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Abstract

If cn denotes the n-th composed number, one proves inequalities involving
cn, pcn , cpn , and one shows that the sequences (pn)n≥1 and (cpn)n≥1 are nei-
ther convex nor concave.
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1. Introduction
We are going to use the following notation

π(x) the number of prime numbers≤ x,

C(x) the number of composed numbers≤ x,

pn then-th prime number,

cn then-th composed number; c1 = 4, c2 = 6, . . . ,

log2 n = log(log n).

Forx ≥ 1 we have the relation

(1.1) π(x) + C(x) + 1 = [x].

Bojarincev proved (see [1], [4]) that
(1.2)

cn = n

(
1 +

1

log n
+

2

log2 n
+

4

log3 n
+

19

2
· 1

log4 n
+

181

6
· 1

log5 n
+o

(
1

log5 n

))
.

Let us remark that

(1.3) ck+1 − ck =

{
1 if ck + 1 is composed,
2 if ck + 1 is prime.

In the proofs from the present paper, we shall need the following facts related
to π(x) andpn:

(1.4) forx ≥ 67, π(x) >
x

log x− 0.5
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(see [7]);

(1.5) forx ≥ 3299, π(x) >
x

log x− 28
29

(see [6]);

(1.6) forx ≥ 4, π(x) <
x

log x− 1.12

(see [6]);

(1.7) forn ≥ 1, π(x) =
x

log x

n∑
k=0

k!

logk x
+ O

(
x

logn+1 x

)
,

(1.8) forn ≥ 2, pn > n(log n + log2 n− 1)

(see [2] and [3]);

(1.9) forn ≥ 6, pn < n(log n + log2 n)

(see [7]).
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2. Inequalities Involving cn

Property 2.1. We have

(2.1) n

(
1 +

1

log n
+

3

log2 n

)
> cn > n

(
1 +

1

log n
+

1

log2 n

)
whenevern ≥ 4.

Proof. If we takex = cn in (1.1), then we get

(2.2) π(cn) + n + 1 = cn.

Now (1.4) implies that forn ≥ 48 we have

cn > n + π(cn) > n +
n

log n

and then

cn > n + π(cn) > n + π

(
n

(
1 +

1

log n

))

> n +
n

(
1 + 1

log n

)
log n + log

(
1 + 1

log n

)
− 0.5

> n +
n

(
1 + 1

log n

)
log n

= n

(
1 +

1

log n
+

1

log2 n

)
.
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By (1.6) and (2.2) it follows that

cn ·
log cn − 2.12

log cn − 1.12
< n + 1.

Sincecn > n, it follows that log cn−2.12
log cn−1.12

> log n−2.12
log n−1.12

hence

(2.3) n + 1 > cn ·
log n− 2.12

log n− 1.12
.

Assume that there would existn ≥ 1747 such that

cn ≥ n

(
1 +

1

log n
+

3

log2 n

)
.

Then a direct computation shows that(12) implies

1

n
≥ 0.88 log n− 6.36

log2 n(log n− 1.12)
.

Forn ≥ 1747, one easily shows that0.88 log n−6.36
log n−1.12

> 1
31

, hence1
n

> 1
31 log2 n

. But

this is impossible, since forn ≥ 1724 we have1
n

< 1
31 log2 n

.

Consequently we havecn < n
(
1 + 1

log n
+ 3

log2 n

)
. By checking the cases

whenn ≤ 1746, one completely proves the stated inequalities.

Property 2.2. If n ≥ 30, 398, then the inequality

pn > cn log cn

holds.
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Laurenţiu Panaitopol

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 7 of 13

J. Ineq. Pure and Appl. Math. 2(3) Art. 38, 2001

http://jipam.vu.edu.au

Proof. We use (1.8), (2.1) and the inequalities

log

(
1 +

1

log n
+

3

log2 n

)
<

1

log n
+

3

log2 n
,

and

n(log n+log log n−1) > n

(
1 +

1

log n
+

3

log2 n

) (
log n +

1

log n
+

3

log2 n

)
,

that islog log n > 2 + 4
log n

+ 4
log2 n

+ 6
log3 n

+ 9
log4 n

, which holds ifn ≥ 61, 800.
Now the proof can be completed by checking the remaining cases.

Proposition 2.1. We have
π(n)pn > c2

n

whenevern ≥ 19, 421.

Proof. In view of the inequalities (1.5), (1.8) and (2.1), for n ≥ 3299 it remains

to prove thatlog n+log2 n−1

log n− 28
29

>
(
1 + 1

log n
+ 3

log2 n

)2

, that is

log log n >
59

29
+

5.069

log n
− 0.758

log2 n
+

3.207

log3 n
− 8.68

log4 n
.

It suffices to show that

log log n >
59

29
+

5.069

log n
.

For n = 130, 000, one gets2.466 · · · > 2.4649 . . . . The checking of the cases
whenn < 130, 000 completes the proof.
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3. Inequalities Involving cpn and pcn

Proposition 3.1. We have

(3.1) pn + n < cpn < pn + n + π(n)

for n sufficiently large.

Proof. By (1.2) and (1.7) it follows that forn sufficiently large we havecn =

n + π(n) + n
log2 n

+ O
(

n
log3 n

)
, hence

(3.2) cpn = pn + n +
pn

log2 pn

+ O

(
n

log2 n

)
.

