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ABSTRACT. In this paper, it is shown that an extended Hardy-Hilbert’s integral inequality with
weights can be established by introducing a power-exponent function of the formax1+x(a >
0, x ∈ [0,+∞)), and the coefficient π

(a)1/q(b)1/p sin π/p
is shown to be the best possible constant

in the inequality. In particular, for the casep = 2, some extensions on the classical Hilbert’s
integral inequality are obtained. As applications, generalizations of Hardy-Littlewood’s integral
inequality are given.
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1. I NTRODUCTION

The famous Hardy-Hilbert’s integral inequality is

(1.1)
∫ ∞

0

∫ ∞

0

f (x) g (y)

x + y
dxdy ≤ π

sin π
p

{∫ ∞

0

fp (x) dx

} 1
p
{∫ ∞

0

gq (y) dy

} 1
q

,

wherep > 1, q = p/(p− 1) and the constantπ
sinπ

p
is best possible (see [1]). In particular, when

p = q = 2, the inequality (1.1) is reduced to the classical Hilbert integral inequality:

(1.2)
∫ ∞

0

∫ ∞

0

f (x) g (y)

x + y
dxdy ≤ π

{∫ ∞

0

f 2 (x) dx

} 1
2
{∫ ∞

0

g2 (y) dy

} 1
2

,

where the coefficientπ is best possible.
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2 JIA WEIJIAN AND GAO M INGZHE

Recently, the following result was given by introducing the power function in [2]:

(1.3)
∫ b

a

∫ b

a

f (x) g (y)

xt + yt
dxdy

≤
{

ω (t, p, q)

∫ b

a

x1−tfp (x) dx

} 1
p
{

ω (t, q, p)

∫ b

a

x1−tgq (x) dx

} 1
q

,

wheret is a parameter which is independent ofx andy, ω (t, p, q) = π
t sin π

pt
−ϕ (q) and here the

functionϕ is defined by

ϕ (r) =

∫ a/b

0

ut−2+1/r

1 + ut
du, r = p, q.

However, in [2] the best constant for (1.3) was not determined.
Afterwards, various extensions on the inequalities (1.1) and (1.2) have appeared in some

papers (such as [3, 4] etc.). The purpose of the present paper is to show that if the denominator
x + y of the function on the left-hand side of (1.1) is replaced by the power-exponent function
ax1+x+by1+y, then we can obtain a new inequality and show that the coefficient π

(a)1/q(b)1/p sin π/p

is the best constant in the new inequality. In particular ifp = 2 then several extensions of
(1.2) follow. As its applications, it is shown that extensions on the Hardy-Littlewood integral
inequality can be established.

Throughout this paper we stipulate thata > 0 andb > 0.
For convenience, we give the following lemma which will be used later.

Lemma 1.1.Leth (x) = x
1+x+x ln x

, x ∈ (0, +∞), then there exists a functionϕ (x)
(
0 ≤ ϕ (x) < 1

2

)
,

such thath (x) = 1
2
− ϕ (x).

Proof. Consider the function defined by

s (x) =
1 + x

x
+ ln x, x ∈ (0, +∞).

It is easy to see that the minimum ofs (x) is 2. Hences (x) ≥ 2, andh (x) = s−1 (x) ≤ 1
2
.

Obviouslyh (x) = 1
s(x)

> 0. We can define a nonnegative functionϕ by

(1.4) ϕ (x) =
1− x + x ln x

2 (1 + x + x ln x)
x ∈ (0, +∞) .

Hence we haveh (x) = 1
2
− ϕ (x). The lemma follows. �

2. M AIN RESULTS

Define a function by

(2.1) ω (r, x) = x(1+x)(1−r)

(
1

2
− ϕ (x)

)r−1

x ∈ (0, +∞),

wherer > 1 andϕ (x) is defined by (1.4).

Theorem 2.1.Let

0 <

∫ ∞

0

ω (p, x) fp (x) dx < +∞, 0 <

∫ ∞

0

ω (q, x) gq (x) dx < +∞,
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AN EXTENDED HARDY-HILBERT INEQUALITY AND ITS APPLICATIONS 3

the weight functionω (r, x) is defined by (2.1),1
p

+ 1
q

= 1, andp ≥ q > 1. Then

(2.2)
∫ ∞

0

∫ ∞

0

f (x) g (y)

ax1+x + by1+y
dxdy

≤ µπ

sin π
p

{∫ ∞

0

ω (p, x) fp (x) dx

} 1
p
{∫ ∞

0

ω (q, x) gq (x) dx

} 1
q

,

whereµ = (1/a)1/q (1/b)1/pand the constant factorµπ
sinπ

p
is best possible.

