Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 6, Issue 2, Article 28, 2005

ON THE INEQUALITY OF P. TURÁN FOR LEGENDRE POLYNOMIALS

EUGEN CONSTANTINESCU

University of Sibiu
Faculty of Sciences
Department of Mathematics
Str. I.Raţ NR. 7,
2400 Sibiu, Romania
egnconst68@yahoo.com
Received 10 January, 2005; accepted 03 February, 2005
Communicated by A Lupass

Abstract. Our aim is to prove the inequalities

$$
\frac{1-x^{2}}{n(n+1)} h_{n} \leq\left|\begin{array}{ll}
P_{n}(x) & P_{n+1}(x) \\
P_{n-1}(x) & P_{n}(x)
\end{array}\right| \leq \frac{1-x^{2}}{2}, \quad \forall x \in[-1,1], n=1,2, \ldots
$$

where $h_{n}:=\sum_{k=1}^{n} \frac{1}{k}$ and $\left(P_{n}\right)_{n=0}^{\infty}$ are the Legendre polynomials. At the same time, it is shown that the sequence having as general term

$$
n(n+1)\left|\begin{array}{ll}
P_{n}(x) & P_{n+1}(x) \\
P_{n-1}(x) & P_{n}(x)
\end{array}\right|
$$

is non-decreasing for $x \in[-1,1]$.

Key words and phrases: Orthogonal polynomials, Legendre polynomials, Turán Inequality, Positivity.
2000 Mathematics Subject Classification. 33C10, 26D20.

1. Introduction

Let $\left(P_{n}\right)_{n=0}^{\infty}$ be the sequence of Legendre polynomials, that is

$$
P_{n}(x)=\frac{1}{n!2^{n}}\left(\left(x^{2}-1\right)^{n}\right)^{(n)}={ }_{2} F_{1}\left(-n, n+1 ; 1 ; \frac{1-x}{2}\right),
$$

where

$$
\begin{gathered}
{ }_{2} F_{1}(a, b ; c ; z):=\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \cdot \frac{z^{k}}{k!}, \\
(a)_{k}:=a(a+1) \cdots(a+k-1), \quad(a)_{0}=1 .
\end{gathered}
$$

[^0]Denote

$$
\Delta_{n}(x):=\left|\begin{array}{ll}
P_{n}(x) & P_{n+1}(x) \\
P_{n-1}(x) & P_{n}(x)
\end{array}\right|=\left[P_{n}(x)\right]^{2}-P_{n-1}(x) P_{n+1}(x) \text {. }
$$

Note that $P_{n}(1)=1, P_{n}(-x)=(-1)^{n} P_{n}(-x)$, i.e. $\Delta_{n}(1)=\Delta_{n}(-1)=0$. For instance

$$
\Delta_{1}(x)=\frac{1-x^{2}}{2}, \quad \Delta_{2}(x)=\frac{1-x^{4}}{4}
$$

Paul Turán [3] has proved the following interesting inequality

$$
\begin{equation*}
\Delta_{n}(x)>0, \quad \forall x \in(-1,1), \quad n \in\{1,2, \ldots\} \tag{1.1}
\end{equation*}
$$

In [1] - [2] are given the following remarkable representations of $\Delta_{n}(x)$.
Lemma 1.1 (A. Lupaş). Suppose $\varphi(x, t):=x^{2}+t\left(1-x^{2}\right)$ and $P_{n}\left(x_{k}\right)=0$. Then

$$
\begin{equation*}
\Delta_{n}(x)=\frac{1}{\pi n(n+1)} \int_{-1}^{1} \frac{1-P_{n}(\varphi(x, t))}{1-t} \cdot \frac{d t}{\sqrt{1-t^{2}}} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{n}(x)=\frac{1-x^{2}}{n(n+1)} \sum_{k=1}^{n}\left(\frac{P_{n}(x)}{x-x_{k}}\right)^{2}\left(1-x x_{k}\right) . \tag{1.3}
\end{equation*}
$$

