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Abstract

Let A and B be positive semidefinite matrices. Assuming that the eigenvalues
of B are less than one, we prove the following trace inequalities

Tr
{

(BAαB)1/α
}
≤ Tr

{
(BAβB)1/β

}
and

Tr
{

(BAαB)1/α
}
≤ Tr

{(
Bα/βAαBα/β

)1/α
}

,

for all 0 < α ≤ β. Moreover we prove that

Tr
{(

Bα/βAαBα/β
)1/α

}
≤ Tr

{(
BAβB

)1/β
}

,

for all 0 < α ≤ β and 0 < α ≤ 1. Furthermore we prove that
(BAαB)1/α ≤ (BAβB)1/β

in the cases (a) 1 ≤ α ≤ β or (b) 1
2 ≤ α ≤ β and β ≥ 1. Further we present

counterexamples involving 2× 2 matrices showing that the last inequality is, in
general, violated in case that neither (a) nor (b) is fulfilled.

2000 Mathematics Subject Classification: 15A45, 15A90, 47A63.
Key words: Trace inequalities, Operator inequalities, Positive semidefinite matrix,

Operator monotony, Operator concavity.
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1. Introduction
Let Mn be the space ofn×n complex matrices. We say thatA ∈ Mn is positive
if A is Hermitian, that isA∗ = A, and its eigenvaluesλi(A) (i = 1, . . . , n) are
nonnegative. A positive matrixA is denoted by0 ≤ A and we say thatA ≤ B
if 0 ≤ B − A. The identity matrix is denoted byI.

Our main result is the proof of the following inequalities involving the matrix
(BAαB)1/α with α > 0:

Theorem 1.1.Let beA, B ∈ Mn with 0 ≤ A and0 ≤ B ≤ I. Defining

H(α) := (BAαB)1/α and h(α) := Tr {H(α)} ,

we prove the following operator and trace inequalities.

a) For all 1 ≤ α ≤ β we have

(1.1) H(α) ≤ H(β) .

b’) For all 1/2 ≤ α ≤ 1 andβ = 1 we have

(1.2) H(α) ≤ H(β = 1) .

b") For all 0 < α < 1/2 andβ = 1 we can find matricesA ≥ 0 and0 ≤ B ≤
I such that

(1.3) H(α) � H(β = 1) .
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b) Combining a) with b’)

(1.4) H(α) ≤ H(β)

holds for all1/2 ≤ α ≤ β andβ ≥ 1.

c) For all 0 < α ≤ β we prove that

(1.5) h(α) ≤ h(β), that is, Tr
{
(BAαB)1/α

}
≤ Tr

{
(BAβB)1/β

}
.

d) For all 0 < α ≤ β we have

(1.6) Tr
{

(BAαB)1/α
}
≤ Tr

{(
Bα/βAαBα/β

)1/α
}

.

e) For all 0 < α ≤ β and0 < α ≤ 1 we prove that

(1.7) Tr
{(

Bα/βAαBα/β
)1/α

}
≤ Tr

{(
BAβB

)1/β
}

.

Remark 1. The item a) is the main inequality of Theorem1.1. As we will see,
it is a direct consequence of the following result of F. Hansen [8]:
“ If f is an operator monotone function defined on the interval[0,∞), then
Kf(X)K∗ ≤ f(KXK∗) holds for everyX ≥ 0 and contractionK.”
See also Lemma2.1.

A proof of c) can be obtained combining a) with d) and e). More precisely,
c) follows from a) in the caseα ≥ 1 and from d) and e) in the case0 < α ≤ 1.
The author would like to thank F. Hansen for indicating a simpler proof of c)
which does not make use of d) and e). This simpler proof is presented below.
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We would like to state our discussion, motivation and background of Theo-
rem1.1as follows.

A motivation to prove the inequality (1.5) is the application of the well-
known trace inequality|Tr{X}| ≤ Tr{|X|}, X ∈ Mn for the particular case
whereX = AB with 0 ≤ A and0 ≤ B ≤ I. Here we use the definition
|X| := (X∗X)1/2. Applying this trace inequality we obtainh(1) ≤ h(2),
because:

h(1) := Tr{BAB} = Tr{AB2} = Tr{A1/2B2A1/2}(1.8)

≤ Tr{A1/2BA1/2} = Tr{AB}
≤ Tr{|AB|} = Tr{(BA2B)1/2} =: h(2) ,

where in the first inequality of (1.8) we used that0 ≤ B2 ≤ B since0 ≤ B ≤ I.
We also used that|Tr{AB}| = Tr{AB} becauseTr{AB} = Tr{A1/2BA1/2} ≥
0 since bothA andB are positive matrices. Similar to (1.8), we can also show
thath

(
1

2k+1

)
≤ h

(
1
2k

)
for k = 0, 1, 2, . . . .

