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1. I NTRODUCTION

For the Fourier convolution

(f ∗ g)(x) =

∫ ∞

−∞
f(x− ξ)g(ξ) dξ,

the Young’s inequality

(1.1) ‖f ∗ g‖r ≤ ‖f‖p ‖g‖q, f ∈ Lp(R), g ∈ Lq(R),

r−1 = p−1 + q−1 − 1 (p, q, r > 0),

is fundamental. Note, however, that for the typical case off, g ∈ L2(R), the inequality (1.1)
does not hold. In a series of papers [12] – [16] (see also [5]) we obtained the following weighted
Lp (p > 1) norm inequality for convolution

Proposition 1.1. ([15]). For two nonvanishing functionsρj ∈ L1(R) (j = 1, 2), theLp (p > 1)
weighted convolution inequality

(1.2)
∥∥∥((F1ρ1) ∗ (F2ρ2)) (ρ1 ∗ ρ2)

1
p
−1
∥∥∥

p
≤ ‖F1‖Lp(R,|ρ1|) ‖F2‖Lp(R,|ρ2|)

holds forFj ∈ Lp(R, |ρj|) (j = 1, 2). Equality holds here if and only if

(1.3) Fj(x) = Cje
αx,

whereα is a constant such thateαx ∈ Lp(R, |ρj|) (j = 1, 2). Here

‖F‖Lp(R,|ρ|) =

{∫ ∞

−∞
|F (x)|p|ρ(x)| dx

} 1
p

.

Unlike the Young’s inequality, inequality (1.2) holds also in casep = 2.
Note that the proof of Proposition 1.1 is direct and fairly elementary. Indeed, we use only

Hölder’s inequality and Fubini’s theorem for exchanging the orders of integrals for the proof.
So, for various type convolutions, we can also obtain similar type convolution inequalities, see
[17] for various convolutions.

In many cases of interest, the convolution is given in the form

(1.4) ρ2(x) ≡ 1, F2(x) = G(x),

whereG(x− ξ) is some Green’s function. Then inequality (1.2) takes the form

(1.5) ‖ (Fρ) ∗G‖p ≤ ‖ρ‖
1− 1

p
p ‖G‖p ‖F‖Lp(R,|ρ|) ,

whereρ, F , andG are such that the right hand side of (1.5) is finite.
Inequality (1.5) enables us to estimate the output function

(1.6)
∫ ∞

−∞
F (ξ)ρ(ξ)G(x− ξ) dξ

in terms of the input functionF in the related differential equation. We are also interested in
the reverse type inequality for (1.5), namely, we wish to estimate the input functionF by means
of the output (1.6). This kind of estimates is important in inverse problems. One estimate is
obtained by using the following famous reverse Hölder inequality

Proposition 1.2. ([18], see also[10, p. 125–126]). For two positive functionsf andg satisfying

(1.7) 0 < m ≤ f

g
≤ M < ∞
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on the setX, and forp, q > 1, p−1 + q−1 = 1,

(1.8)

(∫
X

fdµ

) 1
p
(∫

X

gdµ

) 1
q

≤ Ap,q

(m

M

)∫
X

f
1
p g

1
q dµ,

if the right hand side integral converges. Here

Ap,q(t) = p−
1
p q−

1
q

t−
1
pq (1− t)(

1− t
1
p

) 1
p
(
1− t

1
q

) 1
q

.

Then, by using Proposition 1.2 we obtain, as in the proof of Proposition 1.1, the following
Proposition 1.3. ([16]). LetF1 andF2 be positive functions satisfying

(1.9) 0 < m
1
p

1 ≤ F1(x) ≤ M
1
p

1 < ∞, 0 < m
1
p

2 ≤ F2(x) ≤ M
1
p

2 < ∞, p > 1, x ∈ R.

Then for any positive continuous functionsρ1 andρ2, we have the reverseLp–weighted convo-
lution inequality

(1.10)

{
Ap,q

(
m1m2

M1M2

)}−1

‖F1‖Lp(R,ρ1) ‖F2‖Lp(R,ρ2) ≤
∥∥∥((F1ρ1) ∗ (F2ρ2)) (ρ1 ∗ ρ2)

1
p
−1
∥∥∥

p
.

