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ABSTRACT. This paper deals with the second order boundary value problem with integral bound-
ary conditions on a half-line:

(p(t)x′(t))′ + g(t)f(t, x(t)) = 0, a.e. in(0,∞),

x(0) =
∫ ∞

0

x(s)g(s)ds, lim
t→∞

p(t)x′(t) = p(0)x′(0).

A new result on the existence of positive solutions is obtained. The interesting points are: firstly,
the boundary value problem involved in the integral boundary condition on unbounded domains;
secondly, we employ a new tool – the recent Leggett-Williams norm-type theorem for coinci-
dences and obtain positive solutions. Also, an example is constructed to illustrate that our result
here is valid.
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1. I NTRODUCTION

In this paper, we study the existence of positive solutions to the following boundary value
problem at resonance:

(1.1) (p(t)x′(t))′ + g(t)f(t, x(t)) = 0, a.e.in(0,∞),

(1.2) x(0) =

∫ ∞

0

x(s)g(s)ds, lim
t→∞

p(t)x′(t) = p(0)x′(0),

whereg ∈ L1[0,∞) with g(t) > 0 on [0,∞) and
∫∞

0
g(s)ds = 1, p ∈ C[0,∞) ∩ C1(0,∞),

1
p
∈ L1[0,∞),

∫∞
0

1
p(t)

dt ≤ 1 andp(t) > 0 on [0,∞).
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Second-order boundary value problems (in short: BVPs) on infinite intervals, arising from the
study of radially symmetric solutions of nonlinear elliptic equations and models of gas pressure
in a semi-infinite porous medium [10], have received much attention, to identify a few, we refer
the readers to [9] – [11] and references therein. For example, in [9], Lian and Ge studied the
following second-order BVPs on a half-line

x′′(t) = f(t, x(t), x′(t)), 0 < t < ∞,(1.3)

x(0) = x(η), lim
t→∞

x′(t) = 0(1.4)

and

x′′(t) = f(t, x(t), x′(t)) + e(t), 0 < t < ∞,(1.5)

x(0) = x(η), lim
t→∞

x′(t) = 0,(1.6)

By using Mawhin’s continuity theorem, they obtained the existence results.
N. Kosmanov in [11] considered the second-order nonlinear differential equation at resonance

(1.7) (p(t)u′(t))′ = f(t, u(t), u′(t)), a.e. in(0,∞)

with two sets of boundary conditions:

(1.8) u′(0) = 0,
n∑

i=1

κiui(Ti) = lim
t→∞

u(t)

and

(1.9) u(0) = 0,
n∑

i=1

κiui(Ti) = lim
t→∞

u(t).

The author established existence theorems by the coincidence degree theorem of Mawhin under
the condition that

∑n
i=1 κi = 1.

Although the existing literature on solutions of BVPs is quite wide, to the best of our knowl-
edge, only a few papers deal with the existence of positive solutions to BVPs at resonance. In
particular, there has been no work done for the boundary value problems with integral bound-
ary conditions on a half-line, such as the BVP (1.1) – (1.2). Moreover, our main approach is
different from the existing ones and our main ingredient is the Leggett-Williams norm-type the-
orem for coincidences obtained by O’Regan and Zima [4], which is a new tool used to study
the existence of positive solutions for nonlocal BVPs at resonance. An example is constructed
to illustrate that our result here is valid and almost sharp.

2. RELATED L EMMAS

For the convenience of the reader, we review some standard facts on Fredholm operators
and cones in Banach spaces. LetX, Y be real Banach spaces. Consider a linear mapping
L : dom L ⊂ X → Y and a nonlinear operatorN : X → Y . Assume that
1◦ L is a Fredholm operator of index zero, i.e.,Im L is closed anddim Ker L = codim Im L <
∞.

The assumption 1◦ implies that there exist continuous projectionsP : X → X andQ : Y →
Y such thatIm P = Ker L andKer Q = Im L. Moreover, sincedim Im Q = codim Im L, there
exists an isomorphismJ : Im Q → Ker L. Denote byLp the restriction ofL to Ker P ∩dom L.
Clearly, Lp is an isomorphism fromKer P ∩ dom L to Im L, we denote its inverse byKp :
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Im L → Ker P ∩ dom L. It is known (see [3]) that the coincidence equationLx = Nx is
equivalent to

x = (P + JQN)x + KP (I −Q)Nx.