2. Main Results

In this article our aim is to improve the Turán inequality (1.1).
Theorem 2.1. If $x \in[-1,1], n \in \mathbb{N}, h_{n}:=\sum_{k=1}^{n} \frac{1}{k}$, then

$$
\begin{equation*}
\frac{1-x^{2}}{n(n+1)} h_{n} \leq \Delta_{n}(x) \leq \frac{1-x^{2}}{2} \tag{2.1}
\end{equation*}
$$

Proof. Let us denote $T_{k}(t)=\cos (k \cdot \arccos t), \gamma_{0}=\frac{1}{\pi}, \gamma_{k}=\frac{2}{\pi}$ for $k \geq 1$, and $\varphi(x, t)=$ $x^{2}+t\left(1-x^{2}\right)$. According to addition formula for Legendre polynomials, we have

$$
P_{n}(\varphi(x, t))=\pi \sum_{k=0}^{n} \frac{(n-k)!}{(n+k)!}\left(1-x^{2}\right)^{k}\left[P_{n}^{(k)}(x)\right]^{2} \gamma_{k} T_{k}(t) .
$$

If $t=1$ we find

$$
1=\pi \sum_{k=0}^{n} \frac{(n-k)!}{(n+k)!}\left(1-x^{2}\right)^{k}\left[P_{n}^{(k)}(x)\right]^{2} \gamma_{k} .
$$

Therefore

$$
\begin{aligned}
\frac{1-P_{n}(\varphi(x, t))}{1-t} & =2 \sum_{k=1}^{n} \frac{(n-k)!}{(n+k)!}\left(1-x^{2}\right)^{k}\left[P_{n}^{(k)}(x)\right]^{2} \frac{1-T_{k}(t)}{1-t} \\
& =2 \pi \sum_{k=1}^{n} \frac{(n-k)!}{(n+k)!}\left(1-x^{2}\right)^{k}\left[P_{n}^{(k)}(x)\right]^{2} \sum_{\nu=0}^{k}(k-\nu) \gamma_{\nu} T_{\nu}(t)
\end{aligned}
$$

This shows us that

$$
\begin{aligned}
\max _{t \in[-1,1]}\left\{\frac{1-P_{n}(\varphi(x, t))}{1-t}\right\} & =\left.\frac{1-P_{n}(\varphi(x, t))}{1-t}\right|_{t=1} \\
& =\left(1-x^{2}\right) P_{n}^{\prime}(1)=\frac{n(n+1)}{2}\left(1-x^{2}\right)
\end{aligned}
$$

Using the Lupaş identity (1.2) we obtain

$$
\Delta_{n}(x) \leq \frac{1-x^{2}}{2}, \quad(n \geq 1, \quad x \in[-1,1]) .
$$

Taking into account the following well-known equalities

$$
\begin{gathered}
P_{n}(x)=\frac{2 n-1}{n} x P_{n-1}(x)-\frac{n-1}{n} P_{n-2}(x), \quad P_{0}(x)=1, P_{1}(x)=x \\
\left(1-x^{2}\right) P_{n}^{\prime}(x)=n\left(P_{n-1}(x)-x P_{n}(x)\right)=(n+1)\left(x P_{n}(x)-P_{n+1}(x)\right),
\end{gathered}
$$

we obtain

$$
k(k+1) \Delta_{k}(x)-(k-1) k \Delta_{k-1}(x)=\left(1-x^{2}\right)\left[P_{k}^{\prime}(x) P_{k-1}(x)-P_{k}(x) P_{k-1}^{\prime}(x)\right] .
$$

The Christofell-Darboux formula for Legendre polynomials enables us to write

$$
k(k+1) \Delta_{k}(x)-(k-1) k \Delta_{k-1}(x)=\frac{1-x^{2}}{k} \sum_{j=0}^{k-1}(2 j+1)\left[P_{j}(x)\right]^{2}, \quad k \geq 2 .
$$