Inequality (1.10) should be understood in the sense that if the right hand side is finite, then
so is the left hand side, and in this case the inequality holds.

In formula (1.10) replacingρ2 by 1, andF2(x− ξ) by G(x− ξ), and integrating with respect
to x from c to d we arrive at the following inequality

(1.11)
{

Ap,q

(m

M

)}−p
(∫ ∞

−∞
ρ(ξ) dξ

)p−1 ∫ ∞

−∞
F p(ξ) ρ(ξ) dξ

∫ d−ξ

c−ξ

Gp(x)dx

≤
∫ d

c

(∫ ∞

−∞
F (ξ) ρ(ξ) G(x− ξ) dξ

)p

dx,

if positive continuous functionsρ, F , andG satisfy

(1.12) 0 < m
1
p ≤ F (ξ)G(x− ξ) ≤ M

1
p , x ∈ [c, d], ξ ∈ R.

Inequality (1.11) is especially important whenG(x− ξ) is a Green’s function. We gave various
concrete examples in [16] from the viewpoint of stability in inverse problems.

2. REMARKS FOR REVERSE HÖLDER I NEQUALITIES

In connection with Proposition 1.2 which gives Proposition 1.3, Izumino and Tominaga [8]
consider the upper bound of(∑

ap
k

) 1
p
(∑

bq
k

) 1
q − λ

∑
akbk

for λ > 0, for p, q > 1 satisfying 1
p

+ 1
q

= 1 and for positive numbers{ak}n
k=1 and{bk}n

k=1,
in detail. In their different approach, they showed that the constantAp,q(t) in Proposition 1.2 is
best possible in a sense. Note that the proof of Proposition 1.2 is quite involved. In connection
with Proposition 1.2 we note that the following version whose proof is surprisingly simple
Theorem 2.1. In Proposition 1.2, replacingf andg by fp andgq, respectively, we obtain the
reverse Hölder type inequality

(2.1)

(∫
X

fpdµ

) 1
p
(∫

X

gqdµ

) 1
q

≤
(m

M

)− 1
pq

∫
X

fgdµ.
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Proof. Sincefp

gq ≤ M , g ≥ M− 1
q f

p
q , therefore

fg ≥ M− 1
q f 1+ p

q = M− 1
q fp

and so,

(2.2)

{∫
fpdµ

} 1
p

≤ M
1
pq

{∫
fgdµ

} 1
p

.

On the other hand, sincem ≤ fp

gq , f ≥ m
1
p g

q
p , hence∫

fgdµ ≥
∫

m
1
p g1+ q

p dµ = m
1
p

∫
gqdµ,

and so, {∫
fgdµ

} 1
q

≥ m
1
pq

{∫
gqdµ

} 1
q

.

Combining with (2.2), we have the desired inequality{∫
fpdµ

} 1
p
{∫

gqdµ

} 1
q

≤ M
1
pq

{∫
fgdµ

} 1
p

m
−1
pq

{∫
fgdµ

} 1
q

=
(m

M

)−1
pq

∫
fgdµ.

�

3. NEW REVERSE CONVOLUTION I NEQUALITIES

In reverse convolution inequality (1.10), similar type inequalities form1 = m2 = 0 are
also important as we see from our example in Section 4. For these, we obtain a new reverse
convolution inequality.

Theorem 3.1.Letp ≥ 1, δ > 0, 0 ≤ α < T , andf, g ∈ L∞(0, T ) satisfy

(3.1) 0 ≤ f, g ≤ M < ∞, 0 < t < T.

Then

(3.2) ‖f‖Lp(α,T )‖g‖Lp(0,δ) ≤ M
2p−2

p

(∫ T+δ

α

(∫ t

α

f(s)g(t− s)ds

)
dt

) 1
p

.

In particular, for

(f ∗ g)(t) =

∫ t

0

f(t− s)g(s)ds, 0 < t < T

and forα = 0, we have

‖f‖Lp(0,T )‖g‖Lp(0,δ) ≤ M
2p−2

p ‖f ∗ g‖
1
p

L1(0,T+δ).