Let C be a cone inX such that
(i) µx ∈ C for all x ∈ C andµ ≥ 0,
(ii) x,−x ∈ C impliesx = θ.

It is well known thatC induces a partial order inX by

x � y if and only if y − x ∈ C.

The following property is valid for every cone in a Banach spaceX.

Lemma 2.1 ([7]). Let C be a cone inX. Then for everyu ∈ C \ {0} there exists a positive
numberσ(u) such that

||x + u|| ≥ σ(u)||x|| for all x ∈ C.

Let γ : X → C be a retraction, that is, a continuous mapping such thatγ(x) = x for all
x ∈ C. Set

Ψ := P + JQN + Kp(I −Q)N and Ψγ := Ψ ◦ γ.

In order to prove the existence result, we present here a definition.

Definition 2.1. f : [0,∞)× R → R is called ag-Carath́eodory function if

(A1) for eachu ∈ R, the mappingt 7→ f(t, u) is Lebesgue measurable on[0,∞),
(A2) for a.e.t ∈ [0,∞), the mappingu 7→ f(t, u) is continuous onR,
(A3) for each l > 0 and g ∈ L1[0,∞), there existsαl : [0,∞) → [0,∞) satisfying∫∞

0
g(s)αl(s)ds < ∞ such that

|u| ≤ l implies |f(t, u)| ≤ αl(t) for a.e. t ∈ [0,∞).

We make use of the following result due to O’Regan and Zima.

Theorem 2.2([4]). Let C be a cone inX and letΩ1, Ω2 be open bounded subsets ofX with
Ω1 ⊂ Ω2 andC ∩ (Ω2 \ Ω1) 6= ∅. Assume that1◦ and the following conditions hold.

2◦ N is L-compact, that is,QN : X → Y is continuous and bounded andKp(I −Q)N :
X → X is compact on every bounded subset ofX,

3◦ Lx 6= λNx for all x ∈ C ∩ ∂Ω2 ∩ Im L andλ ∈ (0, 1),

4◦ γ maps subsets ofΩ2 into bounded subsets ofC,

5◦ degB{[I − (P + JQN)γ]|Ker L, Ker L ∩ Ω2, 0} 6= 0, wheredegB denotes the Brouwer
degree,

6◦ there existsu0 ∈ C \ {0} such that||x|| ≤ σ(u0)||Ψx|| for x ∈ C(u0) ∩ ∂Ω1, where
C(u0) = {x ∈ C : µu0 � x for someµ > 0} andσ(u0) such that||x+u0|| ≥ σ(u0)||x||
for everyx ∈ C,

7◦ (P + JQN)γ(∂Ω2) ⊂ C,

8◦ Ψγ(Ω2 \ Ω1) ⊂ C.

Then the equationLx = Nx has a solution in the setC ∩ (Ω2 \ Ω1).
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For simplicity of notation, we set

(2.1) ω :=

∫ ∞

0

(∫ s

0

1

p(τ)
dτ

)
g(s)ds

and

G(t, s) =



1
ω

∫ t

0
1

p(τ)
dτ

[∫∞
s

1
p(τ)

∫∞
τ

g(r)drdτ

−
∫∞

0
1

p(τ)

∫∞
τ

g(r)dr
∫ τ

0
g(r)drdτ

]
+1 +

∫ t

0
1

p(τ)

∫ τ

0
g(r)drdτ −

∫ t

s
1

p(τ)
dτ, 0 ≤ s < t < ∞,

1
ω

∫ t

0
1

p(τ)
dτ

[∫∞
s

1
p(τ)

∫∞
τ

g(r)drdτ

−
∫∞

0
1

p(τ)

∫∞
τ

g(r)dr
∫ τ

0
g(r)drdτ

]
+1 +

∫ t

0
1

p(τ)

∫ τ

0
g(r)drdτ, 0 ≤ t ≤ s < ∞.

