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ABSTRACT. In this note we deal with some aspects of Apéry’s constantζ(3).
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1. I NTRODUCTION

Since Apéry’s miraculous proof (1979) that the valueζ(3) of Rieman’sζ-function is irra-

tional, Apéry’s constantζ(3) has been the focus of attention for many mathematicians. (An

extensive list of results and references are found in Section 1.6 of the highly recommended

encyclopedic book [2].)

It is the purpose of this note to extend some of these results. Thereby we will also obtain a

new infinite sum rapidly converging toζ(3).

At the end of this note we raise two questions for further investigation.
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2 WALTHER JANOUS

2. TWO M ULTISUMS

Recently in [1] the proof of

(2.1)
∞∑
i=1

∞∑
j=1

1

ij(i+ j)
= 2ζ(3),

whereζ(3) = 1.202056903..., was posed as a problem. Although this result was published

earlier (see [2, p. 43]) it is worthwhile reconsidering in the following more general way.

Theorem 2.1.For r ≥ 1 the multisum

Sr =
∞∑

k1=1

· · ·
∞∑

kr=1

1

k1 · · · kr(k1 + · · ·+ kr)

attains the valuer!ζ(r + 1).

Proof. Firstly we rewrite the multisum as an integral as follows

Sr =
∞∑

k1=1

· · ·
∞∑

kr=1

1

k1 · · · kr

∫ 1

0

xk1+···+kr−1dx

that is (upon interchanging of summation and integration),

Sr =

∫ 1

0

1

x

∞∑
k1=1

xk1

k1

· · ·
∞∑

kr=1

xkr

kr

dx.

Due to
∞∑

j=1

xj

j
= − ln(1− x),

we get

Sr = (−1)r

∫ 1

0

ln(1− x)r

x
dx.

Substitutingx = 1− t yields

Sr = (−1)r

∫ 1

0

ln(t)r

1− t
dt.

This and the known result ([2, p. 47])∫ 1

0

ln(t)r

1− t
dt = (−1)rr!ζ(r + 1)

readily yield the claim. �

Subsequently we will deal with a ‘relative’ ofSr, namely the multisum

Tr =
∞∑

k1=1

· · ·
∞∑

kr=1

(−1)k1+···+kr

k1 · · · kr(k1 + · · ·+ kr)
.

As it will turn out, matters are here more involved. Indeed, we will prove now
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AROUND APÉRY’ S CONSTANT 3

Theorem 2.2.For r ≥ 1,

(2.2) Tr = (−1)r

(
r!ζ(r + 1)− r

r + 1
(ln 2)r+1

−
∞∑

k=1

r∑
m=1

r(r − 1)...(r −m+ 1)

2kkm+1
(ln 2)r−m

)
holds.

Proof. Proceeding as in the previous proof we get

Tr = (−1)r

∫ 1

0

ln(1 + x)r

x
dx.

Substitution ofx = e−t − 1 yields

Tr = (−1)r

∫ ln(1/2)

0

(−t)r

e−t − 1
(−e−t)dt,

that is,

Tr =

∫ 0

ln(1/2)

tr

1− et
dt.

Upon expanding 1
1−et as a geometric series we arrive at

Tr =
∞∑

k=0

∫ 0

− ln 2

trektdt.

Integration by parts leads to the identity (we suppress integration constants)∫
trektdt = ekt

(
tr

k
+

r∑
m=1

(−1)m r(r − 1)...(r −m+ 1)

km+1
tr−m

)
,

wherek > 0.

Therefore a straightforward simplification yields

Tr = (−1)r

(
(ln 2)r+1

r + 1
+

∞∑
k=1

r!

kr+1

−
∞∑

k=1

1

2k

(
(ln 2)r

k
+

r∑
m=1

r(r − 1)...(r −m+ 1)

km+1
(ln 2)r−m

))
.

Since
∞∑

k=1

1

k2k
= ln 2,

we finally get the claimed identity (2.2). �
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3. A NEW FORMULA FOR APÉRY’ S CONSTANT

Theorem 2.2 enables us to obtain a new way to expressζ(3) by a fast converging series.

Indeed, lettingr = 2 we get

T2 = 2

(
ζ(3)− (ln 2)3

3
−

∞∑
k=1

1

2k

(
ln 2

k2
+

1

k3

))
.

Furthermore [2, p. 43], reports

T2 =
1

4
ζ(3).

Therefore the following holds.

Theorem 3.1.

(3.1) ζ(3) =
8

7

(
(ln 2)3

3
+

∞∑
k=1

1

2k

(
ln 2

k2
+

1

k3

))
.

This formula should be compared with the following one (see [5])

ζ(3) =
2

3
(ln 2)3 + 4

∞∑
k=1

(−1)k+1

k32k
(
2k
k

) .
4. FURTHER OBSERVATIONS

• FromS2 + T2 = 9
4
ζ(3) we infer

2
∑
i,j≥1

i+j even

1

ij(i+ j)
=

9

4
ζ(3)

that is (we puti+ j = 2k),
∞∑

k=1

2k−1∑
j=1

1

2(2k − j)jk
=

9

8
ζ(3),

i.e.
∞∑

k=1

1

2k

2k−1∑
j=1

1

2k

(
1

j
+

1

2k − j

)
=

9

8
ζ(3).

This can be summarized as
∞∑

k=1

1

k2
H2k−1 =

9

4
ζ(3),

where

Hn =
n∑

j=1

1

j

denotes then-th harmonic number.

In a similar wayS2 − T2 = 7
4
ζ(3) implies the formula

∞∑
k=1

1

(2k + 1)2
H2k =

7

16
ζ(3).
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AROUND APÉRY’ S CONSTANT 5

From these two formulae we get easily

Theorem 4.1.

