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Abstract

If ¢, denotes the n-th composed number, one proves inequalities involving
Cns Pen, Cpyy @NA ONE shows that the sequences (p,)n>1 and (cp, )n>1 are nei-
ther convex nor concave.
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We are going to use the following notation

7(x) the number of prime numbers z,
C'(z) the number of composed numbessz,
p, then-th prime number,
¢, then-th composed number; =4,¢, =6, .. .,
log, n = log(logn).

Forz > 1 we have the relation

(1.1) m(z)+ C(x) + 1 = [z].
Bojarincev proved (se€e], [4]) that
(1.2)
1+1_1_2_1_4+19 1+1811+(1))
Ch="n ‘ —- — 0 .
logn  logn logn 2 log'n 6 log°n log®n

Let us remark that

{ 1 if ¢, + 1is composed
Ck+1 — Ck =

(1.3) 2 if ¢ + 1is prime

In the proofs from the present paper, we shall need the following facts related
to 7(z) andp,:
T

14 forz > _
(1.4) orr > 67, W(x)>logx—0.5
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(see [1);

(1.5)

(see b))
(1.6)

(see []);

a.7) forn>1, =(x)=

(1.8)
(see [] and [3]);
(1.9)

(see []).

forz > 3299, m(x)

forx >4, n(z)

forn > 2,

forn > 6,

T

> —
logx — %

- x
logx — 1.12

T o K
+0 | ——
log Z log® = (log"Jrl x

k=0

pn > n(logn + logyn — 1)

pn < n(logn + log,n)

X

)
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Property 2.1. We have

(2.1) n (1 +

wheneven > 4.

logn

Proof. If we takex = ¢, in (1.1), then we get

(2.2)

3 1
+ 5 )>cn>n(1—|— +
log”n logn

w(cn) +n+1=c,.

Now (1.4) implies that forn > 48 we have

and then

Cn >n+m(e,) >n+

cn>n+7r(cn)>n—|—7r(n (1—|—

>n—+

>n+

:n<

n(l—i— 1

log

)

logn

logn

logn + log

logn

n(l—i— L

logn
1

14+ —+
logn

1

(14 k) — 05

)

1

log®n

)

1

log®n

))

)
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By (1.6) and @.2) it follows that

log c,, — 2.12

< 1.
logc, —1.12 n

Cp

; logcn 2.12 logn—2.12
Sincec, > n, it follows that 2> > Togn 112 hence

logn — 2.12
logn —1.12°

Assume that there would exist> 1747 such that

1 3
cp>nll+ + 5 )
logn  log“n

Then a direct computation shows ttia2) implies

1 S 0.88logn — 6.36
n ~ log’n(logn — 1.12)°

(2.3) n+1>c,-

H 8logn—6.3 1
Forn > 1747, one easily shows théblgi1 5o > 31, hence— > 311 T

this is impossible, since for > 1724 we have— <

. But

3110g n'

Consequently we have, < n (1 + 5 + bg%ﬂ) By checking the cases

whenn < 1746, one completely proves the stated inequalities. O
Property 2.2. If n > 30, 398, then the inequality
Pn > cploge,

holds.
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Proof. We use (.9), (2.1) and the inequalities

log [ 1+ + ’ < ! + 5
& logn  log’n logn  log*n’

and

1 3 1 3
n(logn+loglogn—1) >n {1+ + — logn + —— + —— |,
logn  log“n logn  log“n

that isloglogn > 2+ 1ogn + i S+ g%, +: g94 which holds ifn > 61, 800.
Now the proof can be completed by checklng the remaining cases. [

Proposition 2.1. We have
(n)pn > 2
whenevern > 19, 421.

Proof. In view of the inequalitiesX(. 5) (1. 8) and @.1), for n > 3299 it remains

to prove thatl"g”“¢%§1 > (1 + oo + ) that is
loe ] - 59 L 5.069  0.758  3.207 8.68
og logn — — — .
6708 20 logn log’n log’n log'n
It suffices to show that
ool - 59 L 5.069
0g 10gn — .
6708 29  logn
Forn = 130,000, one get.466 - - - > 2.4649 . ... The checking of the cases
whenn < 130,000 completes the proof. O
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Proposition 3.1. We have
(3.1) Pnt+n<cp, <pn+n+m(n)
for n sufficiently large.