Considering the special caseα = 1/2 andβ = 1 of (1.2) we can easily prove
thatH(1/2) ≤ H(1), namely:

BAB − (BA1/2B)2 = BA1/2A1/2B −BA1/2B2A1/2B

= BA1/2(I −B2)A1/2B ≥ 0 ,

because0 ≤ B ≤ I and soI −B2 ≥ 0.
Now we put the inequalities presented in Theorem1.1 in the context of

known results. More precisely, we will derive two particular cases of (1.5)
and (1.1) from [1], [3], [11], [10] and [6]. However, we need to impose some
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restrictions onA andB in the hypothesis of theorem1.1. These restrictions are
1) B is a projection and 2)0 ≤ B ≤ A ≤ I.

1) Considering the restriction thatB = P is a projection we can show the
following two particular cases of (1.5):

• The first particular case of (1.5) is

(1.9) h(1/k) ≤ h(1) for all k = 1, 2, 3, . . . .

We can derive this trace inequality using the following result by Ando,
Hiai and Okubo [1]:
“For semidefinite matricesA, B the inequaltity

Tr{Ap1Bq1 · · ·ApN BqN} ≤ Tr{AB}
holds withpi, qi ≥ 0 and

∑N
i=1 pi =

∑N
i=1 qi = 1.”

Applying this result toB = P andpi = qi = 1/k we have

h(1) = Tr{PAP} = Tr{AP} ≥ Tr
{

A
1
k P · · ·A

1
k P

}
= Tr

{(
PA

1
k P

)
· · ·

(
PA

1
k P

)}
= Tr{(PA1/kP )k} = h(1/k) ,

which proves (1.9).

• The second particular case of (1.5) is

(1.10) h(α) ≤ h(1) for all 0 < α ≤ 1 .

http://jipam.vu.edu.au/
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This trace inequality can be derived from the Berezin-Lieb inequality
([3], [11]). To understand this, recall that the Berezin-Lieb inequality
states thatTr{f(PXP )} ≤ Tr{Pf(X)P} holds ifP is a projection
andf is a convex function on an interval containing the spectrum of
X. Now takingX = Aα andf(λ) = λ1/α (0 < α ≤ 1) we obtain
(1.10), because

h(α) = Tr
{

(PAαP )1/α
}
≤ Tr{P (Aα)1/αP} = h(1).

2) Considering the restriction0 ≤ B ≤ A ≤ I we will show the following
two particular cases of (1.1):

• The first particular case of (1.1) is

(1.11) H(1) ≤ H(2), that is BAB ≤ (BA2B)1/2 .

Remark 2. Although we haveBA2B ≤ (BA2B)1/2 andBA2B ≤ BAB (since
0 ≤ A, B ≤ I) we cannot conclude from these two operator inequalities that
BAB ≤ (BA2B)1/2.

• We can derive the operator inequality (1.11) based on the following result
in Kamei [10] which is a variation of [5]:

(1.12) 0 ≤ B ≤ A assures(
Bs/2ApBs/2

) 1+s
p+s ≥ Bs/2ABs/2 for p ≥ 1 ands ≥ 0.
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To understand this, takep = s = 2 in (1.12), namely, we obtain(
BA2B

) 3
4 ≥ BAB.

On the other hand, (
BA2B

) 1
2 ≥

(
BA2B

) 3
4

becauseBA2B ≤ BIB ≤ I since0 ≤ A, B ≤ I.

• The second particular case of (1.1) is a generalization of the first one. More
precisely

(1.13) H(1) ≤ H(p), that is,BAB ≤ (BApB)1/p for all p ≥ 1.

We can obtain the above operator inequality using the following result (see
[6]) which is also a variant of [5] and a more precise estimation than (1.12):

The functionFr(p) = (BrApBr)
1+2r
p+2r for p ≥ 1, r ≥ 0(1.14)

is operator increasing as a function ofp whenever0 ≤ B ≤ A.

Now the operator inequalityH(1) ≤ H(p) follows from (1.14) setting
r = 1, that is,

(BApB)
3

p+2 = F1(p) ≥ F1(1) = BAB.