Proof. Let f (x) = F (x)
{
(ax1+x)

′} 1
q andg (y) = G (y)

{
(by1+y)

′} 1
p . Define two functions

by

α =
F (x)

{
(by1+y)

′} 1
p

(ax1+x + by1+y)
1
p

(
ax1+x

by1+y

) 1
pq

and(2.3)

β =
G (y)

{
(ax1+x)

′} 1
q

(ax1+x + by1+y)
1
q

(
by1+y

ax1+x

) 1
pq

.

Let us apply Hölder’s inequality to estimate the right hand side of (2.2) as follows:∫ ∞

0

∫ ∞

0

f (x) g (y)

ax1+x + by1+y
dxdy =

∫ ∞

0

∫ ∞

0

αβdxdy(2.4)

≤
{∫ ∞

0

∫ ∞

0

αpdxdy

} 1
p
{∫ ∞

0

∫ ∞

0

βqdxdy

} 1
q

.

It is easy to deduce that∫ ∞

0

∫ ∞

0

αpdxdy =

∫ ∞

0

∫ ∞

0

(by1+y)
′

ax1+x + by1+y

(
ax1+x

by1+y

) 1
q

F p (x) dxdy

=

∫ ∞

0

ωqF
p (x) dx.

We compute the weight functionωq as follows:

ωq =

∫ ∞

0

(by1+y)
′

ax1+x + by1+y

(
ax1+x

by1+y

) 1
q

dy

=

∫ ∞

0

1

ax1+x + by1+y

(
ax1+x

by1+y

) 1
q

d
(
by1+y

)
.

Let t = by1+y/ax1+x. Then we have

ωq =

∫ ∞

0

1

1 + t

(
1

t

) 1
q

dt =
π

sin π
q

=
π

sin π
p

.

Notice thatF (x) =
{
(ax1+x)

′}−1/q
f (x). Hence we have

(2.5)
∫ ∞

0

∫ ∞

0

αpdxdy =
π

sin π
p

∫ ∞

0

((
ax1+x

)′)1−p

fp (x) dx,

and ,similarly,

(2.6)
∫ ∞

0

∫ ∞

0

βqdxdy =
π

sin π
p

∫ ∞

0

((
by1+y

)′)1−q

gq (y) dy.
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4 JIA WEIJIAN AND GAO M INGZHE

Substituting (2.5) and (2.6) into (2.3), we obtain

(2.7)
∫ ∞

0

∫ ∞

0

f (x) g (y)

ax1+x + by1+y
dxdy ≤ π

sin π
p

{∫ ∞

0

((
ax1+x

)′)1−p

fp (x) dx

} 1
p

×
{∫ ∞

0

((
by1+y

)′)1−q

gq (y) dy

} 1
q

.

We need to show that the constant factorπ
sinπ

p
contained in (2.7) is best possible.

Define two functions by

f̃ (x) =

{
0, x ∈ (0, 1)

(ax1+x)
−(1+ε)/p

(ax1+x)
′
, x ∈ [1, +∞)

and

g̃ (y) =

{
0, y ∈ (0, 1)

(by1+y)
−(1+ε)/q

(by1+y)
′
, y ∈ [1, +∞)

.

Assume that0 < ε < q
2p

(p ≥ q > 1). Then∫ +∞

0

((
ax1+x

)′)1−p

f̃p (x) dx =

∫ +∞

1

(
ax1+x

)−1−ε
d
(
ax1+x

)
=

1

ε
.

Similarly, we have ∫ ∞

0

((
by1+y

)′)1−q

g̃q (y) dy =
1

ε
.

If π
sinπ

p
is not best possible, then there existsk > 0, k < π

sinπ
p

such that

(2.8)
∫ ∞

0

∫ ∞

0

f̃ (x) g̃ (y)

ax1+x + by1+y
dxdy < k

(∫ ∞

0

((
ax1+x

)′)1−p

f̃p (x) dx

) 1
p

×
(∫ ∞

0

((
by1+y

)′)1−q

g̃q (y) dy

) 1
q

=
k

ε
.