Note thatG(t, s) ≥ 0 for t, s ∈ [0, 1], and set

(2.2) 0 < κ ≤ min

1,
1

sup
t,s∈[0,∞)

G(t, s)

 .

3. M AIN RESULT

We work in the Banach spaces

(3.1) X =
{

x ∈ C[0,∞) : lim
t→∞

x(t) exists
}

and

(3.2) Y =

{
y : [0,∞) → R :

∫ ∞

0

g(t)|y(t)|dt < ∞
}

with the norms||x||X = sup
t∈[0,∞)

|x(t)| and||y||Y =
∫∞

0
g(t)|y(t)|dt, respectively.

Define the linear operatorL : dom L ⊂ X → Y and the nonlinear operatorN : X → Y
with

(3.3) dom L =
{

x ∈ X : lim
t→∞

p(t)x′(t) exists, x, px′ ∈ AC[0,∞)

and gx, (px′)′ ∈ L1[0,∞), x(0) =

∫ ∞

0

x(s)g(s)ds

and lim
t→∞

p(t)x′(t) = p(0)x′(0)
}

by Lx(t) = − 1
g(t)

(p(t)x′(t))′ andNx(t) = f(t, x(t)), t ∈ [0,∞), respectively. Then

Ker L = {x ∈ dom L : x(t) ≡ c on [0,∞)}
and

Im L =

{
y ∈ Y :

∫ ∞

0

g(s)y(s)ds = 0

}
.

Next, define the projectionsP : X → X by (Px)(t) =
∫∞

0
g(s)x(s)ds andQ : Y → Y by

(Qy)(t) =

∫ ∞

0

g(s)y(s)ds.
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Clearly, Im P = Ker L andKer Q = Im L. Sodim Ker L = 1 = dim Im Q = codim Im L.
Notice thatIm L is closed,L is a Fredholm operator of index zero.

Note that the inverseKp : Im L → dom L ∩Ker P of Lp is given by

(Kpy)(t) =

∫ ∞

0

k(t, s)g(s)y(s)ds,

where

(3.4) k(t, s) :=


1
ω

∫ t

0
1

p(τ)
dτ

∫∞
s

∫ τ

s
1

p(r)
drg(τ)dτ −

∫ t

s
1

p(τ)
dτ, 0 ≤ s < t < ∞,

1
ω

∫ t

0
1

p(τ)
dτ

∫∞
s

∫ τ

s
1

p(r)
drg(τ)dτ, 0 ≤ t ≤ s < ∞.

It is easy to see that|k(t, s)| ≤ 2
∫∞

0
1

p(s)
ds.

In order to apply Theorem 2.2, we have to prove thatN is L-compact, that is,QN is con-
tinuous and bounded andKp(I − Q)N is compact on every bounded subset ofX. Since the
Arzelà-Ascoli theorem fails in the noncompact interval case, we will use the following criterion.

Theorem 3.1([10]). LetM ⊂
{

x ∈ C[0,∞) : lim
t→∞

x(t) exists
}

. ThenM is relatively compact

if the following conditions hold:

(B1) all functions fromM are uniformly bounded,

(B2) all functions fromM are equicontinuous on any compact interval of[0,∞),

(B3) all functions fromM are equiconvergent at infinity, that is, for any givenε > 0, there
exists aT = T (ε) > 0 such that|f(t)− f(∞)| < ε for all t > T andf ∈ M .

Lemma 3.2. If f : [0,∞)× R → R is ag-Carathéodory function, thenN is L-compact.

Proof. Suppose thatΩ ⊂ X is a bounded set. Then there existsl > 0 such that||x||X ≤ l for
x ∈ Ω. Sincef is ag-Carathéodory function, there existsαl ∈ L1[0,∞) satisfyingαl(t) > 0,
t ∈ (0,∞) and

∫∞
0

g(s)αl(s)ds < ∞ such that for a.e.t ∈ [0,∞), |f(t, x(t))| ≤ αl(t) for
x ∈ Ω. Then forx ∈ Ω,

||QNx||Y =

∫ ∞

0

g(t)