On the other hand,
(BApB)

1
p ≥ (BApB)

3
p+2

becauseBApB ≤ BIB ≤ I (0 ≤ A, B ≤ I) and3/(p + 2) ≥ 1/p for
p ≥ 1.
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We shall state the following couterexamples associated with Theorem1.1.
Counterexamples. In order to show that we cannot generally drop "Tr" from
the inequality (1.5) apart from the cases a)1 ≤ α ≤ β or b) 1/2 ≤ α ≤ β
andβ ≥ 1, consider the following concrete example of2 × 2 matrices: Let be
B :=

(
1 0
0 1/2

)
andA := 64P + Q with P := 1/2 ( 1 1

1 1 ) andQ := I − P orthog-
onal projections. Since we are working with2 × 2 matrices, we observe that
Det [H(β) − H(α)] < 0 impliesH(β) � H(α) . Based on this observation
we calculate the following determinants:

1) Det [H(1) − H(1/3)] = −81/16 ≈ −5.06 < 0

2) Det [H(2/3) − H(1/2)] = 12− 63
26

√
26 ≈ −0.36 < 0

3) Det [H(2/3) − H(1/3)] = 9− 2115
832

√
26 ≈ −3.96 < 0

4) Det [H(1/3) − H(1/6)] = −9446625/2097152 ≈ −4.5045 < 0

5) Det [H(1/2) − H(1/3)] = −225/128 ≈ −1.76 < 0

6) Det [H(4/3) − H(1/3)] ≈ −3.5 < 0

and conclude that the respective affirmatives:

1) H(β) ≥ H(α) holds for all0 < α < 1/2 andβ = 1

2) H(β) ≥ H(α) holds for all1/2 ≤ α < β < 1

3) H(β) ≥ H(α) holds for all0 < α < 1/2 < β < 1

4) H(β) ≥ H(α) holds for all0 < α < β < 1/2

http://jipam.vu.edu.au/
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5) H(β) ≥ H(α) holds for all0 < α < β = 1/2

6) H(β) ≥ H(α) holds for all0 < α < 1/2 andβ > 1

arefalse.
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2. Proof of Theorem1.1
Definition 2.1. We say that a real functionf is operator concave on the interval
I when for all real numbers0 ≤ λ ≤ 1,

f((1− λ)X + λY ) ≥ (1− λ)f(X) + λf(Y )

for every pairX, Y ∈ Mn whose spectra lie in the intervalI. Likewise we say
that f is operator monotone whenf(X) ≤ f(Y ) for every pairX, Y ∈ Mn

with X ≤ Y .

Lemma 2.1. [Operator concavity, monotony and contractions, part of Theo-
rems 2.1 and 2.5 of F. Hansen and G. K. Pedersen [9]]. Let f : [0,∞) → [0,∞)
be a continuous function then the following conditions are equivalent:

(i) f is operator concave on[0,∞) .

(ii) f is operator monotone.

(iii) Kf(X)K∗ ≤ f(KXK∗) for every contractionK (i.e. ‖K‖ ≤ 1, where
‖ · ‖ is the operator norm) and for every matrixX ≥ 0 .

(iv) Pf(X)P ≤ f(PXP ) for all projectionsP and matricesX ≥ 0 .

A functionf is called operator convex if the function−f is operator concave.

As an example of a contraction we have a matrixB ∈ Mn with 0 ≤ B ≤ I.

Lemma 2.2. Let beR,S ∈ Mn with 0 ≤ R and0 ≤ S ≤ I then the following
estimate holds for allα > 0

(2.1) Tr
{

(SRS)1/α
}
≤ Tr

{
R1/α

}
.
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mailto:mvtravaglia@unb.br
http://jipam.vu.edu.au/


On an Inequality Involving
Power and Contraction of

Matrices with and without Trace

Marcos V. Travaglia

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 12 of 19

J. Ineq. Pure and Appl. Math. 7(2) Art. 65, 2006

http://jipam.vu.edu.au

In order to give a proof of Lemma2.2 and c) of Theorem1.1, we state the
following Lemma2.3which is derived fromthe minimax principlefor the sake
of convenience for readers:

Lemma 2.3. [[ 7], Lemma 1.1]. IfA and B are n × n positive semidefinite
matrices such thatA ≥ B ≥ 0, then their eigenvalues ofA andB are ordered
as

λj(A) ≥ λj(B) for j = 1, 2, . . . , n.

Proof of Lemma2.2. First we observe that matricesXY andY X have the same
eigenvalues with the same multiplicities forX, Y ∈ Mn. Let be0 ≤ R and
0 ≤ S ≤ I and using this observation withX = SR1/2 andY = R1/2S we
have

(2.2) λi(SRS) = λi(SR1/2R1/2S) = λi(R
1/2S2R1/2)

for i = 1, 2, . . . , n. SinceS2 ≤ S ≤ I we have thatR1/2S2R1/2 ≤ R1/2R1/2 =
R. From the last operator inequality it follows from Lemma2.3 that the eigen-
values ofR1/2S2R1/2 andR are ordered as

(2.3) 0 ≤ λi(R
1/2S2R1/2) ≤ λi(R)

for i = 1, 2, . . . , n. From (2.2) and (2.3) we have for allα > 0 that

Tr{(SRS)1/α} =
n∑

i=1

λi(SRS)1/α

=
n∑

i=1

λi(R
1/2S2R1/2)1/α ≤

n∑
i=1

λi(R)1/α = Tr
{
R1/α

}
,
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which proves the Lemma2.2.

