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Abstract

M. and S. Izumi [2] and the present author [7] have extended certain theorems
of R.P. Boas [1] concerning to the Fourier coefficients of functions belonging to
the Lipschitz classes. Very recently L. Leindler [6] has given further general-
ization using the so called quasi power-monotone sequences. The goal of the
present work is to prove further theorems similar to those of L. Leindler.

2000 Mathematics Subject Classification: 26A16, 26A15, 40A05.
Key words: Fourier series, Fourier coefficients, modulus of continuity, quasi power-

monotone sequences.

This research was partially supported by the Hungarian National Foundation for Sci-
entific Research under Grant # T029094.
Dedicated to Professor L. Leindler on his 65th birthday

Contents
1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Notions and Notations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Theorems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4 Lemmas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
5 Proof of the Theorems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
References

http://jipam.vu.edu.au/
mailto:nemethj@math.u-szeged.hu
http://jipam.vu.edu.au/
http://www.ams.org/msc/


Power-Monotone Sequences
and Fourier Series with Positive

Coefficients

J. Németh

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 3 of 23

J. Ineq. Pure and Appl. Math. 2(2) Art. 14, 2001

http://jipam.vu.edu.au

1. Introduction
In 1967 R.P. Boas [1] proved a series of theorems on the connection between the
magnitude of the Fourier-coefficients of a functionf and its structural properties
described by the modulus of continuity. Namely, he investigated the function
classesLipα and the Zygmund class from this point of view. In 1969 M. and S.
Izumi [2] generalized these results for the case0 < α < 1 and for the Zygmund
class. They used in the definition of these classes a functionj(t), which is
more a general function thantα. In 1990 Boas’s results were also generalized
by the present author [7] using the so called generalized Lipschitz and Zygmund
classes replacing the functiontα (0 < α ≤ 1) by the more general function of
moduli of continuity:ωα(t) (0 ≤ α ≤ 1).

Very recently, L. Leindler [6] has given generalization of two of our theo-
rems of the type mentioned above, using the so called quasi power-monotone
sequences. His results contain our theorems for the case0 < α < 1 and in the
caseα = 1 for the sine series. It should be noted that it can easily be proved that
Leindler’s theorems contain the main results of M. and S. Izumi, too. In other
words it turns out that the common root of the two directions of generalizations
given by M. and S. Izumi and the present author is tightly connected with the
main properties of the quasi power-monotone sequences.

The object of this paper is to prove two further theorems using Leindler’s
method for the caseωα(t) if α = 0 and for the generalized Zygmund class,
showing again the utility of the concept of quasi power-monotone sequences in
unifying the earlier completely different directions of generalization concerning
Boas’s results. These results are the generalizations of further theorems of M.
and S. Izumi and ours.
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The idea of writing this paper originated from L. Leindler’s intention drawn
up in his recent paper [6].

http://jipam.vu.edu.au/
mailto:nemethj@math.u-szeged.hu
http://jipam.vu.edu.au/


Power-Monotone Sequences
and Fourier Series with Positive

Coefficients

J. Németh

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 5 of 23

J. Ineq. Pure and Appl. Math. 2(2) Art. 14, 2001

http://jipam.vu.edu.au

2. Notions and Notations
Before formulating the known and new results we recall some definitions and
notations.

Let ω(δ) be a modulus of continuity, i.e. a nondecreasing function on the
interval[0, 2π] having the properties:ω(0) = 0, ω(δ1 + δ2) ≤ ω(δ1) + ω(δ2).

Denoteω(f ; δ) andω(2)(f ; δ) the modulus of continuity and the modulus of
continuity of second order of a functionf, respectively.

L. Leindler [3] introduced the following function classes. LetΩα (0 ≤ α ≤
1) denote the set of the moduli of continuityω(δ) = ωα(δ) having the following
properties:

(1) for anyα′ > α there exists a natural numberµ = µ(α′) such that

(2.1) 2µα′
ωα(2−n−µ) > 2ωα(2−n) holds for alln(≥ 1),

(2) for every natural numberν there exists a natural numberN := N(ν) such
that

(2.2) 2ναωα(2−n−ν) ≤ 2ωα(2−n), if n > N.