∣∣∣∣∫ ∞

0

g(s)f(s, x(s))ds

∣∣∣∣ dt ≤
∫ ∞

0

g(s)αl(s)ds < ∞,

which implies thatQN is bounded onΩ.
Next, we show thatKp(I − Q)N is compact, i.e.,Kp(I − Q)N maps bounded sets into

relatively compact ones. Furthermore, denoteKP,Q = KP (I −Q)N (see [9], [11]). Forx ∈ Ω,
one gets

|(KP,Qx)(t)| ≤
∫ ∞

0

∣∣∣∣k(t, s)g(s)

[
f(s, x(s))−

∫ ∞

0

g(τ)f(τ, x(τ))dτ

]∣∣∣∣ ds

≤ 2

∫ ∞

0

1

p(τ)
dτ

[∫ ∞

0

g(s)|f(s, x(s))|ds

+

∫ ∞

0

g(s)

∫ ∞

0

g(τ)|f(τ, x(τ))|dτds

]
≤ 4

∫ ∞

0

1

p(τ)
dτ

∫ ∞

0

g(s)αl(s)ds < ∞,

J. Inequal. Pure and Appl. Math., 10(1) (2009), Art. 9, 10 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


6 AIJUN YANG AND WEIGAO GE

that is,KP,Q(Ω) is uniformly bounded. Meanwhile, for anyt1, t2 ∈ [0, T ] with T a positive
constant,

|(KP,Qx)(t1)− (KP,Qx)(t2)|

=

∣∣∣∣ 1

ω

∫ ∞

0

∫ ∞

s

∫ τ

s

1

p(r)
drg(τ)dτg(s)

[
f(s, x(s))

−
∫ ∞

0

g(τ)f(τ, x(τ))dτ

]
ds

∫ t1

t2

1

p(τ)
dτ

−
{∫ t1

0

∫ t1

s

1

p(τ)
dτg(s)

[
f(s, x(s))−

∫ ∞

0

g(τ)f(τ, x(τ))dτ

]
ds

−
∫ t2

0

∫ t2

s

1

p(τ)
dτg(s)

[
f(s, x(s))−

∫ ∞

0

g(τ)f(τ, x(τ))dτ

]
ds

}∣∣∣∣
≤ 1

ω

[∫ ∞

0

g(s)

∫ s

0

1

p(τ)

∫ τ

0

g(r)|f(r, x(r))|drdτds +

∫ ∞

0

g(τ)|f(τ, x(τ))|dτ

·
∫ ∞

0

g(s)

∫ s

0

1

p(τ)

∫ τ

0

g(r)drdτds] ·
∣∣∣∣∫ t1

t2

1

p(τ)
dτ

∣∣∣∣
+

∣∣∣∣∫ t1

t2

1

p(s)

[∫ s

0

g(τ)|f(τ, x(τ))|dτ +

∫ s

0

g(τ)

∫ ∞

0

g(r)|f(r, x(r))|drdτ

]
ds

∣∣∣∣
≤

[∫ ∞

0

g(r)|f(r, x(r))|dr +

∫ ∞

0

g(τ)|f(τ, x(τ))|dτ ·
∫ ∞

0

g(r)dr

] ∣∣∣∣∫ t1

t2

1

p(τ)
dτ

∣∣∣∣
+ 2

∫ ∞

0

g(r)|f(r, x(r))|dr

∣∣∣∣∫ t1

t2

1

p(τ)
dτ

∣∣∣∣
≤ 4

∫ ∞

0

g(s)αl(s)ds ·
∣∣∣∣∫ t1

t2

1

p(τ)
dτ

∣∣∣∣ → 0, uniformly as|t1 − t2| → 0,

which means thatKP,Q(Ω) is equicontinuous. In addition, we claim thatKP,Q(Ω) is equicon-
vergent at infinity. In fact,

|(KP,Qx)(∞)− (KP,Qx)(t)|

≤ 1

ω

∫ ∞

0

∫ ∞

s

∫ τ

s

1

p(r)
drg(τ)dτg(s)

[
|f(s, x(s))|+

∫ ∞

0

g(τ)|f(τ, x(τ))|dτ

]
ds ·

∫ ∞

t

1

p(τ)
dτ

+

∫ ∞

t

1

p(s)
ds

[∫ s

0

g(τ)|f(τ, x(τ)|dτ +

∫ s

0

g(τ)

∫ ∞

0

g(r)|f(r, x(r))|drdτ

]
ds

≤ 4

∫ ∞

0

g(s)αl(s)ds ·
∫ ∞

t

1

p(τ)
dτ → 0, uniformly ast →∞.