On the other hand, we have∫ ∞

0

∫ ∞

0

f̃ (x) g̃ (y)

ax1+x + by1+y
dxdy

=

∫ ∞

1

∫ ∞

1

{
(ax1+x)

− 1+ε
p (ax1+x)

′
}{

(by1+y)
− 1+ε

q (by1+y)
′
}

ax1+x + by1+y
dxdy

=

∫ ∞

1

{∫ ∞

1

(by1+y)
− 1+ε

q

ax1+x + by1+y
d
(
by1+y

)}{(
ax1+x

)− 1+ε
p
(
ax1+x

)′}
dx

=

∫ ∞

1

{∫ ∞

b/ax1+x

1

1 + t

(
1

t

)− 1+ε
q

dt

}(
ax1+x

)−1−ε
d
(
ax1+x

)
=

1

ε

∫ ∞

b/ax1+x

1

1 + t

(
1

t

)− 1+ε
q

dt.
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AN EXTENDED HARDY-HILBERT INEQUALITY AND ITS APPLICATIONS 5

If the lower limit b/ax1+x of this integral is replaced by zero, then the resulting error is smaller

than
(b/ax1+x)

α

α
, whereα is positive and independent ofε. In fact, we have∫ b/ax1+x

0

1

1 + t

(
1

t

) 1+ε
q

dt <

∫ b/ax1+x

0

t−(1+ε)/qdt =
(b/ax1+x)

β

β

whereβ = 1− (1 + ε)/q. If 0 < ε < q
2p

, then we may takeα such that

α = 1− 1 + q/2p

q
=

1

2p
.

Consequently, we get

(2.9)
∫ ∞

0

∫ ∞

0

f̃ (x) g̃ (y)

ax1+x + by1+y
dxdy >

1

ε

{
π

sin π
p

+ o (1)

}
(ε → 0).

Clearly, whenε is small enough, the inequality (2.7) is in contradiction with (2.9). Therefore,
π

sinπ
p

is the best possible value for which the inequality (2.7) is valid.

Let u = ax1+x andv = by1+y. Then

u′ = ax1+x

(
1 + x

x
+ ln x

)
= ax1+xh−1 (x) .

Similarly, we havev′ = by1+yh−1 (y). Substituting them into (2.7) and then using Lemma 1.1,
the inequality (2.2) yields after simplifications. The constant factorµπ

sinπ
p

is best possible, where

µ = (1/a)1/q (1/b)1/p. Thus the proof of the theorem is completed. �

It is known from (2.1) that

ω (r, x) = x(1+x)(1−r)

(
1

2
− ϕ (x)

)r−1

=

(
1

2

)r−1

x(1+x)(1−r) (1− 2ϕ (x))r−1 .

The following result is equivalent to Theorem 2.1.

Theorem 2.2.Letϕ (x) be a function defined by (1.4),1
p

+ 1
q

= 1 andp ≥ q > 1. If

0 <

∫ ∞

0

x(1+x)(1−p) (1− 2ϕ (x))p−1 fp (x) dx < +∞ and

0 <

∫ ∞

0

y(1+y)(1−q) (1− 2ϕ (y))q−1 gq (y) dy < +∞,

then

(2.10)
∫ ∞

0

∫ ∞

0

f (x) g (y)

ax1+x + by1+y
dxdy

≤ µπ

2 sin π
p

{∫ ∞

0

x(1+x)(1−p) (1− 2ϕ (x))p−1 fp (x) dx

} 1
p

×
{∫ ∞

0

y(1+y)(1−q) (1− 2ϕ (y))q−1 gq (y) dy

} 1
q

,

whereµ = (1/a)1/q (1/b)1/pand the constant factorµπ
2 sinπ

p
is best possible.

In particular, for casep = 2, some extensions on (1.2) are obtained. According to Theorem
2.1, we get the following results.
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6 JIA WEIJIAN AND GAO M INGZHE

Corollary 2.3. If

0 <

∫ ∞

0

x−(1+x)

(
1

2
− ϕ (x)

)
f 2 (x) dx < +∞ and

0 <

∫ ∞

0

y−(1+y)

(
1

2
− ϕ (y)

)
g2 (y) dy < +∞,

whereϕ (x) is a function defined by (1.4), then

(2.11)
∫ ∞

0

∫ ∞

0

f (x) g (y)

ax1+x + by1+y
dxdy ≤ π√

ab

{∫ ∞

0

x−(1+x)

(
1

2
− ϕ (x)

)
f 2 (x) dx

} 1
2

×
{∫ ∞

0

y−(1−y)

(
1

2
− ϕ (y)

)
g2 (y) dy

} 1
2

,

where the constant factorπ√
ab

is best possible.

