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ABSTRACT. In 1967, as a converse of the arithmetic-geometric mean inequality, Mond and
Shisha gave an estimate of the difference between the arithmtic mean and the geometric one,
which we call it the Mond-Shisha difference. As an application of the Mond-Pečaríc method,
we show some order relations between the power means of positive operators on a Hilbert space.
Among others, we show that the upper bound of the difference between the arithmetic mean and
the chaotically geometric one of positive operators coincides with the Mond-Shisha difference.
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1. I NTRODUCTION

In 1960, as a converse of the arithmetic-geometric mean inequality, W. Specht [13] esti-
mated the upper bound of the arithmetic mean by the geometric one for positive numbers: For
x1, . . . , xn ∈ [m, M ] with 0 < m < M ,

(1.1) n
√

x1x2 · · ·xn ≤
x1 + x2 + · · ·+ xn

n
≤ Mh(1) n

√
x1x2 · · ·xn,

whereh = M
m

(≥ 1) is a generalized condition number in the sense of Turing [15] and the Specht
ratioMh(1) is defined forh ≥ 1 as

Mh(1) =
(h− 1)h

1
h−1

e log h
(h > 1) and M1(1) = 1.

On the other hand, Mond and Shisha [11, 12] gave an estimate of the difference between the
arithmetic mean and the geometric one: Forx1, . . . , xn ∈ [m, M ] with 0 < m < M ,

(1.2) 0 ≤ x1 + x2 + · · ·+ xn

n
− n
√

x1x2 · · ·xn ≤ L(m,M) log Mh(1),

where the logarithmic meanL(m, M) is defined for0 < m < M as

L(m,M) =
M −m

log M − log m
(M 6= m) and L(m,m) = m.

J.I. Fujii and one of the authors [1, 2] showed an operator version of the Mond-Shisha theorem
(1.2): LetA be a positive operator on a Hilbert spaceH satisfyingm ≤ A ≤ M for some scalars
0 < m < M . Then

(1.3) (Ax, x)− exp(log A x, x) ≤ L(m, M) log Mh(1)

holds for every unit vectorx in H. Incidentally, if we putA = diag(x1, x2, . . . , xn) andx =
1√
n
(1, 1, . . . , 1) in (1.3), then we have (1.2).
Next, we recall the geometric mean in the sense of Kubo-Ando theory [7]: For two positive

operatorsA andB on a Hilbert spaceH, the geometric mean and arithmetic mean ofA andB
are defined as follows:

A ]λ B = A
1
2 (A−

1
2 BA−

1
2 )λA

1
2 and A ∇λ B = (1− λ)A + λB

for λ ∈ [0, 1]. Like the numerical case, the arithmetic-geometric mean inequality holds:

(1.4) A ]λ B ≤ A ∇λ B for all λ ∈ [0, 1].

Tominaga [14] showed the following inequality, as a reverse inequality of the noncommutative
arithmetic-geometric mean inequality (1.4) which differs from (1.3): LetA andB be positive
operators on a Hilbert spaceH satisfyingm ≤ A, B ≤ M for some scalars0 < m < M . Then

(1.5) 0 ≤ A ∇λ B − A ]λ B ≤ hL(m, M) log Mh(1) for all λ ∈ [0, 1],

whereh = M
m

. It is considered as another operator version of the Mond-Shisha theorem (1.2).
On the other hand, M. Fujii and R. Nakamoto discussed the monotonicity of a family of

power means in [4]. For fixedA, B > 0 andλ ∈ [0, 1], we put

F (r) = (Ar ∇λ Br)
1
r (r 6= 0), = elog A ∇λ log B (r = 0).

Then the power meanF (r) is monotone increasing onR under the chaotic orderX � Y , i.e.,
log X ≥ log Y for X, Y > 0, [4, Lemma 2]. In particular,A ♦λ B = elog A ∇λ log B is called
the chaoticallyλ-geometric mean. In general, it does not concide withA ]λ B.

In this note, as a continuation of [3], we consider some order relations between the arithmetic
mean and the chaotically geometric one. Among others, we show that ifA andB are positive
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REVERSEINEQUALITIES ON CHAOTICALLY GEOMETRIC MEAN 3

operators on a Hilbert spaceH satisfyingm ≤ A, B ≤ M for some scalars0 < m < M and
h = M

m
, then

−L(m,M) log Mh(1) ≤ A∇λB − A♦λB ≤ L(m,M) log Mh(1) for all λ ∈ [0, 1].