Hence, Theorem 3.1 implies thatKp(I − Q)N(Ω) is relatively compact. Furthermore, sincef
satisfiesg-Carathéodory conditions, the continuity ofQN andKp(I −Q)N onΩ follows from
the Lebesgue dominated convergence theorem. This completes the proof. �

Now, we state our main result on the existence of positive solutions for the BVP (1.1) – (1.2).

Theorem 3.3.Assume that

(H1) f : [0,∞)× R → R is ag-Carathéodory function,
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(H2) there exist positive constantsb1, b2, b3, c1, c2, B with

(3.5) B >
c2

c1

+ 2

(
b2c2

b1c1

+
b3

b1

) ∫ ∞

0

1

p(s)
ds

such that

−κx ≤ f(t, x),

f(t, x) ≤ −c1x + c2,

f(t, x) ≤ −b1|f(t, x)|+ b2x + b3

for t ∈ [0,∞), x ∈ [0, B],
(H3) there existb ∈ (0, B), t0 ∈ [0,∞), ρ ∈ (0, 1] andδ ∈ (0, 1). For eacht ∈ [0,∞), f(t,x)

xρ

is non-increasing onx ∈ (0, b] with

(3.6)
∫ ∞

0

G(t0, s)g(s)
f(s, b)

b
ds ≥ 1− δ

δρ
.

Then theBVP (1.1) – (1.2) has at least one positive solution on[0,∞).

Proof. Consider the cone

C = {x ∈ X : x(t) ≥ 0 on [0,∞)}.
Let

Ω1 = {x ∈ X : δ||x||X < |x(t)| < b on [0,∞)}
and

Ω2 = {x ∈ X : ||x||X < B}.
Clearly,Ω1 andΩ2 are bounded and open sets and

Ω1 = {x ∈ X : δ||x||X ≤ |x(t)| ≤ b on [0,∞)} ⊂ Ω2

(see [4]). Moreover,C ∩ (Ω2 \ Ω1) 6= ∅. Let J = I and(γx)(t) = |x(t)| for x ∈ X. Thenγ is
a retraction and maps subsets ofΩ2 into bounded subsets ofC, which means that 4◦ holds.

In order to prove 3◦, suppose that there existx0 ∈ ∂Ω2∩C ∩dom L andλ0 ∈ (0, 1) such that
Lx0 = λ0Nx0, then(p(t)x′0(t))

′+λ0g(t)f(t, x0(t)) = 0 for all t ∈ [0,∞). In view of (H2), we
have

− 1

λ0g(t)
(p(t)x′0(t))

′ = f(t, x0(t)) ≤ −b1
1

λ0g(t)
|(p(t)x′0(t))

′|+ b2x0(t) + b3.

Hence,

(3.7) −(p(t)x′0(t))
′ ≤ −b1|(p(t)x′0(t))

′|+ λ0b2g(t)x0(t) + λ0b3g(t).

Integrating both sides of (3.7) from0 to∞, one gets

0 = −
∫ ∞

0

(p(t)x′0(t))
′dt

≤ −b1

∫ ∞

0

|(p(t)x′0(t))
′|dt + λ0b2

∫ ∞

0

g(t)x0(t)dt + λ0b3

∫ ∞

0

g(t)dt,

which gives

(3.8)
∫ ∞

0

|(p(t)x′0(t))
′|dt <

b2

b1

∫ ∞

0

g(t)x0(t)dt +
b3

b1

.