Corollary 2.4. Letϕ (x) be a function defined by (1.4). If

0 <

∫ ∞

0

x−(1+x)

(
1

2
− ϕ (x)

)
f 2 (x) dx < +∞,

then

(2.12)
∫ ∞

0

∫ ∞

0

f (x) f (y)

ax1+x + by1+y
dxdy ≤ π√

ab

∫ ∞

0

x−(1+x)

(
1

2
− ϕ (x)

)
f 2 (x) dx,

where the constant factorπ√
ab

is best possible.

A equivalent proposition of Corollary 2.3 is:

Corollary 2.5. Letϕ (x) be a function defined by (1.4),

0 <

∫ ∞

0

x−(1+x) (1− 2ϕ (x)) f 2 (x) dx < +∞ and

0 <

∫ ∞

0

y−(1+y) (1− 2ϕ (y)) g2 (y) dy < +∞,

then

(2.13)
∫ ∞

0

∫ ∞

0

f (x) g (y)

ax1+x + by1+y
dxdy ≤ π

2
√

ab

{∫ ∞

0

x−(1+x) (1− 2ϕ (x)) f 2 (x) dx

} 1
2

×
{∫ ∞

0

y−(1+y) (1− 2ϕ (y)) g2 (y) dy

} 1
2

,

where the constant factorπ
2
√

ab
is best possible.

Similarly, an equivalent proposition to Corollary 2.4 is:

Corollary 2.6. Letϕ (x) be a function defined by (1.4). If

0 <

∫ ∞

0

x−(1+x) (1− 2ϕ (x)) f 2 (x) dx +∞,

then

(2.14)
∫ ∞

0

∫ ∞

0

f (x) f (y)

ax1+x + by1+y
dxdy ≤ π

2
√

ab

∫ ∞

0

x−(1+x) (1− 2ϕ (x)) f 2 (x) dx,

where the constant factorπ
2
√

ab
is best possible.
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AN EXTENDED HARDY-HILBERT INEQUALITY AND ITS APPLICATIONS 7

3. APPLICATION

In this section, we will give various extensions of Hardy-Littlewood’s integral inequality.
Let f (x) ∈ L2 (0, 1) andf (x) 6= 0. If

an =

∫ 1

0

xnf (x) dx, n = 0, 1, 2, . . .

then we have the Hardy-Littlewood’s inequality (see [1]) of the form

(3.1)
∞∑

n=0

a2
n < π

∫ 1

0

f 2 (x) dx,

whereπ is the best constant that keeps (3.1) valid. In our previous paper [5], the inequality (3.1)
was extended and the following inequality established:

(3.2)
∫ ∞

0

f 2 (x) dx < π

∫ 1

0

h2 (x) dx,

wheref (x) =
∫ 1

0
txh (x) dx, x ∈ [0, +∞).

Afterwards the inequality (3.2) was refined into the form in the paper [6]:

(3.3)
∫ ∞

0

f 2 (x) dx ≤ π

∫ 1

0

th2 (t) dt.

We will further extend the inequality (3.3), some new results can be obtained by further
extending inequality (3.3).

Theorem 3.1.Leth (t) ∈ L2 (0, 1), h (t) 6= 0. Define a function by

f (x) =

∫ 1

0

tu(x) |h (t)| dt, x ∈ [0, +∞),

whereu (x) = x1+x. Also, letϕ (x) be a weight function defined by (1.4),(r = p, q), 1
p
+ 1

q
= 1

andp ≥ q > 1. If

0 <

∫ ∞

0

x(1+x)(1−r)

(
1

2
− ϕ (x)

)r−1

f r (x) dx < +∞,

then

(3.4)

(∫ ∞

0

f 2 (x) dx

)2

<
µπ

sin π
p

(∫ ∞

0

x(1+x)(1−p)

(
1

2
− ϕ (x)

)p−1

fp (x) dx

) 1
p

×
(∫ ∞

0

y(1+y)(1−q)

(
1

2
− ϕ (y)

)
f q (y) dy

) 1
q
∫ 1

0

th2 (t) dt,

where the constant factorµπ
sinπ

p
in (3.4) is best possible, andµ = (1/a)1/q (1/b)1/p.

