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ABSTRACT. In this paper we establish new Chebyshev type inequalities via linear functionals.
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1. I NTRODUCTION

Let f, g : [a, b] → R be two absolutely continuous functions whose derivativesf ′, g′ ∈
L∞[a, b].

The Chebyshev functional is defined by:

(1.1) T (f, g) =
1

b− a

∫ b

a

f(x)g(x)dx−
(

1

b− a

∫ b

a

f(x)dx

) (
1

b− a

∫ b

a

g(x)dx

)
and the following inequality (see [8]) holds:

(1.2) |F (f, g)| ≤ 1

12
(b− a)2‖f ′‖∞‖g′‖∞.

Many researchers have given considerable attention to (1.2) and a number of extensions,
generalizations and variants have appeared in the literature, see ([1], [2], [3], [6], [7]) and the
references given therein.

In [7] B.G. Pachpatte considered the following functionals:

F (f) =
1

3

[
f(a) + f(b)

2
+ 2f

(
a + b

2

)]
,
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2 I. GAVREA

S(f, g) = F (f)F (g)− 1

b− a

[
F (f)

∫ b

a

g(x)dx + F (g)

∫ b

a

f(x)dx

]
+

(
1

b− a

∫ b

a

f(x)dx

) (
1

b− a

∫ b

a

g(x)dx

)
and

H(f, g) =
1

b− a

∫ b

a

[F (f)g(x) + F (g)f(x)]dx

− 2

(
1

b− a

∫ b

a

f(x)dx

) (
1

b− a

∫ b

a

g(x)dx

)
.

B.G. Pachpatte proved the following results:

Theorem 1.1. Let f, g : [a, b] → R be absolutely continuous functions whose derivatives
f ′, g′ ∈ Lp[a, b], p > 1. Then we have the inequalities

(1.3) |T (f, g)| ≤ 1

(b− a)3
‖f ′‖p‖g′‖p

∫ b

a

[B(x)]2/qdx,

(1.4) |T (f, g)| ≤ 1

2(b− a)2

∫ b

a

[|g(x)|‖f ′‖p + |f(x)|‖g′‖p][B(x)]1/qdx,

where

(1.5) B(x) =
(x− a)q+1 + (b− x)q+1

q + 1

for x ∈ [a, b] and 1
p

+ 1
q

= 1.

Theorem 1.2. Let f, g : [a, b] → R be absolutely continuous functions whose derivatives
f ′, g′ ∈ Lp[a, b], p > 1. Then we have the inequalities:

(1.6) |S(f, g)| ≤ 1

(b− a)2
M2/q‖f ′‖p‖g′‖p

and

(1.7) |H(f, g)| ≤ 1

(b− a)2
M1/q

∫ b

a

[|g(x)|‖f ′‖p + |f(x)|‖g′‖p]dx,

where

M =
(2q+1 + 1)(b− a)q+1

3(q + 1)6q

and 1
p

+ 1
q

= 1.

The main purpose of the present note is to establish inequalities similar to the inequalities
(1.3) – (1.6) involving isotonic functionals.

2. STATEMENT OF RESULTS

Let I = [a, b] a fixed interval. For everyt ∈ I we consider the functionut : [a, b] → R
defined by

ut(x) =

{
0, x ∈ [a, t),

1, x ∈ [t, b].
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CHEBYSHEV TYPE INEQUALITIES 3

Let L be a linear class of real valued functionsf : I → R having the properties:

L1 : f, g ∈ L ⇒ αf + βg ∈ L, for all α, β ∈ R
L2 : ut ∈ L for all t ∈ [a, b].

An isotonic linear functional is a functionalA : L → R having the following properties:

A1 : A(αf + βg) = αA(f) + βA(g) for f, g ∈ L, α, β ∈ R
A2 : f ∈ L, f(t) ≥ 0 on I thenA(f) ≥ 0.

In what follows we denote byM the set of all isotonic functionals having the properties:

M1 : A ∈M thenA(ut) ∈ Lp(R) for all p ≥ 1

M2 : A ∈M thenA(1) = 1.

Now, we state our main results as follows.

Theorem 2.1. Let f, g : [a, b] → R be absolutely continuous functions whose derivatives
f ′, g′ ∈ Lp[a, b], p > 1 and A, B, C isotonic functionals belong toM. Then we have the
following inequalities:

(2.1) |C(fg)− C(f)B(g)− C(g)A(f) + A(f)B(g)| ≤ C[K(A, B)]‖f ′‖p‖g′‖p

and

(2.2) |2C(fg)− C(f)B(g)− C(g)A(f)| ≤ C[Hf,g],

where

K(A, B)(x) =

(∫ b

a

|ut(x)− A(ut)|qdt

) 1
q
(∫ b

a

|ut(x)−B(ut)|q
) 1

q

and

Hf,g(x) = |g(x)|
(∫ b

a

|ut(x)− A(ut)|qdt

) 1
q

‖f ′‖p

+ |f(x)|
(∫ b

a

|ut(x)−B(ut)|qdt

) 1
q

‖g′‖p.