Similarly, from (H2), we also obtain

(3.9)
∫ ∞

0

g(t)x0(t)dt ≤ c2

c1

.
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On the other hand,

x0(t) =

∫ ∞

0

g(t)x0(t)dt +

∫ ∞

0

k(t, s)(p(s)x′0(s))
′ds(3.10)

≤
∫ ∞

0

g(t)x0(t)dt +

∫ ∞

0

|k(t, s)| · |(p(s)x′0(s))
′|ds.(3.11)

Then, (3.8)-(3.9) yield

B = ||x0||X ≤ c2

c1

+ 2

(
b2c2

b1c1

+
b3

b1

) ∫ ∞

0

1

p(s)
ds,

which contradicts (3.5).
To prove 5◦, considerx ∈ Ker L ∩ Ω2. Thenx(t) ≡ c on [0,∞). Let

H(c, λ) = c− λ|c| − λ

∫ ∞

0

g(s)f(s, |c|)ds

for c ∈ [−B, B] andλ ∈ [0, 1]. It is easy to show that0 = H(c, λ) implies c ≥ 0. Suppose
0 = H(B, λ) for someλ ∈ (0, 1]. Then, (3.5) leads to

0 ≤ B(1− λ) = λ

∫ ∞

0

g(s)f(s, B)ds ≤ λ(−c1B + c2) < 0,

which is a contradiction. In addition, ifλ = 0, thenB = 0, which is impossible. Thus,
H(x, λ) 6= 0 for x ∈ Ker L ∩ ∂Ω2 andλ ∈ [0, 1]. As a result,

degB{H(·, 1), Ker L ∩ Ω2, 0} = degB{H(·, 0), Ker L ∩ Ω2, 0}.

However,
degB{H(·, 0), Ker L ∩ Ω2, 0} = degB{I, Ker L ∩ Ω2, 0} = 1.

Then,

degB{[I − (P + JQN)γ]Ker L, Ker L ∩ Ω2, 0} = degB{H(·, 1), Ker L ∩ Ω2, 0} 6= 0.

Next, we prove 8◦. Let x ∈ Ω2 \ Ω1 andt ∈ [0,∞),

(Ψγx)(t) =

∫ ∞

0

g(s)|x(s)|ds +

∫ ∞

0

g(s)f(s, |x(s)|)ds

+

∫ ∞

0

k(t, s)g(s)

[
f(s, |x(s)|)−

∫ ∞

0

g(τ)f(τ, |x(τ)|)dτ

]
ds

=

∫ ∞

0

g(s)|x(s)|ds +

∫ ∞

0

G(t, s)g(s)f(s, |x(s)|)ds

≥
∫ ∞

0

(1− κG(t, s))g(s)|x(s)|ds ≥ 0.

Hence,Ψγ(Ω2 \ Ω1) ⊂ C, i.e. 8◦ holds.
Since forx ∈ ∂Ω2,

(P + JQN)γx =

∫ ∞

0

g(s)|x(s)|ds +

∫ ∞

0

g(s)f(s, |x(s)|)ds

≥
∫ ∞

0

(1− κ)g(s)|x(s)|ds ≥ 0,

then,(P + JQN)γx ⊂ C for x ∈ ∂Ω2, and 7◦ holds.
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It remains to verify 6◦. Let u0(t) ≡ 1 on [0,∞). Thenu0 ∈ C \ {0}, C(u0) = {x ∈ C :
x(t) > 0 on [0,∞)} and we can takeσ(u0) = 1. Let x ∈ C(u0) ∩ ∂Ω1. Thenx(t) > 0 on
[0,∞), 0 < ||x||X ≤ b andx(t) ≥ δ||x||X on [0,∞). For everyx ∈ C(u0) ∩ ∂Ω1, by (H3)

(Ψx)(t0) =

∫ ∞

0

g(s)x(s)ds +

∫ ∞

0

G(t0, s)g(s)f(s, x(s))ds

≥ δ||x||X +

∫ ∞

0

G(t0, s)g(s)
f(s, x(s))

xρ(s)
xρ(s)ds

≥ δ||x||X + δρ||x||ρX
∫ ∞

0

G(t0, s)g(s)
f(s, b)

bρ
ds

= δ||x||X + δρ||x||X
b1−ρ

||x||1−ρ
X

∫ ∞

0

G(t0, s)g(s)
f(s, b)

b
ds

≥ δ||x||X + δρ||x||X
∫ ∞

0

G(t0, s)g(s)
f(s, b)

b
ds

≥ ||x||X .