Proof. Since0 ≤ f, g ≤ M for 0 ≤ t ≤ T , we have∫ t

α

f(s)pg(t− s)pds =

∫ t

α

f(s)p−1g(t− s)p−1f(s)g(t− s)ds(3.3)

≤ M2p−2

∫ t

α

f(s)g(t− s)ds.
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Hence ∫ T+δ

α

(∫ t

α

f(s)pg(t− s)pds

)
dt ≤ M2p−2

∫ T+δ

α

(∫ t

α

f(s)g(t− s)ds

)
dt.

On the other hand, we have∫ T+δ

α

(∫ t

α

f(s)pg(t− s)pds

)
dt =

∫ T+δ

α

(∫ T+δ

s

g(t− s)pdt

)
f(s)pds

=

∫ T+δ

α

(∫ T+δ−s

0

g(η)pdη

)
f(s)pds

≥
∫ T

α

(∫ T+δ−s

0

g(η)pdη

)
f(s)pds

≥
∫ T

α

(∫ δ

0

g(η)pdη

)
f(s)pds

= ‖f‖p
Lp(α,T )‖g‖

p
Lp(0,δ).

Thus the proof of Theorem 3.1 is complete. �

4. APPLICATIONS TO I NVERSE SOURCE HEAT PROBLEMS AND RESULTS

We consider the heat equation with a heat source:

(4.1) ∂tu(x, t) = ∆u(x, t) + f(t)ϕ(x), x ∈ Rn, t > 0

(4.2) u(x, 0) = 0, x ∈ Rn.

We assume thatϕ is a given function and satisfies

(4.3)


ϕ ≥ 0, 6≡ 0 in Rn,

ϕ has compact support,ϕ ∈ C∞(Rn), if n ≥ 4 and

ϕ ∈ L2(Rn), if n ≤ 3.

Our problem is to derive a conditional stability in the determination off(t), 0 < t < T , from
the observation

(4.4) u(x0, t), 0 < t < T,

wherex0 6∈ suppϕ.
We are interested only in the case ofx0 6∈ supp ϕ, because in the case wherex0 is in the

interior of supp ϕ, the problem can be reduced to a Volterra integral equation of the second
kind by differentiation int formula (4.8) stated below. Moreoverx0 6∈ supp ϕ means that our
observation (4.4) is done far from the set where the actual process is occuring, and the design
of the observation point is easy.

Let

(4.5) K(x, t) =
1

(2
√

πt)n
e−

|x|2
4t , x ∈ Rn, t > 0.

Then the solutionu to (4.1) and (4.2) is represented by

(4.6) u(x, t) =

∫ t

0

∫
Rn

K(x− y, t− s)f(s)ϕ(y)dyds, x ∈ Rn, t > 0
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(e.g., Friedman [6]). Therefore, setting

(4.7) µx0(t) =

∫
Rn

K(x0 − y, t)ϕ(y)dy, t > 0,

we have

(4.8) u(x0, t) ≡ hx0(t) =

∫ t

0

µx0(t− s)f(s)ds, 0 < t < T,

which is a Volterra integral equation of the first kind with respect tof . Since

lim
t↓0

dkµx0

dtk
(t) = (∆kϕ)(x0) = 0, k ∈ N ∪ {0}

by x0 6∈ supp ϕ (e.g., [6]), the equation (4.8) cannot be reduced to a Volterra equation of the
second kind by differentiating int. Hence, even though, for anym ∈ N, we take theCm-norms
for datah, the equation (4.8) is ill-posed, and we cannot expect a better stability such as of
Hölder type under suitable a priori boundedness.

In Cannon and Esteva [3], an estimate of logarithmic type is proved: letn = 1 andϕ = ϕ(x)
be the characteristic function of an interval(a, b) ⊂ R. Set

(4.9) VM =

{
f ∈ C2[0,∞); f(0) = 0,

∥∥∥∥df

dt

∥∥∥∥
C[0,∞)

,

∥∥∥∥d2f

dt2

∥∥∥∥
C[0,∞)

≤ M

}
.

