Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 7, Issue 1, Article 11, 2006

ON ČEBYŠEV-GRÜSS TYPE INEQUALITIES VIA PEČARIĆ'S EXTENSION OF THE MONTGOMERY IDENTITY

B.G. PACHPATTE

57 Shri Niketan Colony
Near Abhinay Talkies
Aurangabad 431001
(MAHARASHTRA) IndIA
bgpachpatte@gmail.com
Received 15 August, 2005; accepted 19 January, 2006
Communicated by J. Sándor

AbSTRACT. In the present note we establish new Čebyšev-Grüss type inequalities by using Pečarič's extension of the Montgomery identity.

Key words and phrases: Čebyšev-Grüss type inequalities, Pečarić's extension, Montgomery identity.
2000 Mathematics Subject Classification 26D15, 26D20.

1. Introduction

For two absolutely continuous functions $f, g:[a, b] \rightarrow \mathbb{R}$ consider the functional

$$
T(f, g)=\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-\left(\frac{1}{b-a} \int_{a}^{b} f(x) d x\right)\left(\frac{1}{b-a} \int_{a}^{b} g(x) d x\right)
$$

where the involved integrals exist. In 1882, Čebyšev [1] proved that if $f^{\prime}, g^{\prime} \in L_{\infty}[a, b]$, then

$$
\begin{equation*}
|T(f, g)| \leq \frac{1}{12}(b-a)^{2}\left\|f^{\prime}\right\|_{\infty}\left\|g^{\prime}\right\|_{\infty} \tag{1.1}
\end{equation*}
$$

In 1935, Grüss [2] showed that

$$
\begin{equation*}
|T(f, g)| \leq \frac{1}{4}(M-m)(N-n) \tag{1.2}
\end{equation*}
$$

provided m, M, n, N are real numbers satisfying the condition $-\infty<m \leq M<\infty,-\infty<$ $n \leq N<\infty$ for $x \in[a, b]$.

Many researchers have given considerable attention to the inequalities (1.1), (1.2) and various generalizations, extensions and variants of these inequalities have appeared in the literature, to mention a few, see [4,5] and the references cited therein. The aim of this note is to establish two

[^0]new inequalities similar to those of Čebyšev and Grüss inequalities by using Pečarič's extension of the Montgomery identity given in [6].

2. Statement of Results

Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable on $[a, b]$ and $f^{\prime}:[a, b] \rightarrow \mathbb{R}$ is integrable on $[a, b]$. Then the Montgomery identity holds [3]:

$$
\begin{equation*}
f(x)=\frac{1}{b-a} \int_{a}^{b} f(t) d t+\int_{a}^{b} P(x, t) f^{\prime}(t) d t \tag{2.1}
\end{equation*}
$$

where $P(x, t)$ is the Peano kernel defined by

$$
P(x, t)= \begin{cases}\frac{t-a}{b-a}, & a \leq t \leq x, \tag{2.2}\\ \frac{t-b}{b-a}, & x<t \leq b .\end{cases}
$$

Let $w:[a, b] \rightarrow[0, \infty)$ be some probability density function, that is, an integrable function satisfying $\int_{a}^{b} w(t) d t=1$, and $W(t)=\int_{a}^{t} w(x) d x$ for $t \in[a, b], W(t)=0$ for $t<a$, and $W(t)=1$ for $t>b$. In [6] Pečarić has given the following weighted extension of the Montgomery identity:

$$
\begin{equation*}
f(x)=\int_{a}^{b} w(t) f(t) d t+\int_{a}^{b} P_{w}(x, t) f^{\prime}(t) d t \tag{2.3}
\end{equation*}
$$

where $P_{w}(x, t)$ is the weighted Peano kernel defined by

$$
P_{w}(x, t)= \begin{cases}W(t), & a \leq t \leq x \tag{2.4}\\ W(t)-1, & x<t \leq b\end{cases}
$$

We use the following notation to simplify the details of presentation. For some suitable functons $w, f, g:[a, b] \rightarrow \mathbb{R}$, we set

$$
T(w, f, g)=\int_{a}^{b} w(x) f(x) g(x) d x-\left(\int_{a}^{b} w(x) f(x) d x\right)\left(\int_{a}^{b} w(x) g(x) d x\right)
$$

and define $\|\cdot\|_{\infty}$ as the usual Lebesgue norm on $L_{\infty}[a, b]$ that is, $\|h\|_{\infty}:=e s s \sup _{t \in[a, b]}|h(t)|$ for $h \in L_{\infty}[a, b]$.

