ON AN OPEN QUESTION REGARDING AN INTEGRAL INEQUALITY

K. BOUKERRIOUA

Department of Mathematics University of Guelma Guelma, Algeria EMail: khaledV2004@yahoo.fr

A. GUEZANE-LAKOUD

Department of Mathematics University Badji Mokhtar, Annaba Annaba, Algeria EMail: a_guezane@yahoo.fr

Received:	16 January, 2007
Accepted:	14 July, 2007
Communicated by:	J.E. Pečarić
2000 AMS Sub. Class.:	26D15.
Key words:	Integral inequality, AG inequality.
Abstract:	In the paper "Notes on an integral inequality" published in <i>J. Inequal. Pure & Appl. Math.</i> , $7(4)$ (2006), Art. 120, an open question was posed. In this short paper, we give the solution and we generalize the results of the mentioned paper.
Acknowledgements:	The authors thank the referee for making several suggestions for improving the presentation of this paper.

journal of inequalities in pure and applied mathematics issn: 1443-5756

Contents

1]	troduction
-----	------------

2 The Answer to the Posed Question

3

4

Title Page			
Contents			
44	**		
◀	►		
Page 2 of 7			
Go Back			
Full Screen			
Close			

journal of **inequalities** in pure and applied mathematics

issn: 1443-5756

© 2007 Victoria University. All rights reserved.

1. Introduction

The following open question was proposed in the paper [1]:

Under what conditions does the inequality

(1.1)
$$\int_0^1 f^{\alpha+\beta}(x) \, dx \ge \int_0^1 x^\beta f^\alpha(x) \, dx$$

hold for α and β ?

In the above paper, the authors established some integral inequalities and derived their results using an analytic approach.

In the present paper, we give a solution and further generalization of the integral inequalities presented in [1].

journal of inequalities in pure and applied mathematics

2. The Answer to the Posed Question

Throughout this paper, we suppose that f(x) is a continuous and nonnegative function on [0, 1].

In [1]], the following lemma was proved.

Lemma 2.1. If f satisfies

(2.1)
$$\int_{x}^{1} f(t) dt \ge \frac{1-x^{2}}{2}, \quad \forall x \in [0,1],$$

then

(2.2)
$$\int_0^1 x^{\alpha+1} f(x) \, dx \ge \frac{1}{\alpha+3}, \quad \forall \alpha > 0.$$

Theorem 2.2. If the function f satisfies (2.1), then the inequality

(2.3)
$$\int_0^1 x^\beta f^\alpha(x) \, dx \ge \frac{1}{\alpha + \beta + 1}$$

holds for every real $\alpha \geq 1$ and $\beta > 0$.

Proof. Applying the AG inequality, we get

(2.4)
$$\frac{1}{\alpha}f^{\alpha}(x) + \frac{\alpha - 1}{\alpha}x^{\alpha} \ge f(x)x^{\alpha - 1}$$

Multiplying both sides of (2.4) by x^{β} and integrating the resultant inequality from 0 to 1, we obtain

(2.5)
$$\int_0^1 x^\beta f^\alpha(x) \, dx + \frac{\alpha - 1}{\alpha + \beta + 1} \ge \alpha \int_0^1 x^{\alpha + \beta - 1} f(x) \, dx.$$

journal of **inequalities** in pure and applied mathematics

Taking into account Lemma 2.1, we have

$$\int_{0}^{1} x^{\beta} f^{\alpha}(x) \, dx + \frac{\alpha - 1}{\alpha + \beta + 1} \ge \frac{\alpha}{\alpha + \beta + 1}.$$

That is,

$$\int_{0}^{1} x^{\beta} f^{\alpha}(x) \, dx \ge \frac{1}{\alpha + \beta + 1}.$$

This completes the proof.

Theorem 2.3. If the function f satisfies (2.1), then

(2.6)
$$\int_0^1 f^{\alpha+\beta}(x) \, dx \ge \int_0^1 x^\beta f^\alpha(x) \, dx$$

for every real $\alpha \geq 1$ and $\beta > 0$.

Proof. Using the AG inequality, we obtain

(2.7)
$$\frac{\alpha}{\alpha+\beta}f^{\alpha+\beta}(x) + \frac{\beta}{\alpha+\beta}x^{\alpha+\beta} \ge x^{\beta}f^{\alpha}(x).$$

Integrating both sides of (2.7), we get

(2.8)
$$\frac{\alpha}{\alpha+\beta}\int_0^1 f^{\alpha+\beta}(x)\,dx + \frac{\beta}{(\alpha+\beta)(\alpha+\beta+1)} \ge \int_0^1 x^\beta f^\alpha(x)\,dx.$$

From

$$\int_0^1 x^\beta f^\alpha(x) \, dx = \frac{\alpha}{\alpha + \beta} \int_0^1 x^\beta f^\alpha(x) \, dx + \frac{\beta}{\alpha + \beta} \int_0^1 x^\beta f^\alpha(x) \, dx$$

 \square

journal of **inequalities** in pure and applied mathematics

and by virtue of Theorem 2.3, it follows that

(2.9)
$$\int_0^1 x^\beta f^\alpha(x) \, dx \ge \frac{\alpha}{\alpha+\beta} \int_0^1 x^\beta f^\alpha(x) \, dx + \frac{\beta}{(\alpha+\beta)(\alpha+\beta+1)}.$$

From this inequality and using (2.8) we have,

$$\frac{\alpha}{\alpha+\beta}\int_{0}^{1}f^{\alpha+\beta}\left(x\right)dx \geq \frac{\alpha}{\alpha+\beta}\int_{0}^{1}x^{\beta}f^{\alpha}\left(x\right)dx$$

Thus (2.6) is proved.

Open Question Regarding an Integral Inequality K. Boukerrioua and A. Guezane-Lakoud vol. 8, iss. 3, art. 77, 2007

 \square

Title Page			
Contents			
44	••		
◀	►		
Page <mark>6</mark> of 7			
Go Back			
Full Screen			
Close			

journal of **inequalities** in pure and applied mathematics

issn: 1443-5756

© 2007 Victoria University. All rights reserved.

References

[1] Q.A. NGÔ, D.D. THANG, T.T. DAT AND D.A. TUAN, Notes On an integral inequality, J. Inequal. Pure & Appl. Math., 7(4) (2006), Art. 120. [ONLINE: http://jipam.vu.edu.au/article.php?sid=737].

K. Boukerrioua and A. Guezane-Lakoud				
vol. 8, iss. 3, art. 77, 2007				
Title Page				
Contents				
44	F			
•	►			
Page 7 of 7				
Go Back				
Full Screen				
Close				

journal of inequalities in pure and applied mathematics