For anyωα ∈ Ωα the classesHωα , and(Hω1)∗, i.e.

Hωα := {f : ω(f ; δ) = O(ωα(δ))}

and
(Hω1)∗ := {f : ω(2)(f ; δ) = O(ω1(δ))}
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will be called generalized Lipschitz and Zygmund classes, respectively.
M. and S. Izumi [2], introduced the following function classes. Letj(t) be a

positive and non-decreasing function defined on the interval(0, 1). TheLipj(t)
andΛ(j(t)) classes are defined as follows:

Lipj(t) : =

{
f : sup

t,x

(
|f(x + t)− f(x)|

j(t)

)
< ∞

}
;

Λ(j(t)) : =

{
f : sup

t,x

(
|f(x + t)− 2f(x) + f(x− t)|

j(t)

)
< ∞

}
.

(Further conditions required onj(t) will be detailed later in the next paragraph.)
We shall say that a sequenceγ := {γn} of positive terms is quasiβ-power-

monotone increasing (decreasing) if there exists a natural numberN := N(β, γ)
and constantK := K(β, γ) ≥ 1 such that

(2.3) Knβγn ≥ mβγm, (nβγn ≤ Kmβγm)

holds for anyn ≥ m ≥ N.
Here and in what followsK andKi denote positive constants that are not

necessarily the same at each occurrence.
If (2.3) holds withβ = 0 then we omit the attribute “β-power” in the in-

equality.
Furthermore, we shall say that a sequenceγ := {γn} of positive terms is

quasi geometrically increasing (decreasing) if there exist natural numbersµ :=
µ(γ), N := N(γ) and a constantK := K(γ) ≥ 1 such that

(2.4) γn+µ ≥ 2γn andγn ≤ Kγn+1,

(
γn+µ ≤

1

2
γn andγn+1 ≤ Kγn

)
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hold for alln ≥ N.

Finally a sequence{γn} will be called bounded by blocks if the inequalities

α1Γ
(k)
m ≤ γn ≤ α2Γ

(k)
M , 0 < α1 ≤ α2 < ∞

hold for any2k ≤ n ≤ 2k+1, k = 1, 2, . . . , where

Γ(k)
m := min(γ2k , γ2k+1) andΓ

(k)
M := max(γ2k , γ2k+1).
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3. Theorems
To begin with, we recall one theorem of M. and S. Izumi [2], two of ours [7]
and finally one of Leindler’s theorems [6].

Throughout the rest of this paperg(x), f(x), ϕ(x) will denote continuous
2π periodic functions; furthermoreg(x) andf(x) always denote odd and even
functions, respectively.ϕ(x) will denote either an odd or an even function while
λn will denote the Fourier coefficients ofg(x), f(x) or ϕ(x).

Theorem 3.1. ([2]). Let λn ≥ 0 and letj(t) be a positive and nondecreasing
function in the interval(0, 1), satisfying the conditions

(3.1)
∫ t

0

j(u)u−1du ≤ Kj(t) as t → 0,

and

(3.2)
∫ 1

t

j(u)u−3du ≤ Kj(t)t−2 as t → 0.

Thenϕ ∈ Λ(j(t)) if and only if

(3.3)
n∑

k=n/2

λk ≤ Kj

(
1

n

)
as n →∞.

It should be noted that by (3.1) the condition (3.3) is equivalent to

(3.4)
∞∑

k=n

λk ≤ Kj

(
1

n

)
as n →∞.
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Furthermore, in its original form this theorem seems to be slightly more general,
since the continuity ofϕ is not mentioned, although in the definition ofΛ(t)
given by Zygmund [9] this additional condition is assumed.

