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ABSTRACT. We introduce reverse convolution inequalities obtained recently and at the same
time, we give new type reverse convolution inequalities and their important applications to in-
verse source problems. We consider the inverse problem of determfiihg) < ¢t < T, in

the heat source of the heat equatiyn(z, t) = Au(x,t) + f(t)¢(z), z € R™, t > 0 from the
observationu(zg,t), 0 < t < T, at a remote point, away from the support ap. Under an

a priori assumption thaft changes the signs at maSttimes, we give a conditional stability of
Holder type, as an example of applications.
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2 SABUROU SAITOH, VU KIM TUAN, AND MASAHIRO YAMAMOTO

1. INTRODUCTION

For the Fourier convolution
(Fe9)@ = [ rla =096 de,

the Young’s inequality

(1.1) 1f* gl <N fllpllglls,  f € Lp(R), g € Ly(R),

rt=pt gt =1 (pgr>0),
is fundamental. Note, however, that for the typical cas¢.af € L.(R), the inequality[(1]1)

does not hold. In a series of papers|[12] - [16] (see also [5]) we obtained the following weighted
L, (p > 1) norm inequality for convolution

Proposition 1.1. ([15]). For two nonvanishing functions; € L;(R) (j = 1,2), the L, (p > 1)
weighted convolution inequality

(1.2) | (Fpr) * (Fap)) (o w9203 | < 1By 1l
holds forF; € L,(R, |p;|) ( = 1,2). Equality holds here if and only if
(13) FJ(JJ) == Cj@ax,

wherea is a constant such that” € L,(R, |p;|) (j = 1,2). Here

Pl = { [ IP@PIoGo) dm};

[e.9]

Unlike the Young's inequality, inequality (1.2) holds also in case 2.

Note that the proof of Propositign 1.1 is direct and fairly elementary. Indeed, we use only
Holder’s inequality and Fubini’s theorem for exchanging the orders of integrals for the proof.
So, for various type convolutions, we can also obtain similar type convolution inequalities, see
[17] for various convolutions.

In many cases of interest, the convolution is given in the form

(1.4) pa(z) =1, Fy(r) = G(n),
whereG(z — £) is some Green’s function. Then inequality (1.2) takes the form

1—-1
(1.5) 1 (Ep) =G, < el " |G, I1Fl L, @ -

wherep, F', andG are such that the right hand side [of (1.5) is finite.
Inequality [1.5) enables us to estimate the output function

(L6) | F@we6E -9

in terms of the input functiort” in the related differential equation. We are also interested in
the reverse type inequality fdr (1.5), namely, we wish to estimate the input furictigrmeans

of the output[(1.6). This kind of estimates is important in inverse problems. One estimate is
obtained by using the following famous reverse Holder inequality

Proposition 1.2. ([18], see als¢10, p. 125-126} For two positive functiong and g satisfying

a.7) O<m<=<M<o

Q |
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on the setX, and forp,q¢ > 1, p~' + ¢! =1,

1

(1.8) (/deuy (/ngu)q < Apg (%)/Xf}’gédu?

if the right hand side integral converges. Here

Then, by using Propositign 1.2 we obtain, as in the proof of Propos$ition 1.1, the following
Proposition 1.3. ([16]). Let /7 and F;, be positive functions satisfying

(1.9 0<m! <F(z) <M} <00, 0<ml<Fr)<M} <oco, p>1, zecR

Then for any positive continuous functignsand p,, we have the reverske,—weighted convo-
lution inequality

—1
mim 1_
@10) {s (T2 )b 1y 1l < | (100« (P o
Inequality [1.1D) should be understood in the sense that if the right hand side is finite, then
so is the left hand side, and in this case the inequality holds.
In formula [1.10) replacing, by 1, andFy(z — §) by G(z — &), and integrating with respect
to = from c to d we arrive at the following inequality

d—¢

@1 {aa ()7 ([ n0w)” [ e [ ewa

[e%s) [eS) c—¢&

< / d ( / : F(€) pl€) Gl — €) d£>pdx,

if positive continuous functiong, F', andG satisfy

(1.12) 0<mr < F€)Gz—& <Mr, zeled, (€R

Inequality [1.11) is especially important whéffz — &) is a Green’s function. We gave various
concrete examples in [1L6] from the viewpoint of stability in inverse problems.

