

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 2, Issue 2, Article 21, 2001

REFINEMENTS OF CARLEMAN'S INEQUALITY

BAO-QUAN YUAN

DEPARTMENT OF MATHEMATICS, JIAOZUO INSTITUTE OF TECHNOLOGY, JIAOZUO CITY, HENAN PROVINCE 454000 PEOPLE'S REPUBLIC OF CHINA baoquanyuan@chinaren.com

Received 18 August, 2000; accepted 2 March, 2001. Communicated by J. Pečarić

ABSTRACT. In this paper, we obtain a class of refined Carleman's Inequalities with the arithmeticgeometric mean inequality by decreasing their weight coefficient.

Key words and phrases: Carleman's inequality, arithmetic-geometric mean inequality, weight coefficient.

2000 Mathematics Subject Classification. 26D15.

1. INTRODUCTION

Let $\{a_n\}_{n=1}^{+\infty}$ be a non-negative sequence such that $0 \leq \sum_{n=1}^{+\infty} a_n < +\infty$, then, we have

(1.1)
$$\sum_{n=1}^{+\infty} (a_1 a_2 \dots a_n)^{1/n} \le e \sum_{n=1}^{+\infty} a_n$$

The equality in (1.1) holds if and only if $a_n = 0, n = 1, 2, ...$ the coefficient e is optimal.

Inequality (1.1) is called Carleman's inequality. For details please refer to [1, 2]. The Carleman's inequality has found many applications in mathematics, and the study of the Carleman's inequality has a rich literature, for details, please refer to [3, 4]. Though the coefficient *e* is optimal, we can refine its weight coefficient. In this article we give a class of improved Carleman's inequalities by decreasing the weight coefficient with the arithmetic-geometric mean inequality.

2. TWO SPECIAL CASES

In this section, we give two special cases of refined Carleman's inequality. First we prove two lemmas.

ISSN (electronic): 1443-5756

^{© 2001} Victoria University. All rights reserved.

The author is indebted to the referee for many helpful and valuable comments and suggestions.

⁰²⁹⁻⁰⁰

Lemma 2.1. For $m = 1, 2, \ldots$, the inequality

(2.1)
$$\left(1+\frac{1}{m}\right)^m \le e\left(1-\frac{1-2/e}{m}\right)$$

holds, where the constant $1 - \frac{2}{e} \approx 0.2642411$ is best possible.

Proof. Inequality

(2.2)
$$\left(1+\frac{1}{m}\right)^m \le e\left(1-\frac{\beta}{m}\right)$$

is equivalent to $\beta \leq m - \frac{m}{e} \left(1 + \frac{1}{m}\right)^m$.

Let $f(x) = \frac{1}{x} - \frac{1}{ex} (1+x)^{\frac{1}{x}}$, $x \in (0, 1]$. It is obvious that the function f is decreasing on the interval (0, 1]. Consequently, $\beta = f(1) = 1 - \frac{2}{e}$ is the optimal value satisfying inequality (2.2), so (2.1) holds. The proof of Lemma 2.1 follows.

Lemma 2.2. For $m = 1, 2, \ldots$, the inequality

(2.3)
$$\left(1+\frac{1}{m}\right)^m \le \frac{e}{\left(1+\frac{1}{m}\right)^{\frac{1}{\ln 2}-1}}$$

holds, where the constant $\frac{1}{\ln 2} - 1 \approx 0.442695$ is the best possible.

Proof. Inequality

(2.4)
$$\left(1+\frac{1}{m}\right)^m \le \frac{e}{\left(1+\frac{1}{m}\right)^{\alpha}}$$

is equivalent to

$$\alpha \le \frac{1}{\ln\left(1 + \frac{1}{m}\right)} - m.$$

Let

$$f(x) = \frac{1}{\ln(1+x)} - \frac{1}{x}$$
 $x \in (0,1].$

Since the function f is decreasing on the interval (0, 1], $\alpha = f(1) = \frac{1}{\ln 2} - 1$ is the optimal value satisfying inequality (2.4), and thus (2.3) holds. The proof of Lemma 2.2 follows.

Theorem 2.3. Let $\{a_n\}_{n=1}^{+\infty}$ be a non-negative sequence such that $0 \leq \sum_{n=1}^{+\infty} a_n < +\infty$. Then the following inequalities hold:

(2.5)
$$\sum_{n=1}^{+\infty} (a_1 a_2 \dots a_n)^{1/n} \le e \sum_{m=1}^{+\infty} \left(1 - \frac{1 - 2/e}{m} \right) a_m,$$

and

(2.6)
$$\sum_{n=1}^{+\infty} (a_1 a_2 \dots a_n)^{1/n} \le e \sum_{m=1}^{+\infty} \frac{a_m}{\left(1 + \frac{1}{m}\right)^{\frac{1}{\ln 2} - 1}}.$$