Theorem 3.2. ([7]). Let λn ≥ 0. Then

(3.5) ϕ ∈ (Hω1)∗

if and only if

(3.6)
∞∑

k=n

λk = O

(
ω1

(
1

n

))
.

Theorem 3.3. ([7]). Let λn ≥ 0. Then

(3.7) f ∈ Hω0

if and only if

(3.8)
∞∑

k=n

λn = O

(
ω0

(
1

n

))
.

Furthermore,

(3.9) g ∈ Hω0

implies

(3.10)
n∑

k=n

kλk = O

(
nω0

(
1

n

))
,
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and from

(3.11)
∞∑

k=n

λk = O

(
ω0

(
1

n

))
,

(3.12) g ∈ Hω0

follows.

Theorem 3.4. ([6]). Assume that a given positive sequence{γn} has the fol-
lowing properties. There exists a positiveε such that:

(P+) the sequence{nεγn} is quasi monotone decreasing and

(P−) the sequence{n1−εγn} is quasi monotone increasing.

If λn ≥ 0, then

(3.13) ω

(
ϕ,

1

n

)
= O(γn)

if and only if

(3.14)
∞∑

k=n

λk = O(γn)

or, equivalently,

(3.15)
n∑

k=1

kλk = O(nγn).
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As we mentioned earlier, Theorem3.4 contains one of theorems of M. and
S. Izumi (see [2, Theorem 1]) and two of ours (see [7, Theorems 1 and 2]). We
now proceed to formulate our new theorems.

Theorem 3.5.Letλn ≥ 0 and letγn have the properties:

(P+) the sequence{nεγn} is quasi monotone decreasing and

(P̂ ) the sequence{n2−εγn} is quasi monotone increasing for some positiveε.
Then

(3.16) ω(2)

(
ϕ;

1

n

)
= O(γn)

if and only if

(3.17)
∞∑

k=n

λk = O(γn).

Theorem 3.6.Assume thatγn has the following property:
(P−) the sequence{n1−εγn} is quasi monotone increasing for some positive

ε. If λn ≥ 0, then

(3.18) ω

(
f ;

1

n

)
= O(γn)

if and only if

(3.19)
∞∑

k=n

λk = O(γn).
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Furthermore,

(3.20) ω

(
g;

1

n

)
= O(γn)

implies

(3.21)
n∑

k=1

kλk = O(nγn),

and from

(3.22)
∞∑

k=n

λk = O(γn),

(3.23) ω

(
g;

1

n

)
= O(γn)

follows.

Remark 3.1. We shall prove that Theorem3.5 includes Theorems3.1and3.2.
Additionally, Theorem3.6 implies Theorem3.3.
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4. Lemmas
To prove our theorems we require the following lemmas.

Lemma 4.1. ([5]). A positive sequence{δn} bounded by blocks is quasiε-
power monotone increasing (decreasing) with a certain negative (positive) ex-
ponentε if and only if the sequence{δ2n} is quasi geometrically increasing
(decreasing).

Lemma 4.2. ([4]). For any positive sequenceγ := {γn} the inequalities

∞∑
n=m

γn ≤ Kγm (m = 1, 2, . . . ; K ≥ 1),

or
m∑

n=1

γn ≤ Kγm (m = 1, 2, . . . ; K ≥ 1),

hold if and only if the sequenceγ is quasi geometrically decreasing or increas-
ing, respectively.

Lemma 4.3. ([6]). Let µn ≥ 0, βn > 0 andδ > 0. Assume that there exists a
positiveε such that the sequence

(i) {n−εβn} is quasi monotone increasing,

and the sequence

(ii) {nε−δβn} is quasi monotone decreasing.

http://jipam.vu.edu.au/
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Then

(4.1)
n∑

k=1

kδµk = O(βn)

is equivalent to

(4.2)
∞∑

k=n

µk = O(βnn
−δ).