Proof of a) of (1.1) in Theorem1.1. Defining r := α/β we have0 < r ≤ 1
since0 < α ≤ β. Since the functionf(t) = tr, 0 ≤ r ≤ 1 is operator concave
(and monotone) on[0,∞) and the matrixB is a contraction we conclude by
Lemma2.1, settingX = Aβ andK = B that

(2.4) BAαB = B(Aβ)rB ≤ (BAβB)r .

holds for all0 < α ≤ β.
On the other hand using the fact that the functionf(t) = ts, 0 ≤ s ≤ 1 is

operator monotone and takings = 1/α ≤ 1 (since1 ≤ α ), it follows from
(2.4) that

(2.5) (BAαB)1/α ≤ (BAβB)r/α = (BAβB)1/β,

which proves a).

Proof of b’) and b” ) in Theorem1.1. In the case1/2 ≤ α ≤ 1 andβ = 1 we
have1 ≤ r := 1/α ≤ 2. Based on the fact that the functionf(t) = tr is
operator convex on[0,∞) if and only if 1 ≤ r ≤ 2 (see [4] Theorem V.2.9) it
follows by Lemma2.1settingX := A1/r with r := 1/α andK := B that

H(α) := (BAαB)1/α =
(
BA1/rB

)r
= (KXK∗)r

≤ KXrK∗ = BAB := H(β = 1) ,

which proves b’).
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In the case0 < α < 1/2 andβ = 1 we haver = 1/α > 2 which means
that the functionf(t) = tr is not operator convex. It follows from Lemma2.1
that we can find a matrixX ≥ 0 and a projectionP such that(PXP )1/α �
PX1/αP . TakingA = X1/α andB = P we have

H(α) := (BAαB)1/α = (PXP )1/α

� PX1/αP = BAB = H(β = 1) ,

which proves b” ).

Proof of c) in Theorem1.1. First we recall that the operator inequality (2.4),

(2.6) BAαB ≤
(
BAβB

)α/β
,

holds for all 0 < α ≤ β. From (2.6) it follows from Lemma2.3 that the
eigenvalues ofBAαB and

(
BAβB

)α/β
are ordered as

(2.7) λi(BAαB) ≤ λi((BAβB)α/β)

for i = 1, . . . , n.
From (2.6), (2.7) and since the functionf(t) = t1/α is increasing we obtain

Tr
{

(BAαB)1/α
}

=
n∑

i=1

λi(BAαB)1/α

≤
n∑

i=1

λi

((
BAβB

)α/β
)1/α

= Tr
{(

BAβB
)1/β

}
,

which proves c).
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Proof of d) in Theorem1.1. Settingr = α/β, S := B1−r andR := BrAαBr

we have0 ≤ S ≤ I (because0 < r ≤ 1) and0 ≤ R. Applying the inequality
(2.1) for this choice ofR andS we obtain

Tr
{

(BAαB)1/α
}

= Tr

{(
B1−r (BrAαBr) B1−r

)1/α
}

≤ Tr

{(
BrAαBr

)1/α
}

,(2.8)

which proves d).

Proof of e) in Theorem1.1. First we note that we can expressTr

{(
BrAαBr

)1/α
}

as a norm, namely:

(2.9) Tr

{(
BrAαBr

)1/α
}

= ‖BrAαBr‖1/α
1/α =

∥∥Br(Aβ)rBr
∥∥1/α

1/α
,

where‖ · ‖1/α is the1/α-trace norm which is an unitarily invariant norm (note
that1/α ≥ 1 since in our hypothesis0 < α ≤ 1).

On the other hand a result from [4] (Theorem IX.2.10) states that for every
unitarily invariant norm||| · ||| we have

(2.10) |||BrArBr||| ≤ |||(BAB)r|||
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for all 0 ≤ r ≤ 1 if A andB are positive matrices. It follows from (2.10) that∥∥Br(Aβ)rBr
∥∥1/α

1/α
≤

∥∥(
BAβB

)r∥∥1/α

1/α

= Tr

{∣∣∣(BAβB
)r∣∣∣1/α

}
= Tr

{(
BAβB

)r/α
}

= Tr{(BAβB)1/β}(2.11)

where we could drop the| · | within the trace in the above estimate because
BAβB is a positive matrix. Now the proof of e) in Theorem1.1follows directly
from (2.9) and (2.11).

Acknowledgments:The author was first motivated to work on the inequalities
presented in this paper during investigations on the Hubbard model together
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the model. Applying the trace inequality (1.5) for the caseβ = 1 V. Bach and
the author could reproduce a special result from V. Bach and J. Poelchau [2] for
the Hubbard model. Details on the Hubbard model and this application of the
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