Concluding this section, we have to mention that almost all results in this note are based on
our previous result [8, Corollary 4] coming from the Mond-Pečaríc method [9]. Namely this
note might be understood as an application of the Mond-Pečaríc method.

2. PRELIMINARY ON THE M OND-PEČARI Ć M ETHOD

Let A be a positive operator on a Hilbert spaceH satisfyingm ≤ A ≤ M for some scalars
0 < m < M , and letf(t) be a real valued continuous convex function on[m, M ]. Mond and
Pěcaríc [9] proved that

(2.1) 0 ≤ (f(A)x, x)− f((Ax, x)) ≤ β(m, M, f)

holds for every unit vectorx ∈ H, where

(2.2) β(m,M, f) = max

{
f(M)− f(m)

M −m
(t−m) + f(m)− f(t); t ∈ [m,M ]

}
.

Similarly, we have the following complementary result of (2.1) for a concave function. If
f(t) is concave, then

(2.3) β̄(m, M, f) ≤ (f(A)x, x)− f((Ax, x)) ≤ 0

holds for every unit vectorx ∈ H, where

(2.4) β̄(m,M, f) = min

{
f(M)− f(m)

M −m
(t−m) + f(m)− f(t); t ∈ [m, M ]

}
.

The following result is a generalization of (2.1) and based on the idea due to Furuta’s work
[5, 6]. We cite it here for convenience:

Theorem A ([8]). LetAj (j = 1, 2, . . . , k) be positive operators on a Hilbert spaceH satisfying
m ≤ Aj ≤ M for some scalars0 < m < M . Let f(t) be a real valued continuous convex
function on[m, M ]. Then

(2.5) 0 ≤
k∑

j=1

(f(Aj)xj, xj)− f

(
k∑

j=1

(Ajxj, xj)

)
≤ β(m, M, f)

holds for allk−tuples(x1, . . . , xk) in H with
∑k

j=1 ‖xj‖2 = 1, whereβ(m,M, f) is defined as
in (2.2).

For the power functionf(t) = tp, we know the following fact, which is a reverse inequality
of the Hölder-McCarthy inequality:

Theorem B. Let A be a positive operator on a Hilbert spaceH satisfyingm ≤ A ≤ M for
some scalars0 < m < M and puth = M

m
. For eachp > 1

(2.6) 0 ≤ (Apx, x)− (Ax, x)p ≤ C(m,M, p)

holds for every unit vectorx ∈ H, where the constantC(m, M, p) ([8, 16]) is defined as

(2.7) C(m,M, p) =
Mmp −mMp

M −m
+ (p− 1)

(
Mp −mp

p(M −m)

) p
p−1

for all p > 1.
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4 M. FUJII, J. MI ĆIĆ, J. PEČARIĆ, AND Y. SEO

We obtain a complement of Theorem B: Under the assumption of Theorem B, for each
0 < p < 1

(2.8) −Mp −mp

M −m
C

(
mp, Mp,

1

p

)
≤ (Apx, x)− (Ax, x)p ≤ 0

holds for every unit vectorx ∈ H. It easily can be proved by the fact thatβ̄(m,M, tp) =

−Mp−mp

M−m
C
(
mp, Mp, 1

p

)
for 0 < p < 1.

3. REVERSE I NEQUALITY ON OPERATOR CONVEXITY

Continuous functions which are convex as real functions need not be operator convex. In this
section, we estimate the bounds of the operator convexity for convex functions.

Lemma 3.1.LetA andB be positive operators on a Hilbert spaceH satisfyingm ≤ A, B ≤ M
for some scalars0 < m < M . If f(t) is a real valued continuous convex function on[m, M ],
then for eachλ ∈ [0, 1]

(3.1) −β(m, M, f) ≤ f(A)∇λf(B)− f(A∇λB) ≤ β(m, M, f),

whereβ(m, M, f) is defined as(2.2).

