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ABSTRACT. Recently Feng Qi has presented a sharp inequality between the sum of squares and
the exponential of the sum of a nonnegative sequence. His result has been extended to more
general power sums by Huan-Nan Shi, and, independently, by Yu Miao, Li-Min Liu, and Feng
Qi. In this note we generalize those inequalitites by introducing weights and permitting more
general functions. Inequalities in the opposite direction are also presented.
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1. I NTRODUCTION

The following inequality is due to Feng Qi [2].
Let x1, x2, . . . , xn be arbitrary nonnegative numbers. Then

(1.1)
e2

4

n∑
i=1

x2
i ≤ exp

( n∑
i=1

xi

)
.

Equality holds if and only if all but one ofx1, . . . , xn are 0, and the missing one is equal to 2.
Thus the constante2/4 is the best possible. Moreover, (1.1) is also valid for infinite sums.

In answer of an open question posed by Qi, Shi [3] extended (1.1) to more general power
sums on the left-hand side, proving that

(1.2)
eα

αα

n∑
i=1

xα
i ≤ exp

( n∑
i=1

xi

)
for α ≥ 1, andn ≤ ∞.

After the present paper had been prepared, Yu Miao, Li-Min Liu, and Feng Qi also published
Shi’s result for integer values ofα, see [1].

In papers [2] and [3], after taking the logarithm of both sides, the authors considered the
left-hand side expression as ann-variate function, and maximized it under the condition of
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x1 + · · ·+xn fixed. To this end Qi applied differential calculus, while Shi used Schur convexity.
Both methods relied heavily on the properties of the log function.

On the other hand, [1] uses a probability theory argument, which also seems to utilize the
particular choice of functions in the inequality.

In the present note we present extensions of (1.2) by permitting arbitrary positive functions
on both sides and weights in the sums. Our method is simple and elementary.

Theorem 1.1. Let w1, w2, . . . , wn be positive weights,f a positive function defined on[0,∞),
and letα > 0. Then for arbitrary nonnegative numbersx1, x2, . . . , xn the inequality

(1.3) C
n∑

i=1

wix
α
i ≤ f

(
n∑

i=1

wixi

)
is valid with

(1.4) C = wα−1
0 inf

x>0
x−αf(x),

where

(1.5) w0 =

{
min{w1, . . . , wn} if α ≥ 1,

w1 + · · ·+ wn if α < 1.

This inequality is sharp in the sense thatC cannot be replaced by any greater constant.

Remark 1. The necessary and sufficient condition for equality in (1.3) is the following.
Caseα > 1. There is exactly onexi differing from zero, for whichwi = w0 andw0xi

minimizesx−αf(x) in (0,∞).
Caseα = 1.

∑n
i=1 wixi minimizesx−αf(x) in (0,∞).

Caseα < 1. x1 = · · · = xn, andw0x1 minimizesx−αf(x) in (0,∞).

Remark 2. Inequality (1.3) can be extended to infinite sums. Letf andα be as in Theorem 1.1,
and let{wi}∞i=1 be an infinite sequence of positive weights such thatw0 := inf1≤i<∞wi > 0
whenα ≥ 1, andw0 :=

∑∞
i=1 wi < ∞ whenα < 1. Then for an arbitrary nonnegative

sequence{xi}∞i=1 such that
∑∞

i=1 wixi < ∞ the following inequality holds.

C
∞∑
i=1

wix
α
i ≤ f

(
∞∑
i=1

wixi

)
,

whereC is defined in (1.4).

Remark 3. By settingα ≥ 1, f(x) = ex andw1 = w2 = · · · = 1 we get Theorems 1 and 2 of
[3]. In particular, takingα = 2 implies Theorems 1.1 and 1.2 of [2].

2. CONVERSE I NEQUALITIES

Qi posed the problem of determining the optimal constantC for which

(2.1) exp

( n∑
i=1

xi

)
≤ C

n∑
i=1

xα
i

holds for arbitrary nonnegativex1, . . . , xn, with a given positiveα. As Shi pointed out, such an
inequality is generally untenable, because the exponential function grows faster than any power
function. However, if the exponential function is replaced with a suitable one, the following
inequalities, analogous to those of Theorem 1.1, have sense.
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Theorem 2.1. Let w1, w2, . . . , wn be positive weights,f a positive function defined on[0,∞),
and let α > 0. Supposesupx>0 x−αf(x) < ∞. Then for arbitrary nonnegative numbers
x1, x2, . . . , xn the inequality

(2.2) f

(
n∑

i=1

wixi

)
≤ C

n∑
i=1

wix
α
i

is valid with

(2.3) C = wα−1
0 sup

x>0
x−αf(x),

where

(2.4) w0 =

{
min{w1, . . . , wn} if α ≤ 1,
w1 + · · ·+ wn if α > 1.