Let x0 6∈ (a, b). Then, forT > 0, there exists a constantC = C(M, a, b, x0) > 0 such that

(4.10) |f(t)| ≤ C

| log ‖u(x0, ·)‖L2(0,∞)|2
, 0 ≤ t ≤ T,

for all f ∈ VM . The stability rate is logarithmic and worse than any rate of Hölder type:
‖u(x0, ·)‖α

L2(0,∞) for any α > 0. For (4.10), the conditionf ∈ VM prescribes a priori in-
formation and (4.10) is called conditional stability within the admissible setVM . The rate of
conditional stability heavily depends on the choice of admissible sets and an observation point
x0. As for other inverse problems for the heat equation, we can refer to Cannon [2], Cannon
and Esteva [4], Isakov [7] and the references therein.

We arbitrarily fixM > 0 andN ∈ N. Let

(4.11) U = {f ∈ C[0, T ]; ‖f‖C[0,T ] ≤ M, f changes the signs at mostN -times}.
We takeU as an admissible set of unknownsf . Then, withinU , we can show an improved
conditional stability of Hölder type:

Theorem 4.1.Letϕ satisfy (4.3), andx0 6∈ supp ϕ. We set

(4.12) p >


4

4− n
, n ≤ 3,

1, n ≥ 4.

Then, for an arbitrarily givenδ > 0, there exists a constantC = C(x0, ϕ, T, p, δ,U) > 0 such
that

(4.13) ‖f‖Lp(0,T ) ≤ C‖u(x0, ·)‖
1

pN

L1(0,T+δ)

for anyf ∈ U .

We will see thatlimδ→0 C = ∞ and, in order to estimatef over the time interval(0, T ), we
have to observeu(x0, ·) over a longer time interval(0, T + δ).
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Remark 4.2. In the case ofn ≥ 4, we can relax the regularity ofϕ to Hα(Rn) with some
α > 0, but we will not go into the details. In the case ofn ≤ 3, if we assume thatϕ ∈ C∞(Rn)
in (4.3), then in Theorem 4.1 we can take anyp > 1.

Remark 4.3. As a subset ofU , we can take, for example,

PN = {f ; f is a polynomial whose order is at mostN and‖f‖C[0,T ] ≤ M}.

The conditionf ∈ U is quite restrictive at the expense of the practically reasonable estimate of
Hölder type (4.4).

Remark 4.4. The a priori boundedness‖f‖C[0,T ] ≤ M is necessary for the stability.

Example 4.1.Let n = 1, p > 2 and

(4.14) ϕ(x) =


0 |x| < r, |x| > R,

√
π

R− r
, r < |x| < R.

We setx0 = 0. Then, by (4.7), we have

(4.15) µ0(t) =
1

2
√

πt

∫
r<|y|<R

e−
y2

4t ϕ(y)dy,

so that

(4.16)
1√
t
e−

R2

4t ≤ µ0(t) ≤
1√
t
e−

r2

4t , t > 0.

We choosefn as

(4.17) fn(t) =
1√
t
e−

1
nt , t > 0, n ∈ N.

Thenfn does not change the signs in (0, T ) and limn→∞max0≤t≤T |fn(t)| = ∞. The corre-
sponding solutionun(x, t) of (4.1) – (4.2) withfn is estimated as follows:

|un(0, t)| =
∣∣∣∣∫ t

0

µ0(t− s)fn(s)ds

∣∣∣∣ ≤ ∫ t

0

1√
t− s

e−
r2

4(t−s)
1√
s
e−

1
ns ds,

and so ∫ T

0

|un(0, t)|dt ≤
∫ T

0

(∫ t

0

1√
t− s

e−
r2

4(t−s)
1√
s
e−

1
ns ds

)
dt

=

∫ T

0

(∫ T

s

1√
t− s

e−
r2

4(t−s) dt

)
1√
s
e−

1
ns ds

≤
∫ T

0

(∫ T

0

1
√

η
e−

r2

4η dη

)
1√
s
ds

= 2
√

T

∫ T

0

1
√

η
e−

r2

4η dη.

