
$$

where the multiplicity of $(z-\zeta)^{\lambda}$ is removed by requiring $\log (z-\zeta)$ to be real when $z-\zeta>0$.
Using the above Definition 3.1 and its known extensions involving fractional derivatives and fractional integrals, Owa and Srivastava [5] introduced the operator $\Omega^{\lambda}: \mathcal{A} \rightarrow \mathcal{A}$ defined by

$$
\left(\Omega^{\lambda} f\right)(z)=\Gamma(2-\lambda) z^{\lambda} D_{z}^{\lambda} f(z), \quad(\lambda \neq 2,3,4, \ldots)
$$

The class $M_{\alpha, b}^{\lambda}(\phi)$ consists of functions $f \in \mathcal{A}$ for which $\Omega^{\lambda} f \in M_{\alpha, b}(\phi)$. Note that $M_{0, b}^{0}(\phi)=$ $S_{b}^{*}(\phi)$ and $M_{0,1}^{0}(\phi)=S^{*}(\phi)$. Also $M_{\alpha, b}^{\lambda}(\phi)$ is the special case of the class $M_{\alpha, b}^{g}(\phi)$ when

$$
\begin{equation*}
g(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(2-\lambda)}{\Gamma(n+1-\lambda)} z^{n} \tag{3.1}
\end{equation*}
$$

Let

$$
g(z)=z+\sum_{n=2}^{\infty} g_{n} z^{n} \quad\left(g_{n}>0\right) .
$$

Since

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in M_{\alpha, b}^{g}(\phi)
$$

if and only if

$$
(f * g)(z)=z+\sum_{n=2}^{\infty} g_{n} a_{n} z^{n} \in M_{\alpha, b}(\phi),
$$

we obtain the coefficient estimate for functions in the class $M_{\alpha, b}^{g}(\phi)$, from the corresponding estimate for functions in the class $M_{\alpha, b}(\phi)$. Applying Theorem 2.1 for the function $(f * g)(z)=$ $z+g_{2} a_{2} z^{2}+g_{3} a_{3} z^{3}+\cdots$, we get the following theorem after an obvious change of the parameter μ :

Theorem 3.1. Let the function $\phi(z)$ be given by $\phi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots$. If $f(z)$ given by (1.1) belongs to $M_{\alpha, b}^{g}(\phi)$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}|b|}{2 g_{3}(1+3 \alpha)} \max \left\{1,\left|\frac{B_{2}}{B_{1}}+\left[\frac{(1+2 \alpha) g_{2}^{2}-2 \mu(1+3 \alpha) g_{3}}{(1+2 \alpha)^{2} g_{2}^{2}}\right] b B_{1}\right|\right\} .
$$

The result is sharp.
Since

$$
\left(\Omega^{\lambda} f\right)(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(2-\lambda)}{\Gamma(n+1-\lambda)} a_{n} z^{n},
$$

we have

$$
\begin{equation*}
g_{2}=\frac{\Gamma(3) \Gamma(2-\lambda)}{\Gamma(3-\lambda)}=\frac{2}{2-\lambda} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{3}=\frac{\Gamma(4) \Gamma(2-\lambda)}{\Gamma(4-\lambda)}=\frac{6}{(2-\lambda)(3-\lambda)} . \tag{3.3}
\end{equation*}
$$

For g_{2} and g_{3} given by (3.2) and (3.3), Theorem 3.1 reduces to the following:
Theorem 3.2. Let the function $\phi(z)$ be given by $\phi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots$. If $f(z)$ given by (1.1) belongs to $M_{\alpha, b}^{\lambda}(\phi)$, then

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}|b|(2-\lambda)(3-\lambda)}{12(1+3 \alpha)} \\
& \quad \times \max \left\{1,\left|\frac{B_{2}}{B_{1}}+\left[\frac{(1+2 \alpha)(3-\lambda)-3 \mu(1+3 \alpha)(2-\lambda)}{(3-\lambda)(1+2 \alpha)^{2}} b B_{1}\right]\right|\right\} .
\end{aligned}
$$

The result is sharp.

References

[1] B.C. CARLSON AND D.B. SHAFFER, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15 (1984), 737-745.
[2] A.W. GOODMAN, Uniformly convex functions, Ann. Polon. Math., 56 (1991), 87-92.
[3] F.R. KEOGH and E.P. MERKES, A coefficient inquality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8-12.
[4] W. MA AND D. MINDA, A unified treatment of some special classes of univalent functions, in: Proceedings of the conference on Complex Analysis, Z. Li, F. Ren, L. Yang and S. Zhang (Eds.), Int. Press (1994), 157-169.
[5] S. OWA AND H.M. SRIVASTAVA, Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39 (1987), 1057-1077.
[6] S. OWA, On the distortion theorems I, Kyungpook Math. J., 18 (1978), 53-58.
[7] V. RAVICHANDRAN, METIN BOLCAL, YASAR POLATOGLU AND A. SEN, Certian subclasses of Starlike and Convex functions of Complex Order, Hacettepe Journal of Mathematics and Statistics, 34 (2005), 9-15.
[8] F. RØNNING, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118 (1993), 189-196.
[9] T.N. SHANMUGAM, S. SIVASUBRAMANIAN AND M. DARUS, Fekete-Szegö inequality for a certain class of analytic functions, Preprint.
[10] H.M. SRIVASTAVA, A.K. MISHRA AND M.K. DAS, The Fekete-Szegö problem for a subclass of close-to-convex functions, Complex Variables, Theory Appl., 44 (2001), 145-163.
[11] H.M. SRIVASTAVA AND S. OWA, An application of the fractional derivative, Math. Japon., 29 (1984), 383-389.
[12] H.M. SRIVASTAVA AND S. OWA, Univalent functions, Fractional Calculus, and their Applications, Halsted Press / John Wiley and Sons, Chichester / New York, (1989).

[^0]: ISSN (electronic): 1443-5756
 (C) 2006 Victoria University. All rights reserved.

 032-06

