Journal of Inequalities in Pure and Applied Mathematics

REFINEMENTS OF CARLEMAN'S INEQUALITY

BAO-QUAN YUAN

Department of Mathematics Jiaozuo Institute of Technology Jiaozuo City, Henan 454000 THE PEOPLE'S REPUBLIC OF CHINA
EMail: baoquanyuan@chinaren.com
volume 2, issue 2, article 21, 2001.

Received 18 August, 2000; accepted 2 March, 2001.

Communicated by: J. Pečarić

Abstract

In this paper, we obtain a class of refined Carleman's Inequalities with the arithmetic-geometric mean inequality by decreasing their weight coefficient.

2000 Mathematics Subject Classification: 26D15.
Key words: Carleman's inequality, arithmetic-geometric mean inequality, weight coefficient.

The author is indebted to the referee for many helpful and valuable comments and suggestions.

Contents

1 Introduction 3
2 Two Special Cases. 4
3 A Class of Refined Carleman's Inequalities 8
References

Refinements of Carleman's Inequality

Bao-Quan Yuan

Title Page
Contents

$\mathbf{4}$	
Go Back	
Close	
Quit	
Page 2 of 10	

J. Ineq. Pure and Appl. Math. 2(2) Art. 21, 200
http://jipam.vu.edu.au

1. Introduction

Let $\left\{a_{n}\right\}_{n=1}^{+\infty}$ be a non-negative sequence such that $0 \leq \sum_{n=1}^{+\infty} a_{n}<+\infty$, then, we have

$$
\begin{equation*}
\sum_{n=1}^{+\infty}\left(a_{1} a_{2} \ldots a_{n}\right)^{1 / n} \leq e \sum_{n=1}^{+\infty} a_{n} \tag{1}
\end{equation*}
$$

The equality in (1) holds if and only if $a_{n}=0, n=1,2, \ldots$ the coefficient e is optimal.

Inequality (1) is called Carleman's inequality. For details please refer to $[1,2]$. The Carleman's inequality has found many applications in mathematics, and the study of the Carleman's inequality has a rich literature, for details, please refer to [3, 4]. Though the coefficient e is optimal, we can refine its weight coefficient. In this article we give a class of improved Carleman's inequalities by decreasing the weight coefficient with the arithmetic-geometric mean inequality.

Refinements of Carleman's Inequality

Bao-Quan Yuan

Title Page
Contents

Go Back
Close
Quit
Page 3 of 10

2. Two Special Cases

In this section, we give two special cases of refined Carleman's inequality. First we prove two lemmas.

Lemma 2.1. For $m=1,2, \ldots$, the inequality

$$
\begin{equation*}
\left(1+\frac{1}{m}\right)^{m} \leq e\left(1-\frac{1-2 / e}{m}\right) \tag{2}
\end{equation*}
$$

holds, where the constant $1-\frac{2}{e} \approx 0.2642411$ is best possible.
Proof. Inequality

$$
\begin{equation*}
\left(1+\frac{1}{m}\right)^{m} \leq e\left(1-\frac{\beta}{m}\right) \tag{3}
\end{equation*}
$$

is equivalent to $\beta \leq m-\frac{m}{e}\left(1+\frac{1}{m}\right)^{m}$.
Let $f(x)=\frac{1}{x}-\frac{1}{e x}(1+x)^{\frac{1}{x}}, x \in(0,1]$.
It is obvious that the function f is decreasing on the interval $(0,1]$. Consequently, $\beta=f(1)=1-\frac{2}{e}$ is the optimal value satisfying inequality (3), so (2) holds. The proof of Lemma 2.1 follows.

Lemma 2.2. For $m=1,2, \ldots$, the inequality

$$
\begin{equation*}
\left(1+\frac{1}{m}\right)^{m} \leq \frac{e}{\left(1+\frac{1}{m}\right)^{\frac{1}{\ln 2}-1}} \tag{4}
\end{equation*}
$$

Refinements of Carleman's Inequality

Bao-Quan Yuan

Title Page
Contents
Go Back
Close
Quit
Page 4 of 10

holds, where the constant $\frac{1}{\ln 2}-1 \approx 0.442695$ is the best possible.