Lemma 4.4. ([6]). Let µk ≥ 0,
∑∞

k=1 µk be convergent and0 ≤ α ≤ 1. More-
over, assume that a given positive sequence{δn} has the following properties.
There exists a positiveε such that:

(iii) the sequence{nε−αδn} is quasi monotone decreasing, and

(iv) the sequence{n2−α−εδn} is quasi monotone increasing.

Finally let

δ(x) :=


δn if x = 1

n
, n ≥ 1;

linear on the interval
[

1
n+1

, 1
n

]
.

Then

(4.3)
∞∑

k=1

µk(1− cos kx) = O(xαδ(x)) (x → 0)
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if and only if

(4.4)
∞∑

k=n

µk = O(n−αδn).
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5. Proof of the Theorems
Proof of Theorem3.5. Firstly we prove the theorem for the cosine series. Sup-
pose that (3.16) holds. This implies that

(5.1) |f(x + h) + f(x− h)− 2f(x)| ≤ Kγ(h),

where

(5.2) γ(x) :=


γn if x = 1

n
, n ≥ 1;

linear on the interval
[

1
n+1

, 1
n

]
.

From (5.1) it follows that

(5.3) |f(h)− f(0)| ≤ Kγ(h).

Sincef is continuous andλn ≥ 0, from a theorem of Paley (see [8]) it follows
that

∞∑
k=1

λk < ∞,

whence

(5.4)
∞∑

k=1

λk(1− cos kh) = O(γ(h))

follows.
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Using Lemma4.4 for α = 0, µk = λk, δn = γn we have (3.17), that was
to be proved. Now we assume (3.17) and estimate the following difference by
using again Lemma4.4 in the last step (forα = 0, µk = λk andδn = γn)

|f(x + 2h) + f(x− 2h)− 2f(x)| = 4

∣∣∣∣∣
∞∑

k=1

λk sin2 kh cos kx

∣∣∣∣∣
≤ 4

∞∑
k=1

λk sin2 kh = 2
∞∑

k=1

λk(1− cos 2kh)

= O(γ(h)).

Thus the proof of Theorem3.5 is completed for the cosine series.
The proof for the sine series in the direction from (3.17) to (3.16) can be

done in the same way as for the cosine series, since

(5.5) |g(x + 2h) + g(x− 2h)− 2g(x)| = 4

∣∣∣∣∣
∞∑

k=1

λk sin kx sin2 kh

∣∣∣∣∣ .

So we detail only the other direction. Suppose (3.16), that is

(5.6) |g(x + h) + g(x− h)− 2g(x)| = O(γ(h)).

Writing (5.6) in the following form (using again Paley’s theorem cited before):

(5.7) 2

∣∣∣∣∣
∞∑

k=1

λk sin kx(1− cos kh)

∣∣∣∣∣ = O(γ(h)).
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By integrating term by term on(0, x) in (5.7) we get

(5.8)
∞∑

k=1

λk
1− cos kx

k
(1− cos kh) = O(xγ(h)).

From (5.8) we have

(5.9)
∞∑

k=1

x2kλk
1− cos kx

k2x2
(1− cos kh) = O(xγ(h)).

SinceK ≥ t−2(1− cos t) ↓ on (0, 1), from (5.9) it follows that

(5.10)
[1/x]∑
k=1

xkλk(1− cos kh) = O(γ(h)).

Puttingh = x in (5.10)

(5.11)
[1/h]∑
k=1

hkλk(1− cos kh) = O(γ(h))

can be obtained which gives

(5.12)
[1/h]∑
k=1

h3k3λk
1− cos kh

k2h2
= O(γ(h)).

From (5.12) takingh = 1
n

(5.13)
n∑

k=1

k3λk = O(n3γn)
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follows.
By using Lemma4.3for βn = n3γn, δ = 3 (5.13) implies (3.17) which was

to be proved. It can easily be verified that the conditions (i) and (ii) of Lemma
4.3follow from propertiesP̂ andP+ of γn, respectively.