By summing for $k \in\{2,3, \ldots, n\}$ we give

$$
n(n+1) \Delta_{n}(x)=\left(1-x^{2}\right) h_{n}+\left(1-x^{2}\right) \sum_{k=1}^{n-1} \frac{1}{k+1} \sum_{j=1}^{k}(2 j+1)\left[P_{j}(x)\right]^{2},
$$

which implies $\Delta_{n}(x) \geq \frac{\left(1-x^{2}\right) h_{n}}{n(n+1)}$ for $x \in[-1,1]$.
Another remark regarding $\Delta_{n}(x)$ is the following :
Theorem 2.2. The sequence $\left(n(n+1) \Delta_{n}(x)\right)_{n=1}^{\infty}, x \in[-1,1]$, is non-decreasing, i.e.

$$
\Delta_{n}(x) \geq \frac{n-1}{n+1} \Delta_{n-1}(x), \quad x \in[-1,1], n \geq 2 .
$$

Proof. Let Π_{m} be the linear space of all polynomials, of degree $\leq m$, having real coefficients. Using a Lagrange-Hermite interpolation formula, every polynomial f from $\Pi_{2 n+1}$ with $f(-1)=f(1)=0$ may be written as

$$
\begin{equation*}
f(x)=\left(1-x^{2}\right) \sum_{k=1}^{n}\left(\frac{P_{n}(x)}{P_{n}^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)}\right)^{2} A_{k}(f ; x), \tag{2.2}
\end{equation*}
$$

where

$$
A_{k}(f ; x)=\frac{f\left(x_{k}\right)+\left(x-x_{k}\right) f^{\prime}\left(x_{k}\right)}{1-x_{k}^{2}} .
$$

Let us observe that

$$
\begin{align*}
& P_{n-1}\left(x_{k}\right)=\frac{1-x_{k}^{2}}{n} P_{n}^{\prime}\left(x_{k}\right), \quad P_{n+1}\left(x_{k}\right)=-\frac{1-x_{k}^{2}}{n+1} P_{n}^{\prime}\left(x_{k}\right), \\
& P_{n-2}\left(x_{k}\right)=\frac{2 n-1}{n(n-1)} x_{k}\left(1-x_{k}^{2}\right) P_{n}^{\prime}\left(x_{k}\right), \tag{2.3}\\
& P_{n-1}^{\prime}\left(x_{k}\right)=P_{n+1}^{\prime}\left(x_{k}\right)=x_{k} P_{n}^{\prime}\left(x_{k}\right) .
\end{align*}
$$

In (2.2) let us consider $f \in \Pi_{2 n}$, where

$$
f(x)=n(n+1) \Delta_{n}(x)-n(n-1) \Delta_{n-1}(x) .
$$

From (2.3) we find

$$
f\left(x_{k}\right)=\frac{\left(1-x_{k}^{2}\right)^{2}}{n}\left[P_{n}^{\prime}\left(x_{k}\right)\right]^{2}, \quad f^{\prime}\left(x_{k}\right)=0 .
$$

Because $A_{k}(f ; x)=\frac{1-x_{k}^{2}}{n}\left[P_{n}^{\prime}\left(x_{k}\right)\right]^{2}$, using 2.2 we give

$$
f(x)=\frac{1-x^{2}}{n} \sum_{k=1}^{n}\left(\frac{P_{n}(x)}{x-x_{k}}\right)^{2}\left(1-x_{k}^{2}\right) \geq 0, \quad x \in[-1,1] .
$$

Therefore

$$
(n+1) \Delta_{n}(x)-(n-1) \Delta_{n-1}(x) \geq 0 \quad \text { for } \quad x \in[-1,1] .
$$

References

[1] A. LUPAŞ, Advanced Problem 6517, Amer. Math. Monthly, (1986) p. 305; (1988) p. 264.
[2] A. LUPAŞ, On the inequality of P. Turán for ultraspherical polynomials, in Seminar on Numerical and Statistical Calculus, University of Cluj-Napoca, Research Seminaries, Preprint Nr. 4 (1985) 82-87.
[3] P. TURÁN, On the zeros of the polynomials of Legendre, C̆asopis pro pestovani matematiky ifysky, 75 (1950) 113-122.

[^0]: ISSN (electronic): 1443-5756
 (C) 2005 Victoria University. All rights reserved.

 027-05

