Journal of Inequalities in Pure and Applied Mathematics

AN APPLICATION OF VAN DER CORPUT'S INEQUALITY

KANTHI PERERA

Department of Engineering Mathematics, University of Peradeniya,
Sri Lanka.
EMail: kanthi@engmath.pdn.ac.lk
volume 2 , issue 1 , article 8 , 2001.

Received 13 July, 2000; accepted 31 October 2000.

Communicated by: A.M. Fink

Abstract
Contents
Home Page
Goack
Close

Abstract

In this note we give a short and elegant proof of the result $\sum_{t=1}^{n} e^{\left.e^{2} \omega t+\alpha t^{2}\right)}=o(n)$ for α not a rational multiple of π, uniformly in ω. This was first proved by Hardy and Littlewood, in 1938. The main ingredient of our proof is Van der Corput's inequality. We then generalize this to obtain $\sum_{t=1}^{n} t^{\beta} e^{\left(\omega t+\alpha t^{2}\right)}=o\left(n^{\beta+1}\right)$, where β is a nonnegative constant.

2000 Mathematics Subject Classification: 42A05
Key words: Van der Corput's inequality, Hardy and Littlewood.

Contents

1 Introduction.. 3
2 Main Result.. . . . 4
References

An Application of Van der Corput's Inequality
K. Perera

Title Page
Contents
Go Back
Close
Quit

1. Introduction

Hardy and Littlewood [1] studied the series of the form $\sum_{t=1}^{n} e^{\imath\left(\omega t+\alpha t^{2}\right)}$ and other similar series associated with the elliptic Theta functions. It was noted there that the behavior is interesting and difficult when α is not a rational multiple of π. The main result proved in [1] can essentially be stated as $\sum_{t=1}^{n} e^{\imath\left(\omega t+\alpha t^{2}\right)}$ $=o(n)$ for α not a rational multiple of π uniformly in ω.

We became interested in this result, rather a generalization of it, while working on a problem of estimation of parameters of a chirp-type statistical model. Although we hoped to find an easy proof of this result in the literature, we were unable to find one. The purpose of this note is to give an easy proof of it. We then generalize this to obtain a similar result for $\sum_{t=1}^{n} t^{\beta} e^{\imath\left(\omega t+\alpha t^{2}\right)}$, where β is a positive constant.

The main ingredient of our proof is the following remarkable inequality.

Theorem 1.1 (Van der Corput's Fundamental Inequality). [2, p. 25]:
Let $u_{1} \cdots u_{n}$ be complex numbers, and let H be an integer with $1 \leq H \leq N$. Then

$$
\begin{aligned}
H^{2}\left|\sum_{n=1}^{N} u_{n}\right|^{2} \leq H(N+H-1) & \sum_{n=1}^{N}\left|u_{n}\right|^{2} \\
& +2(N+H-1) \sum_{h=1}^{H-1}(H-h)\left|\sum_{n=1}^{N-h} u_{n} \bar{u}_{n+h}\right|
\end{aligned}
$$

An Application of Van der Corput's Inequality
K. Perera

Title Page
Contents

$\boldsymbol{4}$	
Go Back	
Close	
Quit	

Page 3 of 10

2. Main Result

Theorem 2.1. Let β be a nonnegative real number. Then $\sum_{t=1}^{n} t^{\beta} e^{\imath\left(\omega t+\alpha t^{2}\right)}=$ $o\left(n^{\beta+1}\right)$, for α not a rational multiple of π, uniformly in ω.

Proof. By using Van der Corput's inequality with fixed H and $u_{t}=e^{\imath\left(\omega t+\alpha t^{2}\right)}$, we obtain

$$
\begin{align*}
H^{2}\left|\sum_{t=1}^{n} e^{\imath\left(\omega t+\alpha t^{2}\right)}\right|^{2} \leq H(n & +H-1) \sum_{t=1}^{n}\left|e^{\imath\left(\omega t+\alpha t^{2}\right)}\right|^{2} \tag{2.1}\\
& +2 \sum_{h=1}^{H-1}(n+H-1)(H-h)\left|\sum_{t=1}^{n-h} u_{t} \bar{u}_{t+h}\right|
\end{align*}
$$