Our main results are given in the following theorems.
Theorem 2.1. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be differentiable on $[a, b]$ and $f^{\prime}, g^{\prime}:[a, b] \rightarrow \mathbb{R}$ are integrable on $[a, b]$. Let $w:[a, b] \rightarrow[0, \infty)$ be an integrable function satisfying $\int_{a}^{b} w(t) d t=1$. Then

$$
\begin{equation*}
|T(w, f, g)| \leq\left\|f^{\prime}\right\|_{\infty}\left\|g^{\prime}\right\|_{\infty} \int_{a}^{b} w(x) H^{2}(x) d x \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
H(x)=\int_{a}^{b}\left|P_{w}(x, t)\right| d t \tag{2.6}
\end{equation*}
$$

for $x \in[a, b]$ and $P_{w}(x, t)$ is the weighted Peano kernel given by (2.4.
Theorem 2.2. Let $f, g, f^{\prime}, g^{\prime}, w$ be as in Theorem 2.1. Then

$$
\begin{equation*}
|T(w, f, g)| \leq \frac{1}{2} \int_{a}^{b} w(x)\left[|g(x)|\left\|f^{\prime}\right\|_{\infty}+|f(x)|\left\|g^{\prime}\right\|_{\infty}\right] H(x) d x \tag{2.7}
\end{equation*}
$$

where $H(x)$ is defined by (2.6).

3. Proofs of Theorems 2.1 and 2.2

Proof of Theorem [2.1] From the hypotheses the following identities hold [6]:

$$
\begin{align*}
& f(x)=\int_{a}^{b} w(t) f(t) d t+\int_{a}^{b} P_{w}(x, t) f^{\prime}(t) d t \tag{3.1}\\
& g(x)=\int_{a}^{b} w(t) g(t) d t+\int_{a}^{b} P_{w}(x, t) g^{\prime}(t) d t \tag{3.2}
\end{align*}
$$

From (3.1) and (3.2) we observe that

$$
\begin{aligned}
{\left[f(x)-\int_{a}^{b} w(t) f(t) d t\right] } & {\left[g(x)-\int_{a}^{b} w(t) g(t) d t\right] } \\
& =\left[\int_{a}^{b} P_{w}(x, t) f^{\prime}(t) d t\right]\left[\int_{a}^{b} P_{w}(x, t) g^{\prime}(t) d t\right],
\end{aligned}
$$

i.e.,

$$
\begin{align*}
& f(x) g(x)-f(x) \int_{a}^{b} w(t) g(t) d t-g(x) \int_{a}^{b} w(t) f(t) d t \tag{3.3}\\
&+\left(\int_{a}^{b} w(t) f(t) d t\right)\left(\int_{a}^{b} w(t) g(t) d t\right) \\
&=\left[\int_{a}^{b} P_{w}(x, t) f^{\prime}(t) d t\right]\left[\int_{a}^{b} P_{w}(x, t) g^{\prime}(t) d t\right] .
\end{align*}
$$

Multiplying both sides of (3.3) by $w(x)$ and then integrating both sides of the resulting identity with respect to x from a to b and using the fact that $\int_{a}^{b} w(t) d t=1$, we have

$$
\begin{equation*}
T(w, f, g)=\int_{a}^{b} w(x)\left[\int_{a}^{b} P_{w}(x, t) f^{\prime}(t) d t\right]\left[\int_{a}^{b} P_{w}(x, t) g^{\prime}(t) d t\right] d x \tag{3.4}
\end{equation*}
$$