Thus,||x||X ≤ σ(u0)||Ψx||X for all x ∈ C(u0) ∩ ∂Ω1.
In addition, 1◦ holds and Lemma 3.2 yields 2◦. Then, by Theorem 2.2, the BVP (1.1) – (1.2)

has at least one positive solutionx∗ on [0,∞) with b ≤ ||x∗||X ≤ B. This completes the proof
of Theorem 3.3. �

Remark 1. Note that with the projectionP (x) = x(0), Conditions 7◦ and 8◦ of Theorem 2.2
are no longer satisfied.

To illustrate how our main result can be used in practice, we present here an example.

Example 3.1.Consider the following BVP

(3.12)

 2(etx′(t))′ + e−tf(t, x(t)) = 0, a.e. in(0,∞),

x′(0) = lim
t→∞

etx′(t), x(0) =
∫∞

0
e−sx(s)ds.

Corresponding to the BVP (1.1) – (1.2),p(t) = 2et, g(t) = e−t andf(t, x) = (t − 1
2
)e−2tx +

e−tx2. We can getω = 1
4

and

(3.13) G(t, s) =

{ 13
12

+ 1
6
(e−t − 3e−s) + 1

4
(e−2t + 2e−2s)− 1

2
e−(t+2s), 0 ≤ s ≤ t < ∞,

13
12
− 1

3
e−t + 1

4
(e−2t + 2e−2s)− 1

2
e−(t+2s), 0 ≤ t ≤ s < ∞.

Obviously,G(t, s) ≥ 0 for t, s ∈ [0, +∞). Chooseκ = 1
2
, B = 5, c1 = 2

5
, c2 = 1

2
e−

3
2 , b1 = 1

2
,

b2 = 3
2

andb3 = 3
2
e−

3
2 such that (H2) holds, and takeb = 5

4
, t0 = 0, ρ = 1 andδ = 4

9
such that

(H3) is satisfied. Then thanks to Theorem 3.3, the BVP (3.12) has a positive solution on[0,∞).

REFERENCES

[1] K. DEIMLING, Nonlinear Functional Analysis, New York, 1985.

[2] D. GUOAND V. LAKSHMIKANTHAM, Nonlinear Problems in Abstract Cones, New York, 1988.

[3] J. MAWHIN, Topological degree methods in nonlinear boundary value problems, in: NSFCBMS
Regional Conference Series in Mathematics, American Mathematical Society, Providence, RI,
1979.

[4] D. O’REGAN AND M. ZIMA, Leggett-Williams norm-type theorems for coincidences,Arch.
Math., 87 (2006), 233–244.

J. Inequal. Pure and Appl. Math., 10(1) (2009), Art. 9, 10 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


10 AIJUN YANG AND WEIGAO GE

[5] W. GE, Boundary value problems for ordinary nonlinear differential equations, Science Press,
Beijing, 2007 (in Chinese).

[6] G. INFANTE AND M. ZIMA, Positive solutions of multi-point boundary value problems at reso-
nance,Nonlinear Anal., 69 (2008), 2458–2465.

[7] W.V. PETRYSHYN, On the solvability ofx ∈ Tx+λFx in quasinormal cones withT andF k-set
contractive,Nonlinear Anal., 5 (1981), 585–591.

[8] R.E. GAINESAND J. SANTANILLA, A coincidence theorem in convex sets with applications to
periodic solutions of ordinary differential equations,Rocky Mountain. J. Math., 12 (1982), 669–
678.

[9] H. LIAN, H. PANG AND W. GE, Solvability for second-order three-point boundary value problems
at resonance on a half-line,J. Math. Anal. Appl., 337(2008), 1171–1181.

[10] R.P. AGARWAL AND D. O’REGAN, Infinite Interval Problems for Differential, Difference and
Integral Equations, Kluwer Academic, 2001.

[11] N. KOSMATOV, Multi-point boundary value problems on an unbounded domain at resonance,
Nonlinear Anal., 68 (2008), 2158–2171.

J. Inequal. Pure and Appl. Math., 10(1) (2009), Art. 9, 10 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/

	1. Introduction
	2. Related Lemmas
	3. Main Result
	References