An Application of Van der Corput's Inequality
K. Perera

Title Page
for all $n \geq H$. But $u_{t} \bar{u}_{t+h}=e^{-\imath \omega h-\imath \alpha h^{2}-2 \imath \alpha t h}$, and so

$$
\left|\sum_{t=1}^{n-h} u_{t} \bar{u}_{t+h}\right|=\left|\sum_{t=1}^{n-h} e^{-2 \imath \alpha t h}\right| .
$$

Substituting this in the inequality (2.1), we obtain
$H^{2}\left|\sum_{t=1}^{n} e^{\imath\left(\omega t+\alpha t^{2}\right)}\right|^{2} \leq H(n+H-1) n+2 \sum_{h=1}^{H-1}(n+H-1)(H-h)\left|\sum_{t=1}^{n-h} e^{-2 \imath \alpha t h}\right|$.
Contents

Go Back
Close
Quit
Page 4 of 10

Thus
(2.2) $\left|\frac{1}{n} \sum_{t=1}^{n} e^{\imath\left(\omega t+\alpha t^{2}\right)}\right|^{2} \leq \frac{1}{H}+\frac{1}{n}-\frac{1}{n H}$

$$
+2 \sum_{h=1}^{H-1} \frac{(n+H-1)(H-h)}{n^{2} H^{2}}\left|\sum_{t=1}^{n-h} e^{-2 \imath \alpha t h}\right| .
$$

Let

$$
M_{n}(\alpha, h)=\sum_{t=1}^{n-h} e^{-2 \imath \alpha t h}
$$

Thus if α is not a rational multiple of π we can write $M_{n}(\alpha, h)$ in the following form.

$$
M_{n}(\alpha, h)=e^{-\imath \alpha h(n-h+1)} \frac{\sin [(n-h) \alpha h]}{\sin (\alpha h)} .
$$

Then

$$
\left|M_{n}(\alpha, h)\right| \leq \frac{1}{|\sin (\alpha h)|}
$$

If h_{0} is the member of $\{1,2, \cdots,(H-1)\}$ for which

$$
\left|\sin \left(\alpha h_{0}\right)\right|=\min _{1 \leq h \leq H-1}|\sin (\alpha h)|
$$

then

$$
\left|M_{n}(\alpha, h)\right| \leq \frac{1}{\left|\sin \left(\alpha h_{0}\right)\right|}
$$

Substituting this in equation (2.2) we get

$$
\begin{aligned}
\left|\frac{1}{n} \sum_{t=1}^{n} e^{\imath\left(\omega t+\alpha t^{2}\right)}\right|^{2} \leq & \frac{1}{H}+\frac{1}{n}-\frac{1}{n H} \\
& +2 \sum_{h=1}^{H-1} \frac{(n+H-1)(H-h)}{n^{2} H^{2}} \frac{1}{\left|\sin \left(\alpha, h_{0}\right)\right|} \\
\leq & \frac{1}{H}+\frac{1}{n}-\frac{1}{n H}+\frac{2}{n\left|\sin \left(\alpha h_{0}\right)\right|}
\end{aligned}
$$

Since this is true for all $n \geq H$, we obtain

$$
\lim _{n \rightarrow \infty}\left|\frac{1}{n} \sum_{t=1}^{n} e^{\imath\left(\omega t+\alpha t^{2}\right)}\right|^{2} \leq \frac{1}{H}
$$

Since this is true for all $H \geq 1$, it follows that

$$
\lim _{n \rightarrow \infty}\left|\frac{1}{n} \sum_{t=1}^{n} e^{\imath\left(\omega t+\alpha t^{2}\right)}\right|^{2}=0
$$

uniformly in ω. That is, if α is not a rational multiple of π,

$$
\begin{equation*}
\sum_{t=1}^{n} e^{\imath\left(\omega t+\alpha t^{2}\right)}=o(n) \tag{2.3}
\end{equation*}
$$

An Application of Van der Corput's Inequality
K. Perera

Title Page
Contents
Go Back
Close
Quit
Page 6 of 10

uniformly in ω.