(4.1)
∞∑

k=1

1

(2k − 1)2
H2k−1 =

21

16
ζ(3)

and

(4.2)
∞∑

k=1

1

(2k)2
H2k =

11

16
ζ(3).

Adding these two identities yields

(4.3)
∞∑

k=1

1

k2
Hk = 2ζ(3),

a result already known to L. Euler.

• [4, p. 499, item 2.6.9.14] reads

T2 =

∫ 1

0

ln(1 + x)2

x
dx = 2

∞∑
k=1

(−1)kψ(k)

k2
− π2γ

6
,

whereψ(z) = (ln Γ(z))′ andγ denote the digamma function and the Euler-Mascheroni con-

stant, resp.

Therefore there holds the curious identity
∞∑

k=1

(−1)kψ(k)

k2
=

1

8
ζ(3) +

π2γ

12
.

Because ofψ(k) = −γ +Hk−1 it reads in equivalent form

(4.4)
∞∑

k=1

(−1)k

k2
Hk =

5

8
ζ(3)

• Recently [3] posed the problem of proving the identity
∞∑

n=0

1

(2n+ 1)3
= 7

∫ π/4

0

ln(cosx) ln(sin x)

cosx sin x
dx.

We show that it implies a remarkable result for two doublesums.

Indeed, we firstly note
∞∑

n=0

1

(2n+ 1)3
=

∞∑
k=1

1

k3
−

∞∑
k=1

1

(2k)3
,

that is
∞∑

n=0

1

(2n+ 1)3
=

7

8
ζ(3).
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Therefore, the identity under consideration in fact means

ζ(3) = 8

∫ π/4

0

ln(cosx)

cosx
· ln(sinx)

sin x
dx.

Lettingf(x) = ln(cos x)
cos x

and settingz = π/2− x we obtain∫ π/4

0

f(x)f
(π

2
− x
)
dx =

∫ π/2

π/4

f
(π

2
− z
)
f(z)dz

whence

ζ(3) = 4

∫ π/2

0

ln(cosx)

cosx
· ln(sinx)

sin x
dx.

Next, we substitutesinx =
√
w.

Fromcosxdx = 1
2
√

w
dw andcosx =

√
1− w we getdx = 1

2
√

w
√

1−w
dw.

This in turn yields

ζ(3) = 4

∫ 1

0

ln(
√

1− w)√
1− w

· ln(
√
w)√
w

· 1

2
√
w
√

1− w
dw,

that is

ζ(3) =
1

2

∫ 1

0

ln(1− w)

1− w
· lnw

w
dw.

Upon rewriting this as

ζ(3) =
1

2

∫ 1

0

ln(1− w)

w
· lnw

1− w
dw

and developing the two factors of the integrand we get

ζ(3) =
1

2

∫ 1

0

(
−

∞∑
i=1

wi−1

i

)(
−

∞∑
j=1

(1− w)j−1

j

)
dw,

that is

ζ(3) =
1

2

∞∑
i=1

∞∑
j=1

1

ij

∫ 1

0

wi−1(1− w)j−1dw.

Keeping in mind that ∫ 1

0

wi−1(1− w)j−1dw =
(i− 1)!(j − 1)!

(i+ j − 1)!
,

we arrive at the formula

(4.5) ζ(3) =
1

2

∞∑
i=1

∞∑
j=1

1

ij2
(

i+j−1
j

) .
Equation (4.5) andζ(3) = 1

2
S2 give the two noteworthy identities

(4.6)
∞∑
i=1

∞∑
j=1

1

ij2
(

i+j−1
j

) =
∞∑
i=1

∞∑
j=1

1

ij(i+ j)

and

(4.7)
∫ 1

0

ln(1− z)

z
· ln z

1− z
dz =

∫ 1

0

ln(1− z)

z
ln(1− z)dz.
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• Finally, Theorem 4.1 enables us to prove the following finite analogon of the initial for-

mula (2.1) of the present note, namely

(4.8)
∞∑
i=1

i∑
j=1

1

ij(i+ j)
=

5

4
ζ(3).

Indeed, (4.2) and (4.3) imply
∞∑

k=1

1

k2

(
1

k + 1
+ · · ·+ 1

2k

)
=

3

4
ζ(3).

However,

1

k2

(
1

k + 1
+ · · ·+ 1

2k

)
=

1

k

k∑
j=1

1

k(k + j)

and
1

k

k∑
j=1

1

k(k + j)
=

1

k

k∑
j=1

1

j

(
1

k
− 1

k + j

)
=

1

k2
Hk −

k∑
j=1

1

kj(k + j)

readily lead to

2ζ(3)−
∞∑

k=1

k∑
j=1

1

kj(k + j)
=

3

4
ζ(3)

as claimed.

5. TWO QUESTIONS FOR FURTHER RESEARCH

• The results of Theorem 4.1 may be regarded as special cases of the more general sums

Sa,b =
∞∑

k=1

1

(ak − b)2
Hak−b,

where0 ≤ b < a are entire numbers.

Problem 5.1. DetermineSa,b for a ≥ 3 in terms of ’familiar’ expressions.

• Let, in analogy toSr andTr, Ur,s denote the multisum

Ur,s =
∞∑

k1=1

· · ·
∞∑

kr=1

(−1)k1+···+ks

k1 · · · kr(k1 + · · ·+ kr)
,

wherer ≥ 1 and0 ≤ s ≤ r.

Problem 5.2. DetermineUr,s in the spirit of Theorem 2.2.

In other words evaluate the integrals

Ir,s =

∫ 1

0

ln(1− x)s ln(1 + x)r−s

x
dx

for r ≥ 1 and0 ≤ s ≤ r.
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