This inequality is sharp in the sense thatC cannot be replaced by any smaller constant.

Remark 4. The necessary and sufficient condition for equality in (2.2) is the following.
Caseα < 1. There is exactly onexi differing from zero, for whichwi = w0 andw0xi

maximizesx−αf(x) in (0,∞).
Caseα = 1.

∑n
i=1 wixi maximizesx−αf(x) in (0,∞).

Caseα > 1. x1 = · · · = xn, andw0x1 maximizesx−αf(x) in (0,∞).

Remark 5. Inequality (2.2) also remains valid for infinite sums. Letf andα be as in Theorem
2.1, and let{wi}∞i=1 be an infinite sequence of positive weights such thatw0 := inf1≤i<∞wi > 0
whenα > 1, andw0 :=

∑∞
i=1 wi < ∞whenα < 1. Then for an arbitrary nonnegative sequence

{xi}∞i=1 such that
∑∞

i=1 wixi < ∞ the following inequality holds.

f

(
∞∑
i=1

wixi

)
≤ C

∞∑
i=1

wix
α
i ,

whereC is defined in (2.3).

3. FURTHER GENERALIZATIONS

Inequalities (1.3) and (2.2) can be further generalized by replacing the power function with
more general functions. Unfortunately, the inequalities thus obtained are not necessarily sharp
anymore.

Let us introduce four classes of nonnegative power-like functionsg : [0,∞) → R that are
positive for positivex.

F1 = {g : g(x) + g(y) ≤ g(x + y), g(x)g(y) ≤ g(xy) for x, y ≥ 0} ,(3.1)

F2 = {g : g is concave,g(x)g(y) ≤ g(xy) for x, y ≥ 0} ,(3.2)

F3 = {g : g(x) + g(y) ≥ g(x + y), g(x)g(y) ≥ g(xy) for x, y ≥ 0} ,(3.3)

F4 = {g : g is convex,g(x)g(y) ≥ g(xy) for x, y ≥ 0} .(3.4)

Obviously, the power functiong(x) = xα belongs toF1 andF4 if α ≥ 1, and toF2 andF3

if α ≤ 1. In fact, our classes are wider.

Theorem 3.1.Letp1, p2, α1, α2 be positive parameters and

(3.5) g(x) =

{
p1x

α1 , if 0 ≤ x ≤ 1,
p2x

α2 , if 1 < x.
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Then

p1 ≤ p2 ≤ 1, 1 ≤ α2 ≤ α1 ⇒ g ∈ F1,(3.6)

p1 = p2 ≤ 1, α2 ≤ α1 ≤ 1 ⇒ g ∈ F2,(3.7)

1 ≤ p2 ≤ p1, α1 ≤ α2 ≤ 1 ⇒ g ∈ F3,(3.8)

1 ≤ p2 = p1, 1 ≤ α1 ≤ α2 ⇒ g ∈ F4.(3.9)

It would be of independent interest to characterize these four classes.
Our last theorem generalizes Theorems 1.1 and 2.1.

Theorem 3.2. Let w1, w2, . . . , wn be fixed positive weights, andx1, x2, . . . , xn arbitrary non-
negative numbers. Letf be a positive function defined on[0,∞).

Supposeg ∈ F1. Then

(3.10) C

n∑
i=1

wig(xi) ≤ f

(
n∑

i=1

wixi

)
is valid with

(3.11) C = min
1≤i≤n

g(wi)

wi

· inf
x>0

f(x)

g(x)
.

Supposeg ∈ F2. Then(3.10)holds with

(3.12) C =
g(w0)

w0

· inf
x>0

f(x)

g(x)
,

wherew0 = w1 + · · ·+ wn.
Supposeg ∈ F3, andsupx>0

f(x)
g(x)

< ∞. Then

(3.13) f

(
n∑

i=1

wixi

)
≤ C

n∑
i=1

wig(xi)

is valid with

(3.14) C = max
1≤i≤n

g(wi)

wi

· sup
x>0

f(x)

g(x)
.