Proof. Inequality

$$
\begin{equation*}
\left(1+\frac{1}{m}\right)^{m} \leq \frac{e}{\left(1+\frac{1}{m}\right)^{\alpha}} \tag{5}
\end{equation*}
$$

is equivalent to

$$
\alpha \leq \frac{1}{\ln \left(1+\frac{1}{m}\right)}-m
$$

Let

$$
f(x)=\frac{1}{\ln (1+x)}-\frac{1}{x} \quad x \in(0,1] .
$$

Refinements of Carleman's Inequality

Bao-Quan Yuan
Since the function f is decreasing on the interval $(0,1], \alpha=f(1)=\frac{1}{\ln 2}-1$ is the optimal value satisfying inequality (5), and thus (4) holds. The proof of Lemma 2.2 follows.

Theorem 2.3. Let $\left\{a_{n}\right\}_{n=1}^{+\infty}$ be a non-negative sequence such that $0 \leq \sum_{n=1}^{+\infty} a_{n}<$ $+\infty$. Then the following inequalities hold:

$$
\begin{equation*}
\sum_{n=1}^{+\infty}\left(a_{1} a_{2} \ldots a_{n}\right)^{1 / n} \leq e \sum_{m=1}^{+\infty}\left(1-\frac{1-2 / e}{m}\right) a_{m} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{+\infty}\left(a_{1} a_{2} \ldots a_{n}\right)^{1 / n} \leq e \sum_{m=1}^{+\infty} \frac{a_{m}}{\left(1+\frac{1}{m}\right)^{\frac{1}{1 n} 2}-1} . \tag{7}
\end{equation*}
$$

Title Page
Contents

Go Back
Close
Quit
Page 5 of 10

Proof. Let $c_{i}>0(i=1,2, \ldots)$. According to the arithmetic-geometric mean inequality, we have

$$
\left(c_{1} a_{1} c_{2} a_{2} \cdots c_{n} a_{n}\right)^{1 / n} \leq \frac{1}{n} \sum_{m=1}^{n} c_{m} a_{m}
$$

Consequently,

$$
\begin{aligned}
\sum_{n=1}^{+\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} & =\sum_{n=1}^{+\infty}\left(\frac{c_{1} a_{1} c_{2} a_{2} \cdots c_{n} a_{n}}{c_{1} c_{2} \cdots c_{n}}\right)^{1 / n} \\
& =\sum_{n=1}^{+\infty}\left(c_{1} c_{2} \cdots c_{n}\right)^{-1 / n}\left(c_{1} a_{1} c_{2} a_{2} \cdots c_{n} a_{n}\right)^{1 / n} \\
& \leq \sum_{n=1}^{+\infty}\left(c_{1} c_{2} \cdots c_{n}\right)^{-1 / n} \frac{1}{n} \sum_{m=1}^{n} c_{m} a_{m} \\
& =\sum_{m=1}^{+\infty} c_{m} a_{m} \sum_{n=m}^{+\infty} \frac{1}{n}\left(c_{1} c_{2} \cdots c_{n}\right)^{-1 / n}
\end{aligned}
$$

Let $c_{m}=\frac{(m+1)^{m}}{m^{m-1}}(m=1,2, \ldots)$. Then $c_{1} c_{2} \cdots c_{n}=(n+1)^{n}$, and

$$
\sum_{n=m}^{+\infty} \frac{1}{n}\left(c_{1} c_{2} \cdots c_{n}\right)^{-1 / n}=\sum_{n=m}^{+\infty} \frac{1}{n(n+1)}=\frac{1}{m}
$$

Therefore

$$
\begin{equation*}
\sum_{n=1}^{+\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq \sum_{m=1}^{+\infty} \frac{c_{m}}{m} a_{m}=\sum_{m=1}^{+\infty}\left(1+\frac{1}{m}\right)^{m} a_{m} \tag{8}
\end{equation*}
$$

According to Lemmas 2.1 and 2.2, and substituting for $\left(1+\frac{1}{m}\right)^{m}$ of inequality (8), so (6) and (7) follow from Lemmas 2.1 and 2.2. The proof is complete.