2. REMARKS FOR REVERSE HOLDER INEQUALITIES

In connection with Propositidn 1.2 which gives Proposifior} 1.3, Izumino and Tomihaga [8]
consider the upper bound of

(>at)” (8)" = 2> anbe
for A > 0, for p,q > 1 satisfying_ + . = 1 and for positive numberga; };_, and {b; };_,,
in detail. In their different approach, they showed that the constaptt) in Propositiorf 1.R is

best possible in a sense. Note that the proof of Proposition 1.2 is quite involved. In connection
with Propositiorj 1.R we note that the following version whose proof is surprisingly simple

Theorem 2.1. In Proposition 1.2, replacing’ and g by f? and ¢?, respectively, we obtain the
reverse Holder type inequality

(2.1) ( / fpdu)’l’ ( / quu)é < (87 [ o
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Proof. SinceL; < M, g > M~ f4, therefore

fog = MTift = M
and so,

2.2) { / f”du}; < M { / fgdu};

On the other hand, sinee < f L f > mpgp hence

/fgdu > /mfl’g”zdu:m;/quu,
{/fgdu}q > ma {/quu}q-

Combining with [2.2), we have the desired inequality

o oo <ut{ )
%>,; /fgdu-

3. NEW REVERSE CONVOLUTION INEQUALITIES

and so,

In reverse convolution inequality (1]10), similar type inequalitiesifar = my, = 0 are
also important as we see from our example in Sedtjon 4. For these, we obtain a new reverse
convolution inequality.

Theorem 3.1.Letp > 1,6 > 0,0 < a < T,andf,g € L(0,T) satisfy
(3.1) 0< f,g <M < o0, 0<t<T.
Then

- T+6 t H
(3.2) 1@l os < M5 ( / ( / f(s)g(t—s)ds) dt)

In particular, for

(f=g)(t /ft—s ds, 0<t<T

and fora = 0, we have

1Nz, 0 lgllzy 00 < M7 Hf*9||L1(0T+5)
Proof. Since0 < f,g < M for0 <t < T, we have

(3.3) / f(s)Pg(t — s)Pds = / f(s)P gt —s)P 1 f(s)g(t — s)ds

< M / f(s)g(t — s)ds
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Hence

/mﬁ(/f t-sp@)ﬁ<ﬂﬁp{/mﬁ</f t—@@)d

On the other hand, we have

/T+5 (/ f(s)g(t—s pds> dt = /aTJré (/Sﬂég(t B S)pdt) f(s)Pds
[ staran) stoyas
-/ ) ( / M_Sg(n)pdn) f(s)ds
= /a ) < /0 6g(n)pdn) f(s)Pds

= ||f||Lp a,T) Hg”Lp(o(s
Thus the proof of Theorefn 3.1 is complete. O

4. APPLICATIONS TO INVERSE SOURCE HEAT PROBLEMS AND RESULTS

We consider the heat equation with a heat source:

(4.1) Ouu(z,t) = Au(z,t) + f(t)p(x), zeR" t>0
(4.2) u(z,0) =0, xr € R"™
We assume that is a given function and satisfies
©>0, #0 in R",
4.3) v has compact supporty € C>*(R"), ifn>4and
(Y2 € LQ(R”), if n S 3.

Our problem is to derive a conditional stability in the determinatiorf@§, 0 < ¢t < T, from
the observation

(4.4) u(zo, t), 0<t<T,

wherez, & suppy.

We are interested only in the casexf ¢ supp ¢, because in the case whergis in the
interior of supp ¢, the problem can be reduced to a Volterra integral equation of the second
kind by differentiation int formula [4.8) stated below. Moreoveg ¢ supp ¢ means that our
observation[(4]4) is done far from the set where the actual process is occuring, and the design
of the observation point is easy.

Let

1 |2
4.5 K(x,t) = ——=——e 2, ze€R" t>0.

Then the solutior to (4.1) and[(42) is represented by

(4.6) u(z,t) = /0 . K(z—y,t—s)f(s)p(y)dyds, zeR" t>0
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(e.g., Friedman |6]). Therefore, setting

(4.7) iy (E) = - K(zo —y, e(y)dy,  t>0,

we have

(4.8) u(zo,t) = hyy(t) = /t fao(t—5)f(s)ds, 0<t<T,
0

which is a Volterra integral equation of the first kind with respect t&ince

. dkluxo
I
by zo & supp ¢ (e.g., [6]), the equatiorj (4.8) cannot be reduced to a Volterra equation of the
second kind by differentiating ih Hence, even though, for amy € N, we take the”"*-norms
for datah, the equation[(4]8) is ill-posed, and we cannot expect a better stability such as of
Holder type under suitable a priori boundedness.
In Cannon and Esteval[3], an estimate of logarithmic type is proved:detl andy = ¢(x)
be the characteristic function of an interyal b) C R. Set