Supposeg ∈ F4, andsupx>0
f(x)
g(x)

< ∞. Then(3.13)holds with

(3.15) C =
g(w0)

w0

· sup
x>0

f(x)

g(x)
,

wherew0 = w1 + · · ·+ wn.

4. PROOFS

Proof of Theorem 1.1.First, letα ≥ 1. Making use of the superadditive property of theα-power
function we obtain

f

( n∑
i=1

wixi

)
≥ inf

x>0
x−αf(x)

( n∑
i=1

wixi

)α

(4.1)

≥ inf
x>0

x−αf(x)
n∑

i=1

(wixi)
α

≥ wα−1
0 inf

x>0
x−αf(x) ·

n∑
i=1

wix
α
i ,
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which was to be proved.
Suppose (1.3) is valid for arbitrary nonnegative numbersxi with some constantC. Letxj = 0

for j 6= i, wherei is chosen to satisfywi = w0. Then from (1.3) we obtain thatCw0x
α
i ≤

f(w0xi) must hold for everyxi > 0. HenceC ≤ wα−1
0 inf x−αf(x).

The proof is similar forα < 1. By applying theα-power mean inequality we have

f

( n∑
i=1

wixi

)
≥ inf

x>0
x−αf(x)

( n∑
i=1

wixi

)α

(4.2)

= inf
x>0

x−αf(x) wα
0

(
w−1

0

n∑
i=1

wixi

)α

≥ inf
x>0

x−αf(x) wα−1
0

n∑
i=1

wix
α
i ,

as required.
Again, if (1.3) is valid for arbitrary nonnegative numbersxi with some constantC, let x1 =

· · · = xn = x > 0. Then it follows thatCw0x
α ≤ f(w0x) for every x > 0, implying

C ≤ wα−1
0 inf x−αf(x). �

Proof of Remark 1.Let α > 1. In the second inequality of (4.1) equality holds if and only if
there is at most one positive term in the sum. Sincef is positive, forx1 = · · · = xn = 0
(1.3) holds true with strict inequality. Letxi be the only positive term in the sum, then the first
inequality fulfils with equality if and only ifwixi = arg min x−αf(x). The last inequality is
strict if wi > w0.

Similarly, in the case ofα < 1 we needx1 = · · · = xn for equality in theα-power mean
inequality. Then

∑n
i=1 wixi = w0x1, and the first inequality of (4.2) is strict ifw0x1 does not

minimizex−αf(x).
Finally, the case ofα = 1 is obvious. �

Proof of Remark 2.The proof of (1.3) is valid for infinite sums, too, because both the superad-
ditivity of power functions with exponentα ≥ 1, and theα-power mean inequality remain true
for an infinite number of terms. �

Proof of Theorem 2.1.The proof of Theorem 1.1 can be repeated with obvious alterations. Let
α ≤ 1. Then, by the subadditivity of theα-power function we have

f

( n∑
i=1

wixi

)
≤ sup

x>0
x−αf(x)

( n∑
i=1

wixi

)α

(4.3)

≤ sup
x>0

x−αf(x)
n∑

i=1

(wixi)
α

≤ wα−1
0 sup

x>0
x−αf(x) ·

n∑
i=1

wix
α
i .

If α > 1, we have to apply theα-power mean inequality again.

f

( n∑
i=1

wixi

)
≤ sup

x>0
x−αf(x)

( n∑
i=1

wixi

)α

(4.4)
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= sup
x>0

x−αf(x) wα
0

(
w−1

0

n∑
i=1

wixi

)α

≤ sup
x>0

x−αf(x) wα−1
0

n∑
i=1

wix
α
i .

Suppose (2.2) is valid for arbitrary nonnegative numbersxi with some constantC. If α ≤ 1,
let xj = 0 for j 6= i, wherei is chosen to satisfywi = w0, and letxi = x > 0. In the
complementary case letx1 = · · · = xn = x > 0. In both cases from (2.2) we obtain that
f(w0x) ≤ Cw0x

α must hold for everyx > 0. HenceC ≥ wα−1
0 sup x−αf(x). �

The proofs of Remarks 4 and 5, being straightforward adaptations of what we have done in
the proofs of Remarks 1 and 2, resp., are left to the reader.

