Journal of Inequalities in Pure and Applied Mathematics

ON THE INEQUALITY OF P. TURÁN FOR LEGENDRE POLYNOMIALS

EUGEN CONSTANTINESCU

University of Sibiu Faculty of Sciences Department of Mathematics Str. I.Raţ nr. 7, 2400 Sibiu, Romania

EMail: egnconst68@yahoo.com

volume 6, issue 2, article 28, 2005.

Received 10 January, 2005; accepted 03 February, 2005. Communicated by: A. Lupaş

©2000 Victoria University ISSN (electronic): 1443-5756 027-05

Abstract

Our aim is to prove the inequalities

 $\frac{1-x^2}{n(n+1)}h_n \le \begin{vmatrix} P_n(x) & P_{n+1}(x) \\ P_{n-1}(x) & P_n(x) \end{vmatrix} \le \frac{1-x^2}{2}, \quad \forall x \in [-1,1], \ n = 1, 2, \dots,$

where $h_n := \sum_{k=1}^n \frac{1}{k}$ and $(P_n)_{n=0}^{\infty}$ are the Legendre polynomials . At the same time, it is shown that the sequence having as general term

 $n(n+1) \begin{vmatrix} P_n(x) & P_{n+1}(x) \\ P_{n-1}(x) & P_n(x) \end{vmatrix}$

is non-decreasing for $x \in [-1, 1]$.

2000 Mathematics Subject Classification: 33C10, 26D20.

Key words: Orthogonal polynomials, Legendre polynomials, Turán Inequality, Positivity.

Contents

1	Introduction	3
2	Main Results	5
References		

On the Inequality of P. Turán for Legendre Polynomials

J. Ineq. Pure and Appl. Math. 6(2) Art. 28, 2005 http://jipam.vu.edu.au

1. Introduction

Let $(P_n)_{n=0}^{\infty}$ be the sequence of Legendre polynomials, that is

$$P_n(x) = \frac{1}{n!2^n} \left((x^2 - 1)^n \right)^{(n)} = {}_2F_1\left(-n, n+1; 1; \frac{1-x}{2} \right),$$

where

$${}_{2}F_{1}(a,b;c;z) := \sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \cdot \frac{z^{k}}{k!},$$
$$(a)_{k} := a(a+1)\cdots(a+k-1), \quad (a)_{0} = 1.$$

Denote

$$\Delta_n(x) := \begin{vmatrix} P_n(x) & P_{n+1}(x) \\ P_{n-1}(x) & P_n(x) \end{vmatrix} = [P_n(x)]^2 - P_{n-1}(x)P_{n+1}(x).$$

Note that $P_n(1) = 1$, $P_n(-x) = (-1)^n P_n(-x)$, i.e. $\Delta_n(1) = \Delta_n(-1) = 0$. For instance

$$\Delta_1(x) = \frac{1-x^2}{2}, \quad \Delta_2(x) = \frac{1-x^4}{4}$$

Paul Turán [3] has proved the following interesting inequality

(1.1)
$$\Delta_n(x) > 0, \quad \forall x \in (-1, 1), \quad n \in \{1, 2, \dots\}$$

In [1] – [2] are given the following remarkable representations of $\Delta_n(x)$.

On the Inequality of P. Turán for Legendre Polynomials

J. Ineq. Pure and Appl. Math. 6(2) Art. 28, 2005 http://jipam.vu.edu.au

Lemma 1.1 (A. Lupaş). Suppose $\varphi(x, t) := x^2 + t(1 - x^2)$ and $P_n(x_k) = 0$. Then

(1.2)
$$\Delta_n(x) = \frac{1}{\pi n(n+1)} \int_{-1}^1 \frac{1 - P_n(\varphi(x,t))}{1 - t} \cdot \frac{dt}{\sqrt{1 - t^2}}$$

and

(1.3)
$$\Delta_n(x) = \frac{1 - x^2}{n(n+1)} \sum_{k=1}^n \left(\frac{P_n(x)}{x - x_k}\right)^2 (1 - xx_k) \ .$$

On the Inequality of P. Turán for Legendre Polynomials

J. Ineq. Pure and Appl. Math. 6(2) Art. 28, 2005 http://jipam.vu.edu.au

2. Main Results

In this article our aim is to improve the Turán inequality (1.1).