Proof. For each0 < λ < 1 and unit vectorx ∈ H, putA1 = A, A2 = B, x1 =
√

1− λx and
x2 =

√
λx in Theorem A. Then we have

(1− λ)(f(A)x, x) + λ(f(B)x, x) ≤ f((1− λ)(Ax, x) + λ(Bx, x)) + β(m, M, f).

Hence it follows that

(((1− λ)f(A) + λf(B))x, x) ≤ f((((1− λ)A + λB)x, x)) + β(m, M, f)

≤ (f((1− λ)A + λB)x, x) + β(m,M, f)

where the last inequality holds by the convexity off(t) [9, Theorem 1] or (2.1). Therefore we
have

f(A)∇λf(B) ≤ f(A ∇λ B) + β(m, M, f).

Next, sincef(t) is convex, it follows that

(1− λ)(f(A)x, x) + λ(f(B)x, x) ≥ (1− λ)f((Ax, x)) + λf((Bx, x))

≥ f((1− λ)(Ax, x) + λ(Bx, x)).

Since0 < m ≤ (1− λ)A + λB ≤ M , it follows from (2.1) that

f((1− λ)(Ax, x) + λ(Bx, x)) = f(((A ∇λ B)x, x))

≥ (f(A ∇λ B)x, x)− β(m,M, f)

holds for every unit vectorx ∈ H. Therefore we have

−β(m,M, f) + f(A∇λB) ≤ f(A)∇λf(B).

�

We have the following complementary result of Lemma 3.1 for concave functions.

Lemma 3.2.LetA andB be positive operators on a Hilbert spaceH satisfyingm ≤ A, B ≤ M
for some scalars0 < m < M . If f(t) is a real valued continuous concave function on[m,M ],
then for eachλ ∈ [0, 1]

(3.2) −β̄(m, M, f) ≥ f(A)∇λf(B)− f(A∇λB) ≥ β̄(m, M, f),

whereβ̄(m, M, f) is defined as(2.4).
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Next, consider the functionsf(t) = tr on [0,∞). Thenf(t) is operator concave if0 ≤ r ≤ 1,
operator convex if1 ≤ r ≤ 2, andf(t) is not operator convex but it is convex ifr > 2. By
Lemmas 3.1 and 3.2, we obtain the following reverse inequalities on operator convexity and
operator concavity forf(t) = tr.

Corollary 3.3. LetA andB be positive operators on a Hilbert spaceH satisfyingm ≤ A, B ≤
M for some scalars0 < m < M andλ ∈ [0, 1].

(i) If 0 < r ≤ 1, then

−M r −mr

M −m
C

(
mr, M r,

1

r

)
≤ Ar∇λB

r − (A∇λB)r ≤ 0.

(ii) If 1 ≤ r ≤ 2, then

0 ≤ Ar∇λB
r − (A∇λB)r ≤ C(m,M, r).

(iii) If r > 2, then

−C(m, M, r) ≤ Ar∇λB
r − (A∇λB)r ≤ C(m, M, r),

whereC(m,M, r)is defined as(2.7).

Proof. Putf(t) = tr for r > 1 in Lemma 3.1, then we obtainβ(m, M, f) = C(m, M, r). Also,
in the case of0 < r ≤ 1, we haveβ̄(m, M, f) = −Mr−mr

M−m
C(mr, mr, 1

r
) in Lemma 3.2. �

4. COMPARISON BETWEEN ARITHMETIC AND CHAOTICALLY GEOMETRIC M EANS

Let A andB be positive operators on a Hilbert spaceH andλ ∈ [0, 1]. The operator function
F (r) = (Ar∇λB

r)1/r(r ∈ R) is monotone increasing on[1,∞) and not monotone increasing
on (0, 1] under the usual order. Recently, Nakamoto and one of the authors [4] investigated
some properties of the chaotically geometric meanA♦λB = elog A∇λ log B and showed that the
operator functionF (r) is monotone increasing onR under the chaotic order andF (r) converges
to A♦λB asr → +0 in the strong operator topology.