(t) = (A%)(20) =0, ke NU{0}

d d?
@9 vu={recionso-o |3 G <wf

dt C[0,00) dt C0,00)
Letz, ¢ (a,b). Then, forT” > 0, there exists a consta6t= C (M, a, b, zy) > 0 such that
(4.10) lf(t)] < ¢ 0<t<T,

~ |log ||u(zxo, ')||L2(0,oo)|27

for all f € V). The stability rate is logarithmic and worse than any rate of Holder type:
[u(zo, )%, 0.0y fOr @anya > 0. For ), the conditiorf € V), prescribes a priori in-
formation and 0) is called conditional stability within the admissible)set The rate of
conditional stability heavily depends on the choice of admissible sets and an observation point
xo. As for other inverse problems for the heat equation, we can refer to Canhnon [2], Cannon
and Esteva [4], IsakoV [7] and the references therein.

We arbitrarily fix M > 0 andN € N. Let

(4.11) U={feC0,T;|fllcpm < M, f changes the signs at masttimes}.

We takel/ as an admissible set of unknowiis Then, withinZ/, we can show an improved
conditional stability of Holder type:
Theorem 4.1. Let p satisfy [4.8), and:, ¢ supp . We set

4

(4.12) p>{ An
1, n > 4.

n <3,

Then, for an arbitrarily giverd > 0, there exists a constait = C(zo, ¢, T, p, 0,U4) > 0 such
that

1

(4.13) 1 zy0m) < Cllulzo, )17 0,45

forany f e U.

We will see thatim,_.o C' = oo and, in order to estimatg over the time interval0,7"), we
have to observe(z, -) over a longer time intervaD, 7" + ¢).
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Remark 4.2. In the case of» > 4, we can relax the regularity @f to H*(R") with some
a > 0, but we will not go into the details. In the caseroK 3, if we assume thap € C>°(R")
in (4.3), then in Theorein 4.1 we can take any 1.

Remark 4.3. As a subset off, we can take, for example,
Py = {f; f is a polynomial whose order is at mastand|| f|{|cjo.r) < M}.

The conditionf € U is quite restrictive at the expense of the practically reasonable estimate of
Holder type [(4.1).
Remark 4.4. The a priori boundedneds ||co, 71 < M is necessary for the stability.

Example 4.1.Letn=1,p > 2 and

0 lz| <, |z] >R,
(4.14) o) =

R\/—%T7 r<|z|] <R.
We setz, = 0. Then, by[(4.]7), we have

1 y?
(4.15) po(t) = e p(y)dy,
0< 2\/ﬁ r<|y|l<R ( )
so that
]_ R2 ]_ r2

4.16 —e 1w < pg(t) < —e 1, t>0.
We choosef,, as

1 1
(4.17) fult) = %e,m, t>0,neN.

Then f,, does not change the signs i {’) andlim,, ., maxo<;<7 | f»(t)| = co. The corre-
sponding solution, (z, t) of (4.1) — [4.2) withf, is estimated as follows:

! b 2 1
u,(0,1)| = / po(t — s)fn(s)ds §/ e At—s) e nsds,
| ( >| 0 0( ) ( ) 0 \/m \/g
and so
T Tt 2 1
/ [, (0,8)|dt < / (/ e W= ensds) dt
0 0 0 Vt—s NG
T T q 2 1
= / (/ 6_4(t—s)dt) —_enads
0 s t—s \/g
T T 2 1
< —e4nd77> —ds
/0 (/0 ] Vs
T 2
= Qﬁ/ —e 4ndn
0 n
Next
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Therefore, for anyy € (0, 1), we have

1

(o faltydt)™nds (f5 e Fn-hdn)”
(fOT un (0, t)dt)fy - (2\/_f0 Le i dn)w
by p > 2. Hence the stability of the typg (4.4) is impossible far 2.
Remark 4.5. For our stability, the finiteness of changes of signs is essential. In fact, we take
(4.18) fn(t) = cosnt, 0<t<T,neN,

Then f,, oscillates very frequently and we cannot take any finite partitiof0of’) where the
condition on signs irf (4]1) holds true. We note that we can fake: 1, that is,|| f.||cjor) < 1
for n € N. We denote the solution tp (4.1)[- (8.2) fb= ., by u,,(z, t) Then

U (0, 1) :/0 Py (T — 8) fr(s)ds
= [ st = s

— 00 asn — oo

t

t
= cos nt/ [z (S) cosnsds — sin nt/ o (8) sinnsds.
0 0

By u., € L1(0,T), the Riemann-Lebesgue lemma vyields,, .., u,(zo,t) = 0 for all t €
[0, T + 6]. Moreover we readily see that

T+5
|tun (20, 1) g/ o (8)ds < 00, neN, 0<t<T+0.
0

Therefore, by the Lebesgue convergence theorem, we can conclude that
Tim w20, )| s 0748) = 0.