Thus forn large enough we havecpn > pn + n.
Since the functionx 7→ x

log2 x
is increasing, one gets by (1.9)

pn

log2 pn

<
n(log n + log2 n)

(log n + log(log n + log2 n))2

<
n(log n + log2 n)

log n(log n + 2 log2 n)

< n ·
log n− 1

2
log2 n

log2 n

= π(n)− 1

2
· n log2 n

log2 n
+ O

(
n

log2 n

)
.

Both this inequality and (3.2) show that forn sufficiently large we have indeed
cpn < pn + n + π(n).
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Proposition 3.2. If n is large enough, then the inequality

pcn > cpn

holds.

Proof. By (2.1) it follows that

(3.3) cpn = π(cpn) + pn + 1.

Now (3.1) and (3.3) imply that forn sufficiently large we haveπ(cpn) < n +
π(n). But by (2.1) it follows that cn > n + π(n), hencecn > π(cpn). If we
assume thatcpn > pcn, then we obtain the contradictionπ(cpn) ≥ π(pcn) = cn.
Consequently we must havecpn < pcn.

It is easy to show that the sequence(cn)n≥1 is neither convex nor concave.
We are lead to the same conclusion by studying the sequences(cpn)n≥1 and
(pcn)n≥1. Let us say that a sequence(an)n≥1 has the propertyP when the
inequality

an+1 − 2an + an−1 > 0

holds for infinitely many indices and the inequality

an+1 − 2an + an−1 < 0

holds also for infinitely many indices. Then we can prove the following fact.

Proposition 3.3. Both sequences(cpn)n≥1 and(pcn)n≥1 have the propertyP .

In order to prove it we need the following auxiliary result.
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Lemma 3.4. If the sequence(an)n≥n1 is convex, then form > n ≥ n1 we have

(3.4)
am − an

m− n
≥ an+1 − an.

If the sequence(an)n≥n2 is concave, then forn > p ≥ n2 we have

(3.5)
an − ap

n− p
≥ an+1 − an

wheneverm > n ≥ n1.

Proof. In the first case, fori ≥ n we haveai+1 − ai ≥ an+1 − an, hence∑m−1
i=n (ai+1− ai) ≥ (m−n)(an+1− an), that is (3.4). The inequality (3.5) can

be proved similarly.

Proof of Proposition3.3. Erdös proved in [3] that, with dn = pn+1 − pn, we
have
lim supn→∞

min(dn,dn+1)
log n

= ∞. In particular, the setM = {n | min(dn, dn+1) >

2 log n} is infinite.
For everyn, at least one of the numbersn andn + 1 is composed, that is,

eithern = cm or n + 1 = cm for somem. Consequently, there exist infinitely
many indicesm such thatpcm+1 − pcm > 2 log cm. Sincecm+1 ≥ cm + 1 and
cm > m, we get infinitely many values ofm such that

(3.6) pcm+1 − pcm > 2 log m.

Let M ′ be the set of these numbersm.
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If we assume that the sequence(pcn)n≥n1 is convex, then (3.4) implies that
for m ∈ M ′ we have

pc2m − pcm

m
≥ pcm+1 − pcm > 2 log m,

hencepc2m > 2m log m + pcm. But this is a contradiction becausecn ∼ n and
pn ∼ n log n, that ispc2m ∼ 2m log 2m andpcm ∼ m log m.

On the other hand, if we assume that the sequence(pcn)n≥n2 is concave, then
(3.5) implies that forx ∈ M ′ we have

pcm − pc[m/2]

m−
[

m
2

] ≥ pcm+1 − pcm > 2 log m,

that is

1 >
2
(
m−

[
m
2

])
log m + pc[m/2]

pcm

.

For m → ∞, m ∈ M ′, the last inequality implies the contradiction1 ≥ 1 + 1
2
.

Consequently the sequence(pcn)n≥1 has the propertyP .
Now let us assume that the sequence(cpn)n≥n1 is convex. Then forn ∈ M ,

n ≥ n1, we get by (3.4)

cp2n − cpn

n
≥ cpn+1 − cpn ≥ pn+1 − pn > 2 log n.

If we taken →∞, n ∈ M , in the inequality1 > (2n log n+ cpn)/cp2n, then we
obtain the contradiction1 ≥ 3

2
.
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Finally, if we assume that the sequence(cpn)n≥n2 is concave, then (3.5) im-
plies that forn ∈ M , n ≥ n2, we have

cpn − cp[n/2]

n−
[

n
2

] ≥ cpn+1 − cpn ≥ pn+1 − pn > 2 log n,

which is again a contradiction.
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Laurenţiu Panaitopol

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 13 of 13

J. Ineq. Pure and Appl. Math. 2(3) Art. 38, 2001

http://jipam.vu.edu.au

References
[1] A.E. BOJARINCEV, Asymptotic expressions for thenth composite num-

ber,Ural. Gos. Univ. Mat. Zap.,6 (1967), 21–43 (in Russian).

[2] P. DUSART, Thekth prime is greater thank(ln k + ln ln k − 1) for k ≥ 2,
Math. Comp.,68 (1999), no. 225, 411–415.

[3] P. ERDÖS, Problems and results on the differences of consecutive primes,
Publ. Math. Debrecen,1 (1949), 33–37.

[4] J.-P. MASSIASAND G. ROBIN, Bornes effectives pour certaines fonctions
concernant les nombres premiers,J. Théor. Nombres Bordeaux,8 (1996),
215–242.
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