In this section, we shall consider some order relations among the chaotically geometric mean,
the arithmetic one and the power meanF (r) by using the results in the previous section. The
obtained inequality

−L(m, M) log Mh(1) ≤ A∇λB − A♦λB ≤ L(m, M) log Mh(1)

is understood as a variant of a reverse Young inequality

0 ≤ A∇λB − A]λB ≤ hL(m, M) log Mh(1)

due to Tominaga [14], whereh = M
m

.
Firstly, by virtue of Corollary 3.3, we see an estimate of the bounds of the difference among

the family{F (r) : r > 0}. Incidentally the constantC(m, M, r) is defined as (2.7).

Theorem 4.1.LetA andB be positive operators on a Hilbert spaceH satisfyingm ≤ A, B ≤
M for some scalars0 < m < M andλ ∈ [0, 1].

(i) If 0 < r ≤ 1 ≤ s, then

−C

(
mr, M r,

1

r

)
≤ F (s)− F (r) ≤ C

(
mr, M r,

1

r

)
+

M −m

M s −ms
C(m,M, s).

(ii) If 0 < 1 ≤ r ≤ s, then

0 ≤ F (s)− F (r) ≤ M −m

M s −ms
C(m, M, s).
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(iii) If 0 < r ≤ s ≤ 1, then

|F (s)− F (r)| ≤ C

(
mr, M r,

1

r

)
+ C

(
ms, M s,

1

s

)
.

Proof. Suppose that0 < r ≤ 1 or 1 ≤ 1
r
. By (iii) of Corollary 3.3, it follows that

−C

(
m,M,

1

r

)
≤ A

1
r∇λB

1
r − (A∇λB)

1
r ≤ C

(
m,M,

1

r

)
.

We apply it tomr ≤ Ar, Br ≤ M r instead ofm ≤ A, B ≤ M . That is,

(4.1) −C

(
mr, M r,

1

r

)
≤ A∇λB − (Ar∇λB

r)
1
r ≤ C

(
mr, M r,

1

r

)
.

If s ≥ 1, then1
s
≤ 1 and by(i) of Corollary 3.3

−M1/s −m1/s

M −m
C
(
m1/s, M1/s, s

)
≤ A

1
s∇λB

1
s − (A∇λB)

1
s ≤ 0.

Sincems ≤ As, Bs ≤ M s, we have also

(4.2) − M −m

M s −ms
C (m,M, s) ≤ A∇λB − (As∇λB

s)
1
s ≤ 0.

By using (4.1) and (4.2), it follows that

−C

(
mr, M r,

1

r

)
≤ A∇λB − (Ar∇λB

r)1/r by (4.1)

≤ (As∇λB
s)1/s − (Ar∇λB

r)1/r by (4.2)

≤ A∇λB +
M −m

M s −ms
C(m, M, s)

−A∇λB + C

(
mr, M r,

1

r

)
by (4.1) and (4.2)

=
M −m

M s −ms
C(m,M, s) + C

(
mr, M r,

1

r

)
,

and hence we have(i) in the case of0 < r ≤ 1 ≤ s.
In the case of0 < 1 ≤ r ≤ s, we have1/s ≤ 1/r ≤ 1 and by (4.2)

− M −m

M s −ms
C(m,M, s) ≤ A∇λB − (As∇λB

s)1/s

and
A∇λB − (Ar∇λB

r)1/r ≤ 0.

Therefore it follows that

0 ≤ (As∇λB
s)1/s − (Ar∇λB

r)1/r

≤ A∇λB +
M −m

M s −ms
C(m, M, s)− A∇λB

≤ M −m

M s −ms
C(m,M, s).

In the case of0 < r ≤ s ≤ 1, we have1 < 1/s ≤ 1/r and by (4.1)

−C

(
mr, M r,

1

r

)
≤ A∇λB − (Ar∇λB

r)
1
r ≤ C

(
mr, M r,

1

r

)
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and

−C

(
ms, M s,

1

s

)
≤ A∇λB − (As∇λB

s)
1
s ≤ C

(
ms, M s,

1

s

)
.

Therefore it follows that

−C

(
mr, M r,

1

r

)
− C

(
ms, M s,

1

s

)
≤ (As∇λB

s)1/s − (Ar∇λB
r)1/r

≤ C

(
mr, M r,

1

r

)
+ C

(
ms, M s,

1

s

)
.