Next ∫ T

0

fn(t)pdt = n
p
2
−1

∫ nT

0

e−
p
η η−

p
2 dη.
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Therefore, for anyγ ∈ (0, 1), we have(∫ T

0
fn(t)pdt

) 1
p(∫ T

0
un(0, t)dt

)γ ≥
n

1
2
− 1

p

(∫ nT

0
e−

p
η η−

p
2 dη
) 1

p(
2
√

T
∫ T

0
1√
η
e−

r2

4η dη
)γ −→∞ asn −→∞

by p > 2. Hence the stability of the type (4.4) is impossible forp > 2.

Remark 4.5. For our stability, the finiteness of changes of signs is essential. In fact, we take

(4.18) fn(t) = cos nt, 0 ≤ t ≤ T, n ∈ N.

Thenfn oscillates very frequently and we cannot take any finite partition of(0, T ) where the
condition on signs in (4.1) holds true. We note that we can takeM = 1, that is,‖fn‖C[0,T ] ≤ 1
for n ∈ N. We denote the solution to (4.1) – (4.2) forf = fn by un(x, t). Then

un(x0, t) =

∫ t

0

µx0(t− s)fn(s)ds

=

∫ t

0

µx0(s)fn(t− s)ds

= cos nt

∫ t

0

µx0(s) cos nsds− sin nt

∫ t

0

µx0(s) sin nsds.

By µx0 ∈ L1(0, T ), the Riemann-Lebesgue lemma yieldslimn→∞ un(x0, t) = 0 for all t ∈
[0, T + δ]. Moreover we readily see that

|un(x0, t)| ≤
∫ T+δ

0

µx0(s)ds < ∞, n ∈ N, 0 ≤ t ≤ T + δ.

Therefore, by the Lebesgue convergence theorem, we can conclude that

lim
n→∞

‖un(x0, ·)‖L1(0,T+δ) = 0.

Forn = 1, we can choosep = 2 in Theorem 4.1. We have∫ T

0

fn(t)2dt =
T

2
+

sin 2nT

4n
,

so thatlimn→∞ ‖fn‖L2(0,T ) 6= 0. Thus any stability cannot hold forfn, n ∈ N.

5. PROOF OF THEOREM 4.1

Suppose thatf changes the signs at0 < t1 < t2 < ... < tI = T, I ≤ N . Without loss
of generality, we may assume thatf ≥ 0 on (0, t1). Sincef ∈ U , we see thatf satisfies
(3.1). Meanwhile sinceµx0(t) is positive and bounded, for some constantB > 0, Bµx0(t)
satisfies (3.1). We apply Theorem 3.1 on(0, t1), settingα = 0 andg(t) = Bµx0(t). Setting
C1 = B1− 1

p‖µx0‖Lp(0,δ) (C1 > 0), we obtain

(5.1) ‖f‖Lp(0,t1) ≤ C−1
1 M

2p−2
p ‖u(x0, ·)‖

1
p

L1(0,t1+δ).

Next we will prove

(5.2) |u(x0, t1)| ≤ C2‖u(x0, ·)‖
1
p

L1(0,t1+δ),

where the constantC2 > 0 depends onϕ, T, δ, p. Henceforth the constantsCj > 0, j ≥ 2, are
independent of the choice of0 < t1 < t2 < · · · < tN < T .
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Proof of (5.2).Let L2(Rn) be the usualL2-space with the norm‖ · ‖ and let−A be the operator
defined by

(5.3) (−Au)(x) = ∆u(x), x ∈ Rn, D(A) = H2(Rn).

Then−A generates an analytic semigroupe−tA, t > 0 and, by the definition ofH2`(Rn) and
the interpolation inequality (e.g., Lions and Magenes [9]), we see that

(DA`) = H2`(Rn), ‖u‖H2`(Rn) ≤ C3(`)‖A`u‖, u ∈ D(A`).