From (3.4) and using the properties of modulus we observe that

$$
\begin{aligned}
|T(w, f, g)| & \leq \int_{a}^{b} w(x)\left[\int_{a}^{b}\left|P_{w}(x, t)\right|\left|f^{\prime}(t)\right| d t\right]\left[\int_{a}^{b}\left|P_{w}(x, t)\right|\left|g^{\prime}(t)\right| d t\right] d x \\
& \leq\left\|f^{\prime}\right\|_{\infty}\left\|g^{\prime}\right\|_{\infty} \int_{a}^{b} w(x) H^{2}(x) d x
\end{aligned}
$$

This completes the proof of Theorem 2.1
Proof of Theorem 2.2 Multiplying both sides of (3.1) and 3.2) by $w(x) g(x)$ and $w(x) f(x)$, adding the resulting identities and rewriting we have

$$
\begin{align*}
& w(x) f(x) g(x) \tag{3.5}\\
&= \frac{1}{2}\left[w(x) g(x) \int_{a}^{b} w(t) f(t) d t+w(x) f(x) \int_{a}^{b} w(t) g(t) d t\right] \\
&+\frac{1}{2}\left[w(x) g(x) \int_{a}^{b} P_{w}(x, t) f^{\prime}(t) d t+w(x) f(x) \int_{a}^{b} P_{w}(x, t) g^{\prime}(t) d t\right] .
\end{align*}
$$

Integrating both sides of (3.5) with respect to x from a to b and rewriting we have

$$
\begin{align*}
T(w, f, g)=\frac{1}{2} \int_{a}^{b}\left[w(x) g(x) \int_{a}^{b}\right. & P_{w}(x, t) f^{\prime}(t) d t \tag{3.6}\\
& \left.+w(x) f(x) \int_{a}^{b} P_{w}(x, t) g^{\prime}(t) d t\right] d x
\end{align*}
$$

From (3.6) and using the properties of modulus we observe that

$$
\begin{aligned}
& |\bar{T}(w, f, g)| \\
& \leq \frac{1}{2} \int_{a}^{b} w(x)\left[|g(x)| \int_{a}^{b}\left|P_{w}(x, t)\right|\left|f^{\prime}(t)\right| d t+|f(x)| \int_{a}^{b}\left|P_{w}(x, t)\right|\left|g^{\prime}(t)\right| d t\right] d x \\
& \leq \frac{1}{2} \int_{a}^{b} w(x)\left[|g(x)|\left\|f^{\prime}(t)\right\|_{\infty}+|f(x)|\left\|g^{\prime}(t)\right\|_{\infty}\right] H(x) d x
\end{aligned}
$$

The proof of Theorem 2.2 is complete.

References

[1] P.L. ČEBYŠEV, Sue les expressions approxmatives des intégrales définies par les autres prises entre les mêmes limites, Proc. Math. Soc. Charkov, 2 (1882), 93-98.
[2] G. GRÜSS, Über das maximum des absoluten Betrages von $\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-$ $\frac{1}{(b-a)^{2}} \int_{a}^{b} f(x) d x \int_{a}^{b} g(x) d x$, Math. Z., 39 (1935), 215-226.
[3] D.S. MITRINOVIĆ, J.E. PEČARIĆ AND A.M. FINK, Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, Dordrecht, 1991.
[4] D.S. MITRINOVIĆ, J.E. PEČARIĆ AND A.M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.
[5] B.G. PACHPATTE, New weighted multivariate Grüss type inequalities, J. Inequal. Pure and Appl. Math., 4(5) (2003), Art. 108. [ONLINE: http://jipam.vu.edu.au/article.php?sid= 349].
[6] J.E. PEČARIĆ, On the Čebyšev inequality, Bul. Şti. Tehn. Inst. Politehn. "Train Vuia" Timişora, 25(39)(1) (1980), 5-9.

[^0]: ISSN (electronic): 1443-5756
 (c) 2006 Victoria University. All rights reserved.

 022-06