�

Though the operator functionF (r) converges toA♦λB as r → 0 in the strong operator
topology,F (s) is not generally monotone increasing on(0, 1] under the usual order. Thus, we
have the following estimation of the difference betweenF (r) andA♦λB.

Theorem 4.2.LetA andB be positive operators on a Hilbert spaceH satisfyingm ≤ A, B ≤
M for some scalars0 < m < M andλ ∈ [0, 1]. Puth = M

m
.

(i) If 0 < s < 1, then

−C

(
ms, M s,

1

s

)
− L(m, M) log Mh(1) ≤ F (s)− A♦λB

≤ C

(
ms, M s,

1

s

)
+ L(m, M) log Mh(1).

(ii) If 1 < s, then

−L(m, M) log Mh(1) ≤ F (s)− A♦λB ≤ M −m

M s −ms
C(m,M, s) + L(m,M) log Mh(1).

Proof. To prove this, we need the following facts onC(m, M, r) for 0 < m < M andr > 1 by
Yamazaki [16]:

(a) 0 ≤ C(m, M, r) ≤ M(M r−1 −mr−1) for r > 1
(b) C(m, M, r) → 0 asr → 1
(c) C

(
mr, M r, 1

r

)
→ L(m,M) log Mh(1) asr → +0.

In the case of0 < r ≤ s ≤ 1, if we putr → 0 in (iii) of Theorem 4.1, thenF (r) → A♦λB
andC

(
mr, M r, 1

r

)
→ L(m, M) log Mh(1) asr → 0. Therefore we have(i).

In the case of0 < r ≤ 1 ≤ s, if we putr → 0 in (i) of Theorem 4.1, then we have(ii). �

As a result, we obtain an operator version of the Mond-Shisha theorem (1.2):

Theorem 4.3.LetA andB be positive operators on a Hilbert spaceH satisfyingm ≤ A, B ≤
M for some scalars0 < m < M andh = M

m
. Then

−L(m, M) log Mh(1) ≤ A∇λB − A♦λB ≤ L(m, M) log Mh(1)

hold for all λ ∈ [0, 1].

Proof. SinceC(m,M, s) → 0 ass → 1, we have the conclusion by(ii) of Theorem 4.2. �

By combining Theorem 4.3 and a reverse Young inequality (1.4), we obtain an estimate of
the difference between the geometric mean and the chaotically geometric one:
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Corollary 4.4. LetA andB be positive operators on a Hilbert spaceH satisfyingm ≤ A, B ≤
M for some scalars0 < m < M andh = M

m
. Then

−(1 + h)L(m, M) log Mh(1) ≤ A]λB − A♦λB ≤ L(m, M) log Mh(1)

holds for allλ ∈ [0, 1].

Proof. SinceA]λB ≤ A∇λB, it follows from Theorem 4.3 that

A]λB − A♦λB ≤ A∇λB − A♦λB ≤ L(m,M) log Mh(1).

By Theorem 4.3 and a reverse Young inequality (1.4), it follows that

−L(m, M) log Mh(1) ≤ A∇λB − A♦λB

≤ A]λB + hL(m,M) log Mh(1)− A♦λB.

�

REFERENCES

[1] J.I. FUJII AND Y. SEO, Determinant for positive operators,Sci. Math., 1(2) (1998), 153–156.

[2] J.I. FUJII AND Y. SEO, Characterizations of chaotic order associated with the Mond-Shisha differ-
ence,Math. Inequal. Appl., 5 (2002), 725–734.

[3] M. FUJII, S.H. LEE, Y. SEOAND D. JUNG, Reverse inequalities on chaotically geometric mean
via Specht ratio,Math. Inequal. Appl., to appear.

[4] M. FUJII AND R. NAKAMOTO, A geometric mean in the Furuta inequality,Sci. Math. Japon.,
55(3) (2002), 615–621.

[5] T. FURUTA, Extensions of Hölder-McCarthy and Kantorovich inequalities and their applications,
Proc. Japan Acad., Ser. A,73 (1997), 38–41.

[6] T. FURUTA, Operator inequalities associated with Hölder-McCarthy and Kantorovich inequalities,
J. Inequal. Appl., 2 (1998), 137–148.

[7] F. KUBO AND T. ANDO, Means of positive linear operators, Math. Ann., 246(1980), 205–224.
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