Theorem 2.1. If $x \in [-1, 1]$, $n \in \mathbb{N}$, $h_n := \sum_{k=1}^{n} \frac{1}{k}$, then

(2.1)
$$\frac{1-x^2}{n(n+1)}h_n \le \Delta_n(x) \le \frac{1-x^2}{2}.$$

Proof. Let us denote $T_k(t) = \cos(k \cdot \arccos t)$, $\gamma_0 = \frac{1}{\pi}$, $\gamma_k = \frac{2}{\pi}$ for $k \ge 1$, and $\varphi(x,t) = x^2 + t(1-x^2)$. According to addition formula for Legendre polynomials, we have

$$P_n(\varphi(x,t)) = \pi \sum_{k=0}^n \frac{(n-k)!}{(n+k)!} (1-x^2)^k \left[P_n^{(k)}(x) \right]^2 \gamma_k T_k(t).$$

If t = 1 we find

$$1 = \pi \sum_{k=0}^{n} \frac{(n-k)!}{(n+k)!} (1-x^2)^k \left[P_n^{(k)}(x) \right]^2 \gamma_k.$$

Therefore

$$\frac{1 - P_n\left(\varphi(x,t)\right)}{1 - t} = 2\sum_{k=1}^n \frac{(n-k)!}{(n+k)!} (1 - x^2)^k \left[P_n^{(k)}(x)\right]^2 \frac{1 - T_k(t)}{1 - t}$$
$$= 2\pi \sum_{k=1}^n \frac{(n-k)!}{(n+k)!} (1 - x^2)^k \left[P_n^{(k)}(x)\right]^2 \sum_{\nu=0}^k (k - \nu) \gamma_\nu T_\nu(t) + \frac{1}{2} \sum_{\nu=0}^k (k - \nu) \gamma_\nu T_\nu(t) + \frac{1}$$

On the Inequality of P. Turán for Legendre Polynomials

J. Ineq. Pure and Appl. Math. 6(2) Art. 28, 2005 http://jipam.vu.edu.au

This shows us that

$$\max_{t \in [-1,1]} \left\{ \frac{1 - P_n(\varphi(x,t))}{1 - t} \right\} = \frac{1 - P_n(\varphi(x,t))}{1 - t} \Big|_{t=1}$$
$$= (1 - x^2) P'_n(1)$$
$$= \frac{n(n+1)}{2} (1 - x^2).$$

Using the Lupas identity (1.2) we obtain

$$\Delta_n(x) \le \frac{1-x^2}{2}, \quad (n \ge 1, \quad x \in [-1,1]).$$

Taking into account the following well-known equalities

$$P_n(x) = \frac{2n-1}{n} x P_{n-1}(x) - \frac{n-1}{n} P_{n-2}(x), \quad P_0(x) = 1, \ P_1(x) = x,$$

$$(1-x^2) P'_n(x) = n \left(P_{n-1}(x) - x P_n(x) \right) = (n+1) \left(x P_n(x) - P_{n+1}(x) \right),$$

we obtain

$$k(k+1)\Delta_k(x) - (k-1)k\Delta_{k-1}(x) = (1-x^2) \left[P'_k(x)P_{k-1}(x) - P_k(x)P'_{k-1}(x) \right].$$

The Christofell-Darboux formula for Legendre polynomials enables us to write

$$k(k+1)\Delta_k(x) - (k-1)k\Delta_{k-1}(x) = \frac{1-x^2}{k}\sum_{j=0}^{k-1} (2j+1) [P_j(x)]^2, \quad k \ge 2.$$

On the Inequality of P. Turán for Legendre Polynomials

J. Ineq. Pure and Appl. Math. 6(2) Art. 28, 2005 http://jipam.vu.edu.au

By summing for $k \in \{2, 3, \ldots, n\}$ we give

$$n(n+1)\Delta_n(x) = (1-x^2)h_n + (1-x^2)\sum_{k=1}^{n-1}\frac{1}{k+1}\sum_{j=1}^k (2j+1)\left[P_j(x)\right]^2,$$

which implies $\Delta_n(x) \ge \frac{(1-x^2)h_n}{n(n+1)}$ for $x \in [-1, 1]$.