Theorem 2.2. Let f, g : [a, b] → R be absolutely continuous functions whose derivatives
f ′, g′ ∈ Lp[a, b], p > 1 and A, B two isotonic functionals belong toM. Then we have the
inequality:

(2.3) |A(f)A(g)− A(f)C(g)− C(f)A(g) + C(f)C(g)| ≤M2/q‖f ′‖p‖g′‖p,

where

M =

∫ b

a

|A(ut)− C(ut)|qdt

and 1
p

+ 1
q

= 1.
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4 I. GAVREA

3. PROOF OF THEOREM 2.1

From the identity:

f(x) = f(a) +

∫ x

a

f ′(t)dt

and using the definition of the functionut we obtain the following equality

(3.1) f(x) = f(a) +

∫ b

a

ut(x)f ′(t)dt.

FunctionalA being an isotonic functional from (3.1) we get

(3.2) A(f) = f(a) +

∫ b

a

A(ut)f
′(t)dt.

From (3.1) and (3.2) we obtain

(3.3) f(x)− A(f) =

∫ b

a

[ut(x)− A(ut)]f
′(t)dt.

Similarly we obtain:

(3.4) g(x)−B(g) =

∫ b

a

[ut(x)−B(ut)]g
′(t)dt.

Multiplying the left sides and right sides of (3.3) and (3.4) we have:

(3.5) f(x)g(x)− f(x)B(g)− g(x)A(f) + A(f)B(g)

=

∫ b

a

[ut(x)− A(ut)]f
′(t)dt

∫ b

a

[ut(x)−B(ut)]g
′(t)dt.

From (3.5) we obtain:

(3.6) |f(x)g(x)− f(x)B(g)− g(x)A(f) + A(f)B(g)|

≤
∫ b

a

|ut(x)− A(ut)|f ′(t)dt

∫ b

a

|ut(x)−B(ut)||g′(t)|dt.

Using Hölder’s integral inequality from (3.6) we get:

(3.7) |f(x)g(x)− f(x)B(g)− g(x)A(f) + A(f)B(g)|

≤
(∫ b

a

|ut(x)− A(ut)|qdt

) 1
q
(∫ b

a

|ut(x)−B(ut)|q
) 1

q

‖f ′‖p‖g′‖p.

From (3.7) applying the functionalC and using the fact thatC is an isotonic linear functional
we obtain inequality (2.1).

Multiplying both sides of (3.3) and (3.4) byg(x) andf(x) respectively and adding the result-
ing identities we get:

(3.8) 2f(x)g(x)− g(x)A(f)− f(x)B(g)

=

∫ b

a

g(x)[ut(x)− A(ut)]f
′(t)dt +

∫ b

a

f(x)[ut(x)−B(ut)]g
′(t)dt.
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From (3.8), using the properties of modulus, Hölder’s integral inequality we have:

(3.9) |2f(x)g(x)− g(x)A(f)− f(x)B(g)|

≤ |g(x)|
(∫ b

a

|ut(x)− A(ut)|qdt

) 1
q

‖f ′‖p

+ |f(x)|
(∫ b

a

|ut(x)−B(ut)|qdt

) 1
q

‖g′‖p

or

(3.10) |2f(x)g(x)− g(x)A(f)− f(x)B(g)| ≤ Hf,g(x).

The functionalC being an isotonic linear functional we have:

(3.11) C(|2f(x)g(x)− g(x)A(f)− f(x)B(g)|) ≥ |2C(fg)− C(g)A(f)− C(f)B(g)|.

From (3.10) applying the functionalC and using (3.11) we obtain inequality (2.2).
The proof of Theorem 2.1 is complete.

4. PROOF OF THEOREM 2.2

From (3.1) we have:

(4.1) f(x)− f(y) =

∫ b

a

[ut(x)− ut(y)]f ′(t)dt

and

(4.2) g(x)− g(y) =

∫ b

a

[ut(x)− ut(y)]g′(t)dt.

Applying the functionalsA andC in (4.1) and (4.2) we obtain

(4.3) A(f)− C(f) =

∫ b

a

[A(ut)− C(ut)]f
′(t)dt

and

(4.4) A(g)− C(g) =

∫ b

a

[A(ut)− C(ut)]g
′(t)dt.

Multiplying the left sides and right sides of (4.3) and (4.4) we have

(4.5) A(f)A(g)− A(f)C(g)− A(g)C(f) + C(f)C(g)

=

∫ b

a

[A(ut)− C(ut)]f
′(t)dt

∫ b

a

[A(ut)− C(ut)]g
′(t)dt.

Using Hölder’s integral inequality from (4.5) we obtain

|A(f)A(g)− A(f)C(g)− A(g)C(f) + C(f)C(g)|

≤
(∫ b

a

|A(ut)− C(ut)|qdt

) 2
q

‖f ′‖p‖g′‖p.

The last inequality proves the theorem.
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5. REMARKS

a) For

A(f) = B(f) = C(f) =
1

b− a

∫ b

a

f(x)dx

then from Theorem 2.1 we obtain the results from Theorem 1.1.
b) Inequality (1.6) is a particular case of the inequality (2.3) whenA = F ,

C(f) =
1

b− a

∫ b

a

f(x)dx.
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