Moreover

(5.4) ‖A`e−tA‖ ≤ C3(`)t
−`

and

(5.5) u(t) = u(·, t) =

∫ t

0

e−(t−s)Af(s)ϕ(·)ds, t > 0

(e.g., Pazy [11]). By the Sobolev inequality:H2`(Rn) ⊂ L∞(Rn) if 4` > n (e.g., Adams [1]),
we haveD(A`) ⊂ L∞(Rn) and

(5.6) ‖u‖L∞(Rn) ≤ C4(`)‖A`u‖, u ∈ D(A`).

Case:n ≤ 3.
We can take

(5.7) ` =
n

4
+ ε0 < 1 with a sufficiently smallε0 > 0.

Let q > 1 satisfy 1
p

+ 1
q

= 1. Sincep > 4
4−n

, we haveq < 4
n
, therefore we can chooseε0 > 0

sufficiently small such that

(5.8) q` < 1.

Hence, by (5.4), (5.5) and the Hölder inequality, we obtain

‖A`u(t1)‖ ≤
∫ t1

0

|f(s)|‖A`e−(t1−s)Aϕ‖ds(5.9)

≤ C5

∫ t1

0

(t1 − s)−`|f(s)|ds

≤ C5

(∫ t1

0

(t1 − s)−q`ds

) 1
q
(∫ t1

0

|f(s)|pds

) 1
p

.

Consequently, by (5.8), we have

‖A`u(t1)‖ ≤ C5

(
t1−q`
1

1− q`

) 1
q

‖f‖Lp(0,t1) ≤ C5

(
T

1− q`

) 1
q

‖f‖Lp(0,t1).

Therefore (5.1) and (5.6) yield (5.2).
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Case:n ≥ 4.
By ϕ ∈ C∞

0 (Rn), we haveϕ ∈ D(A`) for ` ∈ N. Therefore the estimate of‖A`u(t)‖ is simpler
than in (5.9):

‖A`u(t1)‖ =

∥∥∥∥∫ t1

0

f(s)e−(t1−s)AA`ϕds

∥∥∥∥
≤
∫ t1

0

|f(s)|‖e−(t1−s)A‖‖A`ϕ‖ds

≤ C ′
6‖f‖L1(0,t1) ≤ C6‖f‖Lp(0,t1).

Thus (5.1) and (5.6) complete the proof of (5.2). �

Next we will estimate‖f‖Lp(t1,t2). By (4.8), we have

(5.10) −u(x0, t) = −u(x0, t1) +

∫ t

t1

µx0(t− s)(−f(s))ds, t1 ≤ t ≤ t2.

Takingα = t1, T = t2 in Theorem 3.1, we obtain

‖f‖Lp(t1,t2) ≤ M
2p−2

p C−1
1

(∫ t2+δ

t1

| − u(x0, t) + u(x0, t1)|dt

) 1
p

(5.11)

≤ M
2p−2

p C−1
1 (‖u(x0, ·)‖L1(t1,t2+δ) + T |u(x0, t1)|)

1
p .

Therefore we apply (5.2), and

‖f‖Lp(t1,t2) ≤ C−1
1 M

2p−2
p ‖u(x0, ·)‖

1
p

L1(t1,t2+δ) + C−1
1 M

2p−2
p T

1
p C

1
p

2 ‖u(x0, ·)‖
1

p2

L1(0,t1+δ)(5.12)

≤ C−1
1 M

2p−2
p

{
‖u(x0, ·)‖

1
p
− 1

p2

L1(t1,t2+δ)‖u(x0, ·)‖
1

p2

L1(t1,t2+δ)

+ T
1
p C

1
p

2 ‖u(x0, ·)‖
1

p2

L1(0,t1+δ)

}
≤ C−1

1 M
2p−2

p ((TM ′)
p−1

p2 + T
1
p C

1
p

2 )‖u(x0, ·)‖
1

p2

L1(0,t2+δ).

Here, sinceu(x0, t) is bounded, we take a positiveM ′ such that|u(x0, t)| ≤ M ′. By (5.1) and
(5.12), we can estimate‖f‖Lp(0,t2). Continuing this argument untiltI = T , we can complete
the proof of Theorem 4.1.
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