Now we will show that $\sum_{t=1}^{n} t^{\beta} e^{\imath\left(\omega t+\alpha t^{2}\right)}=o\left(n^{\beta+1}\right)$ provided α is not a rational multiple of π. Let

$$
Q_{0}(\omega, \alpha)=0
$$

and, for $n \geq 1$,

$$
Q_{n}(\omega, \alpha)=\sum_{t=1}^{n} e^{\imath\left(\omega t+\alpha t^{2}\right)} \text { and } S_{n}(\omega, \alpha)=\sum_{t=1}^{n} t^{\beta} e^{\imath\left(\omega t+\alpha t^{2}\right)}
$$

Then

$$
\begin{align*}
S_{n}(\omega, \alpha) & =\sum_{t=1}^{n} t^{\beta}\left[Q_{t}(\omega, \alpha)-Q_{t-1}(\omega, \alpha)\right] \tag{2.4}\\
& =n^{\beta} Q_{n}(\omega, \alpha)-Q_{0}(\omega, \alpha)-\sum_{t=1}^{n-1}\left[(t+1)^{\beta}-t^{\beta}\right] Q_{t}(\omega, \alpha) \\
& =n^{\beta} Q_{n}(\omega, \alpha)-\sum_{t=1}^{n-1} f_{t}(\omega, \alpha)
\end{align*}
$$

where

$$
f_{n}(\omega, \alpha)=\left[(n+1)^{\beta}-n^{\beta}\right] Q_{n}(\omega, \alpha) \quad \text { for } \quad n=1,2, \ldots
$$

By the mean-value theorem we have

An Application of Van der Corput's Inequality
K. Perera

Title Page
Contents
Go Back
Close
Quit
Page 7 of 10

$$
(n+1)^{\beta}-n^{\beta}=\beta \tilde{n}^{\beta-1} \quad \text { where } \quad n \leq \tilde{n} \leq n+1
$$

If $0 \leq \beta \leq 1$, then $\tilde{n}^{\beta-1} \leq n^{\beta-1}$, while if $\beta \geq 1$, then $\tilde{n}^{\beta-1} \leq(n+1)^{\beta-1} \leq$ $(2 n)^{\beta-1}$. It follows that, for $\beta \geq 0$,

$$
\begin{equation*}
(n+1)^{\beta}-n^{\beta} \leq c_{\beta} n^{\beta-1} \tag{2.5}
\end{equation*}
$$

where c_{β} is a constant. Hence

$$
\left|f_{n}(\omega, \alpha)\right| \leq c_{\beta} n^{\beta-1}\left|Q_{n}(\omega, \alpha)\right|
$$

But by (2.3), if α is not a rational multiple of π, then $Q_{n}(\omega, \alpha)=o(n)$ uniformly in ω.
Thus if α is not a rational multiple of π, then

$$
\left|f_{n}(\omega, \alpha)\right| \leq c_{\beta} n^{\beta-1} o(n)
$$

so

$$
f_{n}(\omega, \alpha)=o\left(n^{\beta}\right)
$$

uniformly in ω. However, $f_{n}(\omega, \alpha)=o\left(n^{\beta}\right)$ implies that the mean $\frac{1}{n-1} \sum_{t=1}^{n-1} f_{t}(\omega, \alpha)$ is $o\left(n^{\beta}\right)$.
Hence, if α is not a rational multiple of π,

$$
\sum_{t=1}^{n-1} f_{t}(\omega, \alpha)=o\left(n^{\beta+1}\right)
$$

uniformly in ω. But by (2.4)

An Application of Van der Corput's Inequality
K. Perera

Title Page
Contents

Go Back
Close
Quit
Page 8 of 10

$$
S_{n}(\omega, \alpha)=n^{\beta} Q_{n}(\omega, \alpha)-\sum_{t=1}^{n-1} f_{t}(\omega, \alpha)
$$

It follows that $S_{n}(\omega, \alpha)=o\left(n^{\beta+1}\right)$, for α not a rational multiple of π, uniformly in ω.
This completes the proof of the Theorem.

An Application of Van der Corput's Inequality
K. Perera

Title Page
Contents
Close Back
Quit
Page 9 of 10

http://jipam.vu.edu.au

References

[1] G.H. HARDY and J.E. LITTLEWOOD, Some Problems of Diophantine Approximation. Acta Mathematica Band 37 s. 193-238 [Volume 1 of Collected Works of G.H. Hardy]. (1914).
[2] L. KUIPERS AND H. NIEDERREITER, Uniform Distribution of Se quences, Wiley, New York, (1974).

An Application of Van der Corput's Inequality
K. Perera

Title Page
Contents
Go Back
Close
Page 10 of 10