Proof. Let us writef 2 (x) in the form:

f 2 (x) =

∫ 1

0

f (x) tu(x) |h (t)| dt.
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8 JIA WEIJIAN AND GAO M INGZHE

We apply, in turn, Schwarz’s inequality and Theorem 2.1 to obtain(∫ ∞

0

f 2 (x) dx

)2

=

{∫ ∞

0

(∫ 1

0

f (x) tu(x) |h (t)| dt

)
dx

}2

=

{∫ 1

0

(∫ ∞

0

f (x) tu(x)−1/2dx

)
t1/2 |h (t)| dt

}2

≤
∫ 1

0

(∫ ∞

0

f (x) tu(x)−1/2dx

)2

dt

∫ 1

0

th2 (t) dt

=

∫ 1

0

(∫ ∞

0

f (x) tu(x)−1/2dx

)(∫ ∞

0

f (y) tu(y)−1/2dy

)
dt

∫ 1

0

th2 (t) dt

=

∫ 1

0

(∫ ∞

0

∫ ∞

0

f (x) f (y) tu(x)+u(y)−1dxdy

)
dt

∫ 1

0

th2 (t) dt

=

(∫ ∞

0

∫ ∞

0

f (x) f (y)

u (x) + u (y)
dxdy

)∫ 1

0

th2 (t) dt

≤ µπ

sin π
p

{∫ ∞

0

x(1+x)(1−p)

(
1

2
− ϕ (x)

)p−1

fp (x) dx

} 1
p

×

{∫ ∞

0

y(1+y)(1−q)

(
1

2
− ϕ (y)

)q−1

f q (y) dy

} 1
q ∫ 1

0

th2 (t) dt.(3.5)

Sinceh (t) 6= 0, f2 (x) 6= 0. It is impossible to take equality in (3.5). We therefore complete
the proof of the theorem. �

An equivalent proposition to Theorem 3.1 is:

Theorem 3.2. Let the functionsh (t) , f (x) andu (x) satisfy the assumptions of Theorem 3.1,
and assume that

0 <

∫ ∞

0

x(1+x)(1−r) (1− 2ϕ (x))r−1 f r (x) dx < +∞ (r = p, q).

Then

(3.6)

(∫ ∞

0

f 2 (x) dx

)2

<
µπ

2 sin π
p

(∫ ∞

0

x(1+x)(1−p) (1− 2ϕ (x))p−1 fp (x) dx

) 1
p

×
(∫ ∞

0

y(1+y)(1−q) (1− 2ϕ (y))q−1 f q (y) dy

) 1
q
∫ 1

0

th2 (t) dt,

and the constant factorµπ
sinπ

p
in (3.6) is best possible, whereµ = (1/a)1/q (1/b)1/p.

In particular, whenp = q = 2, we have the following result.

Corollary 3.3. Let the functionsh (t) , f (x) andu (x) satisfy the assumptions of Theorem 3.1,
and assume that

0 <

∫ ∞

0

x−(1+x)

(
1

2
− ϕ (x)

)
f 2 (x) dx < +∞,

whereϕ (x) is a function defined by (1.4). Then

(3.7)

(∫ ∞

0

f 2 (x) dx

)2

<
π√
ab

(∫ ∞

0

x−(1+x)

(
1

2
− ϕ (x)

)
f 2 (x) dx

)∫ 1

0

th2 (t) dt,
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AN EXTENDED HARDY-HILBERT INEQUALITY AND ITS APPLICATIONS 9

and the constant factorπ√
ab

in (3.7) is best possible.

A result equivalent to Corollary 3.3 is:

Corollary 3.4. Let the functionsh (t) , f (x) andu (x) satisfy the assumptions of Theorem 3.1,
and assume that

0 <

∫ ∞

0

x−(1+x) (1− 2ϕ (x)) f 2 (x) dx < +∞,

whereϕ (x) is a function defined by (1.4). Then

(3.8)

(∫ ∞

0

f 2 (x) dx

)2

<
π

2
√

ab

(∫ ∞

0

x−(1+x) (1− 2ϕ (x)) f 2 (x) dx

)∫ 1

0

th2 (t) dt,

and the constant factorπ
2
√

ab
in (3.8) is best possible.

The inequalities (3.4), (3.6), (3.7) and (3.8) are extensions of (3.3).
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