Forn = 1, we can choosg = 2 in Theorenj 4.JL. We have
T T sin2nT
W(1)2dE = = :
/0 fultid = + =
so thatlim,, . || fx||z.(0,7) 7 0. Thus any stability cannot hold fgf,, n € N.

5. PROOF OF THEOREM (4.1

Suppose thaf changes the signs at< ¢, <ty < ... < t; = T, 1 < N. Without loss
of generality, we may assume thAt> 0 on (0,¢;). Sincef € U, we see thalf satisfies
(3.1). Meanwhile since,,(t) is positive and bounded, for some constaht> 0, By, (t)
satlsfles-l) We apply Theordm [3.1 @ht,), settinga = 0 andg(t) = By, (t). Setting

C) = # || ftao |l 2,(0,6) (C1 > 0), we obtain

(5.1) 11y 00y < CTM7 [[u(wo, IE, 01015y
Next we will prove

1
(5.2) [u(@o, t1)| < Collu(zo, )7, 0.4 16)

where the constarit, > 0 depends orp, T', §, p. Henceforth the constans; > 0, j > 2, are
independent of the choice 0f< t; <ty < --- <ty <T.
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Proof of [5.2).Let L,(R") be the usuaL,-space with the norm- || and let—A be the operator
defined by

(5.3) (—Au)(z) = Au(z), xeR", D(A) = H*(R™).

Then— A generates an analytic semigroeg4, t > 0 and, by the definition of72‘(R") and
the interpolation inequality (e.g., Lions and Magenes [9]), we see that

(DAY = H*(R"),  Jullgeeny < Co(0)| A%ull, u € D(AY).
Moreover
(5.4) [A%™ ) < Cy(0)t"
and
(5.5) u@):wdgt):uéte(tQAf(9¢%)d& £>0

(e.g., Pazyl[11]). By the Sobolev inequaliti?*(R") c L>=(R") if 4¢ > n (e.g., Adams[[1]),
we haveD(A%) c L>(R") and

(5.6) lull ey < Ca(Ol| A%, u e D(A).
Case:n < 3.

We can take

(5.7) (= % +¢e0 < 1 with a sufficiently smalk, > 0.

Letqg > 1 satisfy}lj + % = 1. Sincep > -, we havey < 2, therefore we can choosg > 0
sufficiently small such that

(5.8) gl < 1.

Hence, by[(5.4)](5]5) and the Holder inequality, we obtain
t1
59) Al < [ Il gds
0
t1
<Cs [t -9 Ur)lds
0

<c ( /0 o s)‘“ds); ( /0 " |f<s>\pds);

Consequently, by (58), we have

1

@ ) Ty
[A ()] = Cs | 1= ol [flzp0.) < Cs gt 1Nl zp00)-

Therefore|(5.11) and (5.6) yield (5.2).
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Case:n > 4.
By ¢ € C°(R"), we havep € D(A") for ¢ € N. Therefore the estimate §fA“u(t)|| is simpler
than in [5.9):

t1
[Au(ty)]| = H [ et
0

t1
< / ()]l 4| Al ds
< Cell fllzo.) < Csll fllzy0.00)-
Thus [5.1) and (5]6) complete the proof [of {5.2). O
Next we will estimate| f| ..., +,). By (4.8), we have
t
(5.10) —u(xg, t) = —u(xo, t1) +/ Uao(t— 8)(—f(s))ds, t; <t <ts.

t1

Takinga = t;, T = ¢, in Theoren 3.1, we obtain

2p—2 ta+d P
(5.11) Wl < M52 CP ( [ 1=t +u<x07t1>|dt)
t1

< M5 O (Jul@o, ) s tas) + Thu(wo, t)])7.
Therefore we apply (5]2), and

_ 2p—2 1 . 2p—2 1 1 %
(5.12) ||fHLp(t1,t2) < "M [[u(zo, ~)||Zl(t1,t2+5) + C "M T C3 ||u(zo, )H,’Sl(

0,t1+9)
1 1 1

<CrM b2 o
= V1 P Hu(x(b ')HLl(tl,t2+6)HU<x07 ')HL1(t1,t2+5)

1 »
+ T»CY ||u(zo, ‘)||L1(0,t1+6)}

. 2p=2 p=1 11 ol

SCT'M v ((TM') # + T2 G5 )[|u(x, ML 0.6216):
Here, sinceu(zo, t) is bounded, we take a positive’ such thafu(zo, ¢)] < M’. By (5.1) and
(5.12), we can estimatf| ;o). Continuing this argument untly = 7', we can complete
the proof of Theorerp 4] 1.

1
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