Thus Theorem3.5 is completely proved.

Proof of Theorem3.6. Let f(x) =
∑∞

k=1 λk cos kx and suppose that (3.18) is
valid. Then we have|f(h)− f(0)| ≤ Kγ(h) (for the definitionγ(x) see (5.2)).

That is,
∞∑

k=1

λk(1− cos kh) ≤ Kγ(h).

Integrating both sides on(0, x) we have

(5.14)
∞∑

k=1

λk

k
(kx− sin kx) ≤ Kxγ(x).

Sincekx− sin kx ≥ 0, we have from (5.14)

(5.15)
∞∑

k=2n

λk

k
(kx− sin kx) ≤ Kxγ(x).

Putting1/n for x and taking into account that

k

n
− sin

(
k

n

)
≥ 1

2

k

n
for k ≥ 2n
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we get

(5.16)
∞∑

k=2n

λk ≤ Kγn,

which gives (3.19).
Now we suppose that (3.19) holds and we prove (3.18).
Let us consider the following difference:

|f(x + 2h)− f(x)| =

∣∣∣∣∣
∞∑

k=1

λk[cos k(x + 2h)− cos kx]

∣∣∣∣∣(5.17)

= 2

∣∣∣∣∣
∞∑

k=1

λk sin k(x + h) sin kh

∣∣∣∣∣
≤ 2

[1/h]∑
k=1

λk sin kh +
∞∑

k=[1/h]

λk = I + II.

Using (3.19) we have thatII = O(γ(h)). Now we estimateI.

(5.18) I = 2 ·
[1/h]∑
k=1

λk sin kh = 2h

[1/h]∑
k=1

kλk
sin kh

kh
≤ K · h

[1/h]∑
k=1

kλk = I ′.

But by using the propertyP− and Lemma 1, Lemma 2 we show that (3.19)
implies

(5.19)
n∑

k=1

kλk = O(nγn).
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Indeed, let2ν < n ≤ 2ν+1 then we have

n∑
k=2

kλk ≤
ν∑

m=0

2m+1∑
k=2m+1

kλk ≤ K
ν∑

m=0

2m

2m+1∑
k=2m+1

λk ≤ K
ν∑

m=0

2mγ2m ≤ Knγn,

which gives (5.19). Finally (5.17), (5.18) and (5.19) give (3.18), which was to
be proved.

Now we prove (3.21) from (3.20). Using the estimation

(5.20) |g(x)| ≤ Kγ(x),

term by term integration on(0, x) gives from (5.20) that

(5.21)
∞∑

k=1

λk

k
(1− cos kx) ≤ Kxγ(x),

that is

(5.22)
[1/x]∑
k=1

kλk
1− cos kx

k2x2
≤ K

γ(x)

x

holds for any positivex. As before from (5.22) it follows that

(5.23)
[1/x]∑
k=1

kλk ≤ K
γ(x)

x
,

which takingx = 1
n

gives (3.21).
The proof of (3.23) from (3.22) can be done in the very same way as (3.18)

from (3.19), so we omit it. Theorem3.6 is completed.
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Proof of Remark3.1. For the implication Theorem3.6⇒Theorem3.1letγn :=
j (1/n) . Then using Lemma 1 and Lemma 2 from (3.1), propertyP+ follows,
while (3.2) implies propertyP̂ of γn.

To show that Theorem3.5 includes Theorem3.2 it is enough to takeγn :=
ω1 (1/n) and to take into account that using Lemma 1 property (2.1) of ω1(δ)
implies propertyP̂ while from condition (2.2) the propertyP+ of γn follows.

Similarly, to prove the conclusion Theorem3.6⇒Theorem3.3 it is enough
to use Lemma 1 to show that the condition (2.1) of ω0(δ) implies thatω0 (1/n)
satisfies the propertyP−, so choosingγn := ω0 (1/n) the proof is completed.
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