Proof. By (1.2) and (L.7) it follows that forn sufficiently large we have, =

n—i—7r(n)—|—log n+0< ) hence
(3.2) Cp, = Dn + 1+ p2n —I—O( n2 )
log” py, log®n

Thus forn large enough we ha\@n > pp + n.
Since the function: — Tor % Is increasing, one gets by.Q)

Dn n(logn + log, n)
logZp,  (logn + log(logn + log, n))?
n(logn + log, n)
logn(logn + 2log, n)

loen — Llog, n
<n- g 2 g2

log*n

1 nlogyn n
- = +0 .
2 log’n (log2 n)
Both this inequality and3.2) show that fom sufficiently large we have indeed
e < Do+ (n). O

= n(n)
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Proposition 3.2. If n is large enough, then the inequality

an > Cpn
holds.
Proof. By (2.1) it follows that

(3'3) Cpn = W(Cpn) +pn + 1

Now (3.1) and @.3) imply that forn sufficiently large we have(c,,) < n +
m(n). But by 2.1) it follows thatc, > n + m(n), hencec,, > 7(c,,). If we
assume that,, > p.,, then we obtain the contradictiot{c,,) > 7(p.,) = cx.
Consequently we must havg, < p.,. H

It is easy to show that the sequer(cg),.>1 is neither convex nor concave.

We are lead to the same conclusion by studying the sequénggs-, and
(pe,)n>1. Let us say that a sequence,),>1 has the property? when the
inequality

Qi1 — 20n, + ap—1 >0

holds for infinitely many indices and the inequality

Ap41 — 2a, + a,—1 <0

holds also for infinitely many indices. Then we can prove the following fact.

Proposition 3.3. Both sequences;,, ),>1 and(p., )»>1 have the property’.

In order to prove it we need the following auxiliary result.
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Lemma 3.4. If the sequencéu,),.>,, IS convex, then fom > n > n, we have

Ay — Qp

(3.4) > Apy1 — .

m—-n

If the sequencéu,,),>n, iS concave, then fot > p > n, we have

(3.5) "D > et — an
n—p

wheneverm > n > n;.

Proof. In the first case, foi > n we havea;,; — a; > a,.1 — a,, hence
S Nagyr — a;) > (m—n)(ans1 — an), thatis @.4). The inequality 8.5) can

be proved similarly. ]
Proof of Propositior3.3. Erdds proved ind] that, withd,, = p,.1 — p,, we
have
lim sup,, ., —min({i ng’i"“)
2logn} isinfinite.

For everyn, at least one of the numbernsandn + 1 is composed, that is,
eithern = ¢,, orn + 1 = ¢, for somem. Consequently, there exist infinitely

many indicesn such thatp,., .1 — p.,, > 2logc,,. Sincec,,+1 > ¢, + 1 and
cm > m, We get infinitely many values of. such that

= oo. In particular, the set/ = {n | min(d,,, d,+1) >

(3.6) Pemsr — Penn > 21logm.

Let M’ be the set of these numbers
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If we assume that the sequenge, ).>,, is convex, then3.4) implies that
form € M’ we have

Peory — Pe

Z pc7n+1 _pcm > 210gm7
m

hencep.,, > 2mlogm + p.,, . Butthis is a contradiction becausg ~ n and
pn ~ nlogn, thatisp,,, ~ 2mlog2m andp.,, ~ mlogm.

On the other hand, if we assume that the sequéngé, -, is concave, then
(3.5 implies that forz € M’ we have

DPec,, — Peim/2]

m— 5]

2 pcm+1 — Pen > 2 log m,

that is

2 (m — [3]) logm + pem,2)

Pem '
Form — oo, m € M’, the last inequality implies the contradictiorn> 1 + %
Consequently the sequenge, ),.>1 has the property.

Now let us assume that the sequefgg).,,>,, is convex. Then fon € M,
n > ny, we get by 8.4)

1>

Cp n___ Cpn
2T > Cpni1 — Cpp > Pn41 — Pn > 210g n.

If we taken — oo, n € M, inthe inequalityl > (2nlogn+c,,)/cp,,, then we
obtain the contradictiom > 2.
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Finally, if we assume that the sequerieg, ),,>», iS concave, then3(5) im-
plies that forn € M, n > n,, we have

Cpn, — Cpyy,y,
% Z Cpn+1 - Cpn Z pn-i-l _p’l’b > 210gn7
n—[3]
which is again a contradiction. O
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