Proof. Let $c_i > 0$ (i = 1, 2, ...). According to the arithmetic-geometric mean inequality, we have

$$(c_1 a_1 c_2 a_2 \cdots c_n a_n)^{1/n} \le \frac{1}{n} \sum_{m=1}^n c_m a_m.$$

Consequently,

$$\sum_{n=1}^{+\infty} (a_1 a_2 \cdots a_n)^{1/n} = \sum_{n=1}^{+\infty} \left(\frac{c_1 a_1 c_2 a_2 \cdots c_n a_n}{c_1 c_2 \cdots c_n} \right)^{1/n}$$
$$= \sum_{n=1}^{+\infty} (c_1 c_2 \cdots c_n)^{-1/n} (c_1 a_1 c_2 a_2 \cdots c_n a_n)^{1/n}$$
$$\leq \sum_{n=1}^{+\infty} (c_1 c_2 \cdots c_n)^{-1/n} \frac{1}{n} \sum_{m=1}^n c_m a_m$$
$$= \sum_{m=1}^{+\infty} c_m a_m \sum_{n=m}^{+\infty} \frac{1}{n} (c_1 c_2 \cdots c_n)^{-1/n}.$$

Let $c_m = \frac{(m+1)^m}{m^{m-1}}$ (m = 1, 2, ...). Then $c_1 c_2 \cdots c_n = (n+1)^n$, and

$$\sum_{n=m}^{+\infty} \frac{1}{n} (c_1 c_2 \cdots c_n)^{-1/n} = \sum_{n=m}^{+\infty} \frac{1}{n(n+1)} = \frac{1}{m}$$

Therefore

(2.7)
$$\sum_{n=1}^{+\infty} (a_1 a_2 \cdots a_n)^{1/n} \le \sum_{m=1}^{+\infty} \frac{c_m}{m} a_m = \sum_{m=1}^{+\infty} \left(1 + \frac{1}{m}\right)^m a_m$$

According to Lemmas 2.1 and 2.2, and substituting for $(1 + \frac{1}{m})^m$ of inequality (2.7), so (2.5) and (2.6) follow from Lemmas 2.1 and 2.2.

The proof is complete.

3. A CLASS OF REFINED CARLEMAN'S INEQUALITIES

In this section we give a class of refined Carleman's inequalities. First we have the following inequality

Lemma 3.1. For $m = 1, 2, \ldots$, the inequality

(3.1)
$$\left(1+\frac{1}{m}\right)^m \le \frac{e\left(1-\frac{\beta}{m}\right)}{\left(1+\frac{1}{m}\right)^{\alpha}},$$

holds, where $0 \le \alpha \le \frac{1}{\ln 2} - 1$, $0 \le \beta \le 1 - \frac{2}{e}$, and $e\beta + 2^{1+\alpha} = e$.

Proof. Inequality (3.1) is equivalent to

$$(3.2) \qquad \qquad \beta \le m - \frac{m}{e} \left(1 + \frac{1}{m} \right)^{m+\alpha}$$

If

$$f(x) = \frac{1}{x} - \frac{1}{ex} (1+x)^{\frac{1}{x}+\alpha}, \ x \in (0,1], \ 0 \le \alpha \le \frac{1}{\ln 2} - 1,$$

then f is decreasing on interval (0, 1]. Consequently, $\beta = f(1) = 1 - \frac{1}{e}2^{1+\alpha}$ is the optimal value satisfying inequality (3.2). Moreover, $0 \le \beta \le 1 - \frac{2}{e}$, and $e\beta + 2^{1+\alpha} = e$. So (3.1) holds, The proof is complete.

Remark 3.2. If $\alpha = 0$, then $\beta = 1 - \frac{2}{e}$, and we obtain Lemma 2.1; if $\beta = 0$, then $\alpha = \frac{1}{\ln 2} - 1$, and we obtain Lemma 2.2.

Similar to Theorem 2.3, according to Lemma 3.1, we have

Theorem 3.3. Let $a_n \ge 0$ $(n = 1, 2, ...), 0 \le \sum_{n=1}^{+\infty} a_n < +\infty$, then

$$\sum_{n=1}^{+\infty} (a_1 a_2 \cdots a_n)^{1/n} \le e \sum_{m=1}^{+\infty} \frac{\left(1 - \frac{\beta}{m}\right)}{\left(1 + \frac{1}{m}\right)^{\alpha}} a_m,$$

where α , β satisfy $0 \le \alpha \le \frac{1}{\ln 2} - 1$, $0 \le \beta \le 1 - \frac{2}{e}$, and $e\beta + 2^{1+\alpha} = e$.

Remark 3.4. Theorem 2.3 gives two special cases of Theorem 3.3. If $\alpha = 0$, $\beta = 1 - \frac{2}{e}$, and $\alpha = \frac{1}{\ln 2} - 1$, $\beta = 0$, we can obtain (2.5) and (2.6) in Theorem 2.3 respectively.

REFERENCES

- [1] G.H. HARDY, J.E. LITTLEWOOD AND G. POLYA, *Inequalities*, Cambridge Univ. Press, London, 1952.
- [2] JI-CHANG KUANG, *Applied Inequalities*, Hunan Education Press (second edition), Changsha, China, 1993.(Chinese)
- [3] PING YAN AND GUOZHENG SUN, A strengthened Carleman's inequality, J. Math. Anal. Appl., 240 (1999), 290–293.
- [4] BICHENG YANG AND L. DEBNATH, Some inequalities involving the constant *e*, and an application to Carleman's inequality, *J. Math. Anal. Appl.*, **223** (1998), 347–353.