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1. INTRODUCTION

Since Apéry’s miraculous proof (1979) that the valu@) of Rieman’s¢-function is irra-
tional, Apéry’s constant/(3) has been the focus of attention for many mathematicians. (An
extensive list of results and references are found in Section 1.6 of the highly recommended
encyclopedic book [2].)

It is the purpose of this note to extend some of these results. Thereby we will also obtain a
new infinite sum rapidly converging td3).

At the end of this note we raise two questions for further investigation.
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2. TWO MULTISUMS

Recently in[[1] the proof of
[e.9] o 1
(2.1) ;;wﬂ) ¢(3)
where((3) = 1.202056903..., was posed as a problem. Although this result was published
earlier (se€l[2, p. 43]) it is worthwhile reconsidering in the following more general way.

Theorem 2.1. For r > 1 the multisum

attains the value!((r + 1).

Proof. Firstly we rewrite the multisum as an integral as follows
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we get
Yn(1 = 2)"
Sr:(—l)T/ n(l - 2) dx
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Substitutingr = 1 — ¢ yields

1 r
S, = (—1)’“/ ()"
0
This and the known result ([2, p. 47])

/1 IO 4~ 1y + 1)

1-—t
readily yield the claim. O

Subsequently we will deal with a ‘relative’ ¢f., namely the multisum

° & (_1)k1+--~+kr

TT:Zm;kl--~kr(k1+---+k,,)'

As it will turn out, matters are here more involved. Indeed, we will prove now
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Theorem 2.2.For r > 1,

r
12r+1
r—l—l(n )

D )

k=1 m=1

(2.2) T, =(-1) (r!{(r +1) -

holds.

Proof. Proceeding as in the previous proof we get
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Substitution ofr = ¢t — 1 yields
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that is,

0 o
S
m(1/2) 1 —€

Upon expanding}—et as a geometric series we arrive at

00 0
_ r kt
Tr—g /12t6 dt.
k=0 Y '

Integration by parts leads to the identity (we suppress integration constants)

r kt Kkt 7’—1 (T_m+1) r—m
/te dt = e ( +Z s =,

wherek > 0.
Therefore a straightforward simplification yields

T, = (1) <(1112 r+1 00

r—+1

Since

we finally get the claimed identity (3.2).

J. Inequal. Pure and Appl. Math?(1) Art. 35, 2006 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

4 WALTHER JANOUS

3. ANEW FORMULA FOR APERY’S CONSTANT

Theorenj 2.p enables us to obtain a new way to exgfesby a fast converging series.
Indeed, letting- = 2 we get

n2? <1 /ln2 1
T2:2<<<3>—( - _Z?<?+ﬁ)>‘

k=1

Furthermorel[2, p. 43], reports

1
T = ZC(3)
Therefore the following holds.
Theorem 3.1.
8 ((m2)® <1 (ln2 1
(3.1) g(3)_?< ; +;?<?+E)>
This formula should be compared with the following one ($ée [5])
2 f L (—1)kH
(B)==(n2)*+4) —~_—.
s )

4., FURTHER OBSERVATIONS

e FromsS, + T, = 5((3) we infer

1 9
2 Z iji+7) 1<)

i+j even

that is (we put + j = 2k),

SY Lt
prie 202k — j)jk 87
le.
g P 2 S T N
25 2 (G 93) = 5@

where

denotes the:-th harmonic number.

In a similar wayS, — 7> = ¢(3) implies the formula
1

(2k +1)2

o0

Hyp = %g(g).

k=1
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From these two formulae we get easily

Theorem 4.1.
= 1 21
4.1 Hop 1= —
(4.2) > Gt =
and
=1 11
4.2 Hop = —((3).
(42) > o = ¢
Adding these two identities yields
1
(4.3) > 7tk =2¢(3),
k=1
a result already known to L. Euler.
e [4,p. 499, item 2.6.9.14] reads
ol + )’ — (D M(k) 7wy
- | B S s

wherey(z) = (InT'(2))" and~ denote the digamma function and the Euler-Mascheroni con-

stant, resp.
Therefore there holds the curious identity

2 (= D)ky(k
Z( )k;ﬂ( )

_ e}
_§Q$+75.

k=1

Because of)(k) = —y + Hj_; it reads in equivalent form

(=D

(4.4)

Hy,

)
=)

Recently [3] posed the problem of proving the identity
- - /”/4 In(cos x) In(sin x)
0

Z cosxsinx

n=0
We show that it implies a remarkable result for two doublesums.
Indeed, we firstly note

1
(2n+1)3

> 1 =1 =1
; 2n+1)3 ;E B ; (2k)3
that is
> 1 7
§:@n+n3:§d)

J. Inequal. Pure and Appl. Math?(1) Art. 35, 2006

dx.

http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

6 WALTHER JANOUS

Therefore, the identity under consideration in fact means

C(3) = 8/0”/4 In(cosz) ln(sinx)dx

COS ¥ sin x

Letting f(z) = 2=2) and setting: = /2 — = we obtain

cos T

/ fla ——x)dx:/ﬂjff(g—z)f(z)dz

w/2 :
(3) = 4/0 In(cosz) ln(smx)dx.

COS ¥ sin x

whence

Next, we substitutein x = /w.
Fromcos zdz = ﬁdw andcosz = v/1 — w we getdr =
This in turn yields

1
—wwmdw'

In(v1 —w) In(yw) 1
o Vi-w o Ve 2ywVl-w

C(3) = 1/0 In(1—w) lnwdw.

1—w w

C(S):l/o In(1-—w) nw dw

w 1—w
and developing the two factors of the integrand we get

.y <—;wz*> <—z<n—w>

zzw/ w)’dw,

((3) =4

that is

Upon rewriting this as

that is

Keeping in mind that

/1 w1 — w)~ldw = (=D - 1)!’

(i47—1!
we arrive at the formula
(4.5) Z Z Y
=1 j=1 Z]

Equation ) and(3) = lSQ give the two noteworthy identities

(4.6) ZZ ZZ

1
2131 zljl']

and

4.7) /01 m—2) Iz, /01 In(l = 2) In(1 — 2)dz.

z 11—z z
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e Finally, Theorenj 4]1 enables us to prove the following finite analogon of the initial for-
mula [2.]) of the present note, namely

48) >3 iy = 10
Indeed, [(4.R) and (4.3) imply

However,

and
k k k
1 1 I-1/1 1 1 1
_E —:_E B :_H_E - -
kg k(k+)) k& <l<; k+j) RO S k(k A+ )

readily lead to

as claimed.

5. TwWO QUESTIONS FOR FURTHER RESEARCH

e The results of Theorefn 4.1 may be regarded as special cases of the more general sums

[e.9]

1
ab = D 77— Hak—b,

where0 < b < a are entire numbers.

Problem 5.1. DetermineS, ;, for > 3 in terms of 'familiar’ expressions.
e Let, inanalogy toS, and7;, U, ; denote the multisum

©° ° (_1)k1+-~~+kzs

Ur,s:Z.“Zkl..-kr(kl—f—“""kr)’

wherer > 1 and0 < s <.

Problem 5.2. Determinel, , in the spirit of Theorery 2]2.
In other words evaluate the integrals

L. = /1 In(1 —2)*In(1 +z)"* s
0 T

forr >1and) < s <r.
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