Refinements of Carleman's Inequality

Bao-Quan Yuan

J. Ineq. Pure and Appl. Math. 2(2) Art. 21, 200
http://jipam.vu.edu.au

3. A Class of Refined Carleman's Inequalities

In this section we give a class of refined Carleman's inequalities. First we have the following inequality

Lemma 3.1. For $m=1,2, \ldots$, the inequality

$$
\begin{equation*}
\left(1+\frac{1}{m}\right)^{m} \leq \frac{e\left(1-\frac{\beta}{m}\right)}{\left(1+\frac{1}{m}\right)^{\alpha}} \tag{9}
\end{equation*}
$$

holds, where $0 \leq \alpha \leq \frac{1}{\ln 2}-1,0 \leq \beta \leq 1-\frac{2}{e}$, and $e \beta+2^{1+\alpha}=e$.
Proof. Inequality (9) is equivalent to

$$
\begin{equation*}
\beta \leq m-\frac{m}{e}\left(1+\frac{1}{m}\right)^{m+\alpha} \tag{10}
\end{equation*}
$$

If

$$
f(x)=\frac{1}{x}-\frac{1}{e x}(1+x)^{\frac{1}{x}+\alpha}, x \in(0,1], 0 \leq \alpha \leq \frac{1}{\ln 2}-1,
$$

then f is decreasing on interval $(0,1]$. Consequently, $\beta=f(1)=1-\frac{1}{e} 2^{1+\alpha}$ is the optimal value satisfying inequality (10). Moreover, $0 \leq \beta \leq 1-\frac{2}{e}$, and $e \beta+2^{1+\alpha}=e$. So (9) holds, The proof is complete.

Remark 3.1. If $\alpha=0$, then $\beta=1-\frac{2}{e}$, and we obtain Lemma 2.1; if $\beta=0$, then $\alpha=\frac{1}{\ln 2}-1$, and we obtain Lemma 2.2.

Similar to Theorem 2.3, according to Lemma 3.1, we have

Theorem 3.2. Let $a_{n} \geq 0(n=1,2, \ldots), 0 \leq \sum_{n=1}^{+\infty} a_{n}<+\infty$, then

$$
\sum_{n=1}^{+\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq e \sum_{m=1}^{+\infty} \frac{\left(1-\frac{\beta}{m}\right)}{\left(1+\frac{1}{m}\right)^{\alpha}} a_{m}
$$

where α, β satisfy $0 \leq \alpha \leq \frac{1}{\ln 2}-1,0 \leq \beta \leq 1-\frac{2}{e}$, and $e \beta+2^{1+\alpha}=e$.
Remark 3.2. Theorem 2.3 gives two special cases of Theorem 3.2. If $\alpha=0$, $\beta=1-\frac{2}{e}$, and $\alpha=\frac{1}{\ln 2}-1, \beta=0$, we can obtain (6) and (7) in Theorem 2.3 respectively.

Refinements of Carleman's Inequality

Bao-Quan Yuan

Title Page
Contents

$\mathbf{~} \mathbf{4}$	
Go Back	
Close	
Quit	
Page 9 of 10	

References

[1] G.H. HARDY, J.E. LITTLEWOOD AND G. POLYA, Inequalities, Cambridge Univ. Press, London, 1952.
[2] JI-CHANG KUANG, Applied Inequalities, Hunan Education Press (second edition), Changsha, China, 1993.(Chinese)
[3] PING YAN AND GUOZHENG SUN, A strengthened Carleman's inequality, J. Math. Anal. Appl., 240 (1999), 290-293.
[4] BICHENG YANG AND L. DEBNATH, Some inequalities involving the constant e, and an application to Carleman's inequality, J. Math. Anal. Appl., 223 (1998), 347-353.