Proof of Theorem 3.1.Throughout we will suppose thatx ≤ y.
Proof of (3.6). First we show thatg is superadditive. It obviously holds ifx + y ≤ 1 or x > 1.
If y ≤ 1 < x + y, then

g(x) + g(y) = p1(x
α1 + yα1) ≤ p1(x

α2 + yα2) ≤ p1(x + y)α2 ≤ p2(x + y)α2 = g(x + y).

Finally, if x ≤ 1 < y, then

g(x) + g(y) = p1x
α1 + p2y

α2 ≤ p2(x
α2 + yα2) ≤ p2(x + y)α2 = g(x + y).

Let us turn to supermultiplicativity. It is valid ify ≤ 1 or x > 1. Let x ≤ 1 < y, then
g(x)g(y) = p1x

α1p2y
α2 ≤ p1(xy)α1 , becausep2y

α2 ≤ yα1 . On the other hand,g(x)g(y) ≤
p2(xy)α2, becausep1x

α1 ≤ xα2. Thusg(x)g(y) ≤ g(xy).
Proof of (3.7). g′(x) = p1α1x

α1−1 if 0 < x < 1, andg′(x) = p1α2x
α2−1 if x > 1. Thusg′(x)

is decreasing, henceg is concave. The proof of supermultiplicativity is the same as in the proof
of (3.6).
Proof of (3.8). It can be done along the lines of the proof of (3.6), but with all inequality
signs reversed. Let us begin with the subadditivity. It is obvious, ifx + y ≤ 1 or x > 1. If
y ≤ 1 < x + y, then

g(x) + g(y) = p1(x
α1 + yα1) ≥ p1(x

α2 + yα2) ≥ p1(x + y)α2 ≥ p2(x + y)α2 = g(x + y).

If x ≤ 1 < y, then

g(x) + g(y) = p1x
α1 + p2y

α2 ≥ p2(x
α2 + yα2) ≥ p2(x + y)α2 = g(x + y).

Concerning submultiplicativity, it obviously holds wheny ≤ 1 or x > 1. Let x ≤ 1 < y.
Theng(x)g(y) = p1x

α1p2y
α2 does not exceedp1(xy)α1 on the one hand, andp2(xy)α2 on the

other hand. Henceg(x)g(y) ≥ g(xy).
Proof of (3.9). This timeg′(x) is increasing, thusg is convex. The submultiplicativity ofg has
already been proved above. �

Proof of Theorem 3.2.We proceed similarly to the proofs of Theorems 1.1 and 2.1.
Let g ∈ F1. Then

f

( n∑
i=1

wixi

)
≥ inf

x>0

f(x)

g(x)
· g
( n∑

i=1

wixi

)
(4.5)

≥ inf
x>0

f(x)

g(x)

n∑
i=1

g(wixi)
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≥ inf
x>0

f(x)

g(x)

n∑
i=1

g(wi)g(xi)

≥ inf
x>0

f(x)

g(x)
min

1≤i≤n

g(wi)

wi

n∑
i=1

wig(xi).

For the second inequality we applied the superadditivity ofg, and for the third one the super-
multiplicativity.

Let g ∈ F2. Using concavity at first, then supermultiplicativity, we obtain that

f

( n∑
i=1

wixi

)
≥ inf

x>0

f(x)

g(x)
· g
( n∑

i=1

wixi

)
(4.6)

= inf
x>0

f(x)

g(x)
· g
(

1

w0

n∑
i=1

wiw0xi

)

≥ inf
x>0

f(x)

g(x)
· 1

w0

n∑
i=1

wig(w0xi)

≥ inf
x>0

f(x)

g(x)
· 1

w0

n∑
i=1

wig(w0)g(xi),

as required.
The proof of (3.13) in the cases ofg ∈ F3 andg ∈ F4 can be performed analogously to (4.5)

and (4.6), resp., with every inequality sign reversed, and whereverinf or min appears they have
to be changed tosup andmax, resp. �

Unfortunately, nothing can be said about the condition of equality in the sub/supermulti-
plicative steps. This is why inequalities (3.10) and (3.13) are not sharp in general.
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