Another remark regarding $\Delta_n(x)$ is the following :

Theorem 2.2. The sequence $(n(n+1)\Delta_n(x))_{n=1}^{\infty}$, $x \in [-1,1]$, is non-decreasing, *i.e.*

$$\Delta_n(x) \ge \frac{n-1}{n+1} \Delta_{n-1}(x), \quad x \in [-1,1], \ n \ge 2$$

Proof. Let Π_m be the linear space of all polynomials, of degree $\leq m$, having real coefficients. Using a Lagrange-Hermite interpolation formula, every polynomial f from Π_{2n+1} with f(-1) = f(1) = 0 may be written as

(2.2)
$$f(x) = (1 - x^2) \sum_{k=1}^{n} \left(\frac{P_n(x)}{P'_n(x_k)(x - x_k)} \right)^2 A_k(f; x),$$

where

$$A_k(f;x) = \frac{f(x_k) + (x - x_k)f'(x_k)}{1 - x_k^2}$$

On the Inequality of P. Turán for Legendre Polynomials

J. Ineq. Pure and Appl. Math. 6(2) Art. 28, 2005 http://jipam.vu.edu.au

Let us observe that

(2.3)
$$P_{n-1}(x_k) = \frac{1 - x_k^2}{n} P'_n(x_k), \quad P_{n+1}(x_k) = -\frac{1 - x_k^2}{n+1} P'_n(x_k),$$
$$P_{n-2}(x_k) = \frac{2n - 1}{n(n-1)} x_k (1 - x_k^2) P'_n(x_k),$$
$$P'_{n-1}(x_k) = P'_{n+1}(x_k) = x_k P'_n(x_k).$$

In (2.2) let us consider $f \in \Pi_{2n}$, where

$$f(x) = n(n+1)\Delta_n(x) - n(n-1)\Delta_{n-1}(x)$$

From (2.3) we find

$$f(x_k) = \frac{(1-x_k^2)^2}{n} \left[P'_n(x_k)\right]^2, \quad f'(x_k) = 0.$$

Because $A_k(f; x) = \frac{1-x_k^2}{n} \left[P'_n(x_k) \right]^2$, using (2.2) we give

$$f(x) = \frac{1 - x^2}{n} \sum_{k=1}^n \left(\frac{P_n(x)}{x - x_k}\right)^2 (1 - x_k^2) \ge 0, \quad x \in [-1, 1].$$

Therefore

$$(n+1)\Delta_n(x) - (n-1)\Delta_{n-1}(x) \ge 0$$
 for $x \in [-1,1]$.

On the Inequality of P. Turán for Legendre Polynomials

Eugen Constantinescu

J. Ineq. Pure and Appl. Math. 6(2) Art. 28, 2005 http://jipam.vu.edu.au

References

- A. LUPAŞ, Advanced Problem 6517, Amer. Math. Monthly, (1986) p. 305; (1988) p. 264.
- [2] A. LUPAŞ, On the inequality of P. Turán for ultraspherical polynomials, in Seminar on Numerical and Statistical Calculus, University of Cluj-Napoca, Research Seminaries, Preprint Nr. 4 (1985) 82–87.
- [3] P. TURÁN, On the zeros of the polynomials of Legendre, *Časopis pro peštovani matematiky i fysky*, **75** (1950) 113–122.

On the Inequality of P. Turán for Legendre Polynomials

Eugen Constantinescu Title Page
Contents ◀◀ ▶▶
Go Back
Close
Quit

Page 9 of 9

J. Ineq. Pure and Appl. Math. 6(2) Art. 28, 2005 